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ABSTRACT

Over many years, D-serine and glycine were found to be the endogenous ligands for glycine-binding site for N-methyl-D-aspartate receptors. D-serine 
before being used up by the cells undergoes oxidative deamination by the enzyme D-amino acid oxidase (DAAO) and makes D-serine levels reduced in 
the brain, thereby affecting brain functions. In this review, we will discuss about the synthesis, location, therapeutic potential of DAAO function, role 
in cognition, and neuropathic pain.
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INTRODUCTION

D-serine and glycine are the classes of proteogenic amino acids that are 
synthesized in our body for their utility and consumption [1]. Glycine 
need for the N-methyl-D-aspartate receptor (NMDAR) is released 
by glycine neurons by one way and also synthesized by amino acid 
L-serine by another [2]. D-serine has a high affinity for the glycine 
site on NMDARs, and that glial cells are equipped with an enzyme that 
can convert regular L-serine into the neurotransmitting amino acid 
D-serine by an enzyme that can go back and forth between D-  and 
L-serine (D-serine racemase) [2-4]. Thus, D-serine can be derived 
from glycine or from L-serine, both of which can be transported into 
glial cells by their own transporters, and then glycine can be converted 
into L-serine by serine hydroxymethyltransferase, and finally L-serine 
can be converted into D-serine by the enzyme D-serine racemase [5-7]. 
D-serine’s actions are not only terminated by synaptic reuptake via 
the inwardly acting glial serine transporter, but also by an enzyme 
D-amino acid oxidase (DAAO) that converts D-serine into hydroxy-
pyruvate [8-11].

IN GLIAL CELLS

Serine hydroxyl methyl D-serine racemase transferase

Glycine L-serine D-serine

DAAO hydroxy-pyruvate

DAAOs are the flavin-dependent oxidases that are involved in the 
oxygen-dependent oxidative deamination of D-amino acids that 
results in the formation of ketoacids, ammonia, and hydrogen peroxide 
[12-16]. It catalyzes stereospecifically the oxidative deamination of 
D-amino acids. DAAO is being reported in many organisms including 
animals, humans, and microorganisms. Until now, no DAAO has been 
obtained from plant source [17]. The significant levels of DAAO protein 
and enzyme are found in kidney, liver, and brain of mammals [18,19]. 
They destroy the D-amino acids originating from the bacterial source. 
The occurrence of DAAO in human brain was left unexplored until 
1990 [20,21]. Until 1990 the presence of DAAO in brain was being left 
unexplored but after 1990 research was made for extending their study 
and they were found for their potential role. NMDARs are ionotropic 
glutamate receptors controlling synaptic plasticity and memory 
function. Binding of an agonist to the NMDAR exhibits fast magnesium-
unbinding kinetics causing increasing ion channel opening and leading 
to depolarization, thereby facilitating short-term memory [29].

ROLES OF DAAO

DAAO provides microorganisms with exogenous D-amino acids as 
a source of carbon nitrogen and energy to a regulatory role in the 
human brain, where it controls the levels of the neuromodulator 
D-serine [30-34]. It supports the levels of D-amino acids that play an 
important role in the regulation of vital processes such as aging, neural 
signaling, and hormonal secretion. Changes in the levels of D-amino 
acids have a major impact on the organisms. Elevation of few amino 
acid levels in the brain promotes long-term potentiation [35-40].

REGULATION OF D-SERINE LEVELS

D-serine is considered to be the important player in the brain 
development and function. D-serine is localized in the areas of the 
brain that have high NMDAR expression and is considered to be an 
important endogenous co-agonist of NMDARs in many brain regions, 
including the forebrain and hippocampus [41-44]. D-serine regulates 
NMDAR-mediated synaptic transmission and plasticity. It has also been 
shown to be a key mediator in neuronal migration in the cerebellum. It 
has been proposed that neurons, which contain high serine racemase, 
may play an important role in synthesizing D-serine while glial cells 
appear to play a more important role in its release [45-47]. In light of its 
critical role in the normal development of neuronal circuits, it is hardly 
surprising that D-serine also participates in adult psychiatric health. 
D-serine regulation has been investigated extensively as a causative 
factor and in some cases as a potential therapeutic in schizophrenia, 
as well as a broad spectrum of other neurological disorders [48-50]. 
Curiously, it appears to be beneficial for both NMDAR hypofunction 
(schizophrenia) [51-54] and hyperfunction (depression) disease 
models. The explanation for this might lie in its differential effects on 
neuronal and glial subpopulations or in the particular brain regions 
impacted. It is tempting to speculate based on the important roles 
played by D-serine in the developing brain [55-57] that its ability 
to remediate disease may in part depend on enhancing functional 
connectivity by supporting NMDAR-dependent synaptic plasticity, 
dendritic arborization, and synaptic transmission in the mature brain.

