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AMARJEET SINGH1, DIKSHA PURI2, BIMLESH KUMAR1*, SACHIN KUMAR SINGH1

1Department of Pharmacy, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India. 2Department of Pharmacy, 
School of Ayurvedic Pharmaceutical Sciences, Lovely Professional University, Punjab, India. 

Email: bimlesh.12474@lpu.co.in

Received: 25 April 2016, Revised and Accepted: 13 May 2016

ABSTRACT

Heat shock proteins (HSPs) are one of the most versatile classes of molecules which regulate cellular homeostasis. In 1960, Ritossa accidentally raised 
the incubation temperature of Drosophila fly and found an increased gene transcription of certain unknown proteins, which he named HSPs. Further 
studies explored that HSPs, being expressed at low levels under normal conditions, act as molecular chaperones, which fold, assemble, localize, 
secrete, and translocate cellular proteins. Moreover, their expression is markedly induced in response to various stresses such as an exposure of 
cells to heavy metals, nitric oxide, ischemia, microbial infection, antibiotics, and hormones. The literature has been thoroughly investigated, and the 
present review summarizes the complex role of HSPs in gastric disorders, neurological disorders, apoptosis, cancer, etc. Expression of HSPs by cells 
has important physiological or pathological implications. HSPs can be used as novel molecular targets for both the pharmacological and therapeutic 
interventions to prevent and cure various diseases.
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INTRODUCTION

Animals can adapt to the changes in environmental temperature 
(i.e., heat shock) and may acquire temperature tolerance. Heat shock 
response encompasses changes in stress physiology and reprograming 
of cellular activities to enable the organism’s survival. The proteins, 
which are expressed during heat shock, are termed as heat shock 
proteins (HSPs). The major HSPs and their cognates have been 
presented in Table 1.

HSPs were reported for the first time, in 1960, by Ritossa, who observed 
a pattern of Drosophila salivary gland chromosome puffs that were 
induced in response to transient exposures to elevated temperatures. He 
accidentally raised the incubation temperature of Drosophila and found 
an increased gene transcription of certain proteins [1]. In the absence 
of stress, HSPs act as molecular chaperones by assisting in the folding, 
assembling, intracellular localization, secretion, regulation, translocation 
of cellular proteins, and even degradation of damaged proteins [2]. 
Following exposure to the stimulus (temperature, pesticides, heavy 
metals, solvents, and effluents), newly synthesized HSPs can:
1. Correct folding of nascent and stress induced misfolded proteins 

together with the ubiquitin-proteasome system [3,4],
2. Prevent formation of protein aggregates,
3. Promote selective degradation of denatured and misfolded proteins, 

and
4. Regulate apoptosis by interacting with mediators of apoptotic 

pathways (upstream and downstream) [4,5].

EXPRESSION OF HSP

HSPs may be either expressed constitutively or induced through the 
transcriptional activity of heat shock factor [6,7]. A number of stimuli 
can increase the expression of HSPs as represented in Table 2. Some of 
which are: Exposure of cells to amino acid analogs [8,9], protein kinase 
C stimulators [10], calcium increasing agents [10], hormones [11], 
Na3AsO4 [12] etc.

CLINICAL IMPLICATIONS OF HSPs

Gastrointestinal disorders
HSPs act as a double-edged sword, it either strengthens the gastric 
defense system or weakens (Helicobacter pylori or alcohol-associated 

gastritis) [6]. Exposure of microbial pathogens to gastric cells 
induces HSPs, causing modulation of the innate and adaptive immune 
responses, perpetuating gastric inflammation, or inducing autoimmune 
gastritis. H. pylori expresses the cytotoxin-associated gene-A that 
activates nuclear factor κB (NF-κB) inducing kinase which then cause 
phosphorylation and activation of IKK-α/β resulting in proteasomal 
degradation of the inhibitory subunit (IkB) of NF-κB [13]. As a result, 
translocation of p50 and p65 subunits takes place into the nucleus, 
where they bind to NF-κB binding motif in the promoter region of 
the interleukin-8 (IL-8) gene, producing IL-8 [14]. IL-8 production is 
regulated via RAS, RAF, MEK1/2, and extracellular signal-regulated 
kinases (ERK)1/2 (MAP kinase pathway). The activation of ERK1/2 
causes phosphorylation of c-fos which together with c-jun forms 
the activation complex AP-1, regulating the expression of IL-8 gene 
(Fig. 1) [15]. Tang et al. [16] observed that increased expression 
of Hsp72 significantly inhibited phosphorylation of each kinase of 
mitogen-activated protein kinase pathway as well as IκB degradation, 
and nuclear translocation of p50 and p65 subunits.

Kawai et al. [17] reported that geranyl-geranyl-acetone (GGA), a non-
toxic Hsp70 inducer, restores the heat shock response in gastric mucosa 
of protein-malnourished rats. GGA has also been found to confer 
protection to guinea pig gastric mucosal cells from necrosis induced by 
gastric stressors such as ethanol, H2O2, and HCl [18]. GGA also prevents 
non-steroidal anti-inflammatory drug-induced gastric lesions [19] 
and is therapeutically beneficial against inflammatory bowel disease-
related colitis and lesions of the small intestine.

DISORDERS OF NERVOUS SYSTEM

Spinal and bulbar muscular atrophy (SBMA)
SBMA is an inherited motor neuron disease caused by the expansion 
of a polyglutamine tract within the androgen receptor (AR) [20]. 
Overexpression of Hsp70 and Hsp40 inhibits the accumulation of 
abnormal polyglutamine protein to toxic levels and also suppresses 
cell death in various cellular models of SBMA [21,22]. This preventive 
action is due to induction of proper refolding of abnormal pathogenic 
proteins [23]. It was seen that the oral administration of GGA 
upregulated the expression of Hsp70, Hsp90, and Hsp105 in the CNS 
of SBMA-transgenic mice and inhibited the accumulation of pathogenic 
AR in the nucleus [22]. Moreover, Hsp90 inhibitors, such as 17-AAG, 
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17-DMAG, have been found to promote the clearance of misfolded 
mutant AR through ubiquitin-proteasome system [22]. Some other 
Hsp90 inhibitors, such as insulin-like growth factor 1 and ASC-J9, have 
also shown efficacy in mouse models [24].

Neurodegenerative disorders (Alzheimer’s and Parkinson’s 
disease [AD and PD])
The accumulation of aggregated proteins has been remarkably found in 
diseases such as AD and PD. The pathophysiological feature behind AD 
is the aggregation of β-amyloid, hyperphosphorylation, and subsequent 
tangle formation of tau protein. The cause of PD remains vague; however, 
there is a strong evidence of association of α-synuclein in early steps of 
pathogenesis [25,26]. Many recent research activities have confirmed 
the protective role of HSPs in neurodegenerative disorders by folding 
of proteins or delivering misfolded proteins to ubiquitin-proteasome 
system for degradation [26]. The heat shock response genes are 
mainly regulated by the heat shock transcription factor (HSF-1) which 
is restrained in an inactivated monomer state by forming complex 
with HSP90 [3]. Stress, heat shock, or inhibition of Hsp90 releases 
the HSF-1 from Hsp90 complex. This is manifested by the subsequent 
production of Hsp70 and Hsp40, which promote desegregation and 
protein degradation [20,27]. In various animal studies, overexpression 
of Hsp70 and Hsp40, due to inhibition of Hsp90, has been found to 
suppress neurotoxicity induced by abnormally folded proteins [26]. 
Duo et al. [28] found that geldanamycin increased the expression of 
Hsp70 and reduced the amount of insoluble tau in an AD cell model 
and in rat primary cortical neurons [28]. 17-AAG has also been found to 
be effective against neurodegeneration in different animal models [20].

CARDIOVASCULAR DISORDERS

Myocardial ischemia
Currie et al. [29] established the association between HSPs and 
myocardial protection by elevating the body temperature of rats from 
37°C to 42°C for 15 minutes, which increased the cardiac inducible 
as well as catalase activity after 24 hrs. Hsp70 has been found to be 
associated with enhanced post-ischemic myocardial recovery in 
rat hearts [30]. It either prevents adverse conformational changes 
or promotes reassembly of denatured proteins, hence preventing 
myocardial infarction and reperfusion injury [31]. Hsp70 synthesis 

Table 1: Major HSPs with their expression, structure, and role

HSPs/Isoforms Expression Structure Functions
Hsp27 C/I Two compact domains composed of β sheets • Thermotolerance

• Apoptotic signaling
• Prevent actin fragmentation
• Cell differentiation

Hsp60 Three domains:
• Apical domain
• Equatorial domain containing binding site for ATP
• Intermediate domain joins both the domain

• Folding of proteins for matrix
•  Transport of proteins across membrane of 

mitochondria
• Regulate apoptosis

Hsp60/Hsp10-cyt C/I
Hsp60/Hsp10-mito C

Hsp70 Two domains:
• A peptide binding domain
• Amino-terminal ATPase domain

• Transport of proteins across cellular membrane
• Folding of newly synthesized polypeptide
• Assembly of multi-protein complex
• Apoptosis

Hsc7 C/I
Hsp70.1 C/I
Hsp70.2 C
Hsp70.3 C
Hsp70 C/I
Grp75 C
Grp78 C/I
Hsp105 C

Hsp90 Four domains:
• N-terminal domain
• Middle domain involved in protein binding
•  Charged linker region joins N-terminus with 

middle domain
• C-terminal domain containing ATP-binding site

• Assist in folding
• Intracellular transport
• Maintenance and degradation of protein
• Cell signaling
• Angiogenesis
• Metastasis

Hsp90-α C/I
Hsp90-β C/I
Hsp90-N C/I
Hsp75/TRAP-1 C/I

C: Constitutive; I: Inducible, HSPs: Heat shock proteins

Table 2: Different inducers of HSPs

Physiological stimuli Pathological 
stimuli

Environmental 
stimuli

Cycle of cell division Microbial infection Heat shock
Growth factors Oxidant injury Heavy metals
Cell differentiation Autoimmunity Metabolic inhibitors
Tissue development Fever Chemicals
Hormonal stimulation Inflammation Antibiotics

Malignancy Radiation
HSPs: Heat shock proteins

Fig. 1: The mechanism of Helicobacter pylori induced 
interleukin-8 (IL-8) production and role of Hsp72 in its 

inhibition. H. pylori expresses the cytotoxin-associated gene-A, 
which activates nuclear factor κB leading to IL-8 production. 
Hsp72 prevent IκB degradation and nuclear translocation of 
p50 and p65 subunits of NF-κB. Moreover, it also inhibits the 
phosphorylation of each kinase of mitogen-activated protein 

kinase pathway
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also increases in cardiac tissue on exposure to stressful stimuli such 
as elevated temperature, hypoxia, volume or pressure overload and 
exposure to certain drugs (isoproterenol, vasopressin, or angiotensin), 
which protect the heart from further damage.

Atherosclerosis
The arterial wall undergoes continuous remodeling in response to 
various endothelial stressors, such as hypercholesterolemia, local injury, 
smoke, and toxins, causing overexpression of the HSPs [32], which 
are processed by macrophage and presented to T- and B-lymphocyte 
producing autoimmunity (Fig. 2).

Moreover, HSPs also serves as danger signals to activate the innate 
immunity system, causing the production of cytokines such as tumor 
necrosis factor alpha (TNF-α), IL-12, and IL-15. The overall effect is 
atherogenesis [33]. In this regard, Madrigal-Matute et al. (2010) [34] 
found that Hsp90 inhibitors (17-AAG and 17-DMAG) reduced 
inflammatory responses in atherosclerosis.

AUTOIMMUNE DISORDERS

Rheumatoid arthritis (RA)
It has been investigated that T-cells and antibodies from arthritic 
animals and RA patients are directed against HSPs [35]. The 
expression of Hsp96 is found to be increased in the synovial fluid of 
RA patients [35,36] which acts as an endogenous ligand for toll-like 
receptors (TLRs), mainly TLR-2 and TLR-4 (Fig. 3).

Ligand binding promotes dimerization of TLRs resulting in the 
recruitment of the TIR domain containing adaptor molecule (MyD88) 
intracellularly. The downstream signaling involves the formation of a 
complex containing IL-1 receptor-associated kinase-1, IL-1 receptor-
associated kinase-4, TNF receptor-associated factor-6, and transforming 
growth factor beta-activated kinase-1 (TAK-1). The activated TAK-1 
activates the IKK-β which then phosphorylates and degrades inhibitory 
IκB-subunit of NF-κB resulting into the translocation of active p50 and 
p65 subunits into the nucleus. Simultaneously, TAK-1 also activates 
AP-1 via MAPK cascade. In addition to MyD88, TLR-4 can interact with 
TIR-domain-containing adapter-inducing interferon-β (INF-β) that 
recruits TNF receptor-associated factor-3 and TANK-binding kinase-1, 
which in turn, activates IRF-3. Upon activation, IRF-3 forms a dimer and 
translocates into the nucleus. All these transcription factors (NF-κB, AP-
1, and IRF) induce expression of pro-inflammatory genes leading to the 
synthesis of IL, TNF, INF, etc. [37,38].

Rice et al. [39] found that Hsp90 inhibitor (SNX-7081) has therapeutic 
benefit in rat arthritis models by blocking nuclear translocation of 
NF-κB. In another study, administration of EC144, a synthetic Hsp90 
inhibitor, blocked disease development in rat collagen-induced arthritis 
by suppressing the inflammatory response [40].

Systemic lupus erythematosus (SLE)
SLE is a chronic inflammatory disease of autoimmune origin with 
complex immunological manifestations. In SLE, there is reduced 
immune tolerance and abnormal activation of T and B cells, which leads 
to the production of auto-antibodies mainly against protein-nucleic 
acid complexes such as chromatin and ribonucleoprotein [41]. It has 
been studied that TLRs play a role in the innate immunity by activating 
inflammatory pathways and regulating defense against pathogens. 
However, inappropriate activation of TLRs by exogenous or endogenous 
ligands (HSPs, fibrinogens, etc.) may lead to SLE [42].

Binding of ligand to TLRs, expressed on the surface of B cells, lead 
to the formation of antibodies and their immune complex with the 
ribonucleoproteins. The uptake of immune complex by dendritic cells 
(DCs) via Fc receptor and by B cells via B cell receptor lead to the IFN-α 
production. Moreover, activation of TLRs which are expressed on DCs 
upregulate the cell-surface expression of co-stimulatory (CD80 and 
CD86) molecules and also induces expression of cytokines such as IL-
12 and other chemokines. Induction of CD80 and CD86 on DCs results 

in the activation of T cells (Fig. 4) [42,43]. In many studies, elevated 
level of Hsp90 has been correlated with increased expression of IL-6 
in SLE; therefore, its pharmacological inhibition has increasingly 
become the focus of research on SLE [44]. In this regard, 17-DMAG has 
been reported to produce therapeutic effect in mouse model of SLE by 

Fig. 2: Schematic representation of role of Hsp60 in the 
pathogenesis of atherosclerosis. Heat shock proteins (HSPs) are 
processed by macrophage and presented to T- and B-lymphocyte 

leading to activation of autoimmunity. Moreover, HSPs also 
activate the innate immunity system causing production 

of cytokines

Fig. 3: The role of Hsp96 in signal transduction of toll-like 
receptors (TLRs). Hsp96 activate TLRs resulting into the 

translocation of active p50 and p65 subunits of nuclear factor 
κB into the nucleus along with activation of AP-1 and interferon 

regulatory factor-3. This leads to the synthesis of interleukin, 
tumor necrosis factor, interferons, etc.
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The antiapoptotic action of Hsp70 is to:
1. Inhibit apoptosis signal-regulating kinase-1 and interact with peptide 

binding domain of the JNK [59],
2. Bind with Apaf-1 to prevent caspase activation, and
3. Inhibit caspase-independent cell death by binding to apoptosis-

inducing factor [57].

Hsp90 prevents cell death by forming a cytosolic complex with 
Apaf-1 and inhibiting the formation of apoptosome [60]. It also 
prevents degradation of RIP-1 kinase which connects death receptor 
to NF-κB activation. In the absence of Hsp90, RIP-1 gets degraded 
and NF-kb is inhibited, sensitizing the cells to apoptosis [57]. 
Hsp90 binds with phosphorylated Akt (serine/threonine kinase) 