POTENTIAL THERAPEUTIC FUNCTIONS OF DAAO INHIBITORS 
(DAAOIS)

Involvement of D-amino acid and D-amino acid oxidase has been 
implemented in much physiological process. At present, research is 
focused on the role of DAAO and D-amino acids in the involvement 
of psychiatric disorders such as schizophrenia [58-60]. In particular, 
D-serine and glycine play an important role in neuronal signaling by 

Review Article



Asian J Pharm Clin Res, Vol 9, Issue 4, 2016, 33-36
	 Nithya and Shanmugarajan	

34

functioning as co-agonists of the NMDAR. The NMDAR functions as a 
molecular coincidence detector and requires the presence of both 
agonist (glutamate) and co-agonist (D-serine, glycine, and/or D-alanine) 
for the ligand-gated ion channel to open. Importantly, D-serine has been 
reported to be the predominant NMDA co-agonist in the forebrain, and 
there is accumulating evidence that D-serine regulates cortical and 
hippocampal NMDAR activity [61-64].

Regulation of NMDAR co-agonists through the pharmacological 
manipulation of DAAO and glycine transporters has been investigated 
as putative novel therapeutics to treat schizophrenia. Currently, typical 
and second-generation atypical antipsychotics are the frontline of 
treatment for schizophrenia. These therapeutics are moderately 
effective in treating the positive symptoms of schizophrenia; however, 
they fall short of addressing the cognitive deficits and negative symptoms 
associated with this disease [65-68]. Therapeutics that modulate 
D-serine and other NMDAR co-agonists may better address the multiple 
symptomatic domains of schizophrenia. The NMDAR is thought to play 
a central role in the pathophysiology of schizophrenia and NMDAR 
dysfunction may underlie the behavioral and neurobiological deficits 
observed in this disease [2,3,22,23,25,27,53,59,65]. Accordingly, 
decreasing NMDAR function by administering NMDAR antagonists such 
as ketamine and phencyclidine produced psychotomimetic symptoms, 
negative symptoms, and cognitive deficits in animals and normal 
human subjects [69-71].

NMDAR antagonists also reinstated schizophrenia-like symptoms 
in remitted patients and exacerbated psychosis in patients free of 
antipsychotic medication [72-75]. Furthermore, increasing NMDAR 
function by co-administration of glycine, D-serine, or D-alanine with 
atypical antipsychotics improved positive, negative, and cognitive 
symptoms in schizophrenia patients when compared to antipsychotic 
treatment alone [76-83].

DAAOI INVOLVEMENT IN PSYCHOSIS AND COGNITION

DAAOIs could be useful clinically for reducing the dose of D-serine 
necessary to improve psychosis or cognitive deficits associated with 
schizophrenia. As a result, the co-administration of DAAOIs with 
D-serine could ameliorate some of the side effects associated with the 
administration of high doses of D-serine, such as nephrotoxicity [84-92].

DAAOI INVOLVEMENT IN NEUROPATHIC PAIN [4,11,35,36,42,46,]

Beyond its hypothesized involvement in schizophrenia, there is also 
evidence suggesting a role of D-serine and potentially DAAO in the 
response to painful stimuli. Intracerebral administered D-serine is 
effective in several pain models although the effects of D-serine on 
pain responsiveness might greatly differ depending on the brain region 
where it is administered for an example of potentiation of the pain 
response by D-serine. However, there is a significant amount of research 
showing that NMDAR antagonists might be also useful for treating pain.

CONCLUSION

The DAAOI needs to be explored further for their involvement 
in therapeutic potential for positive and negative symptoms for 
schizophrenia. The few published studies characterizing novel DAAOIs 
have yielded conflicting results. This may be for several reasons 
including the use of DAAOIs with different properties including potency 
and pharmacokinetics. Relatively, few of the published studies have 
related efficacy (or lack thereof) to the extent of peripheral/brain 
DAAOI or have demonstrated an increase of brain extracellular D-serine 
following a behaviorally effective dose of an inhibitor. Furthermore, 
the relative contributions of peripheral D-serine which can be actively 
transported into the brain are poorly understood. Interestingly, 
preclinical studies have provided data that combining a DAAOI with 
D-serine may be more effective in terms of antipsychotic-like activity; 
however, a clinically acceptable strategy for this combination remains 
to be determined.
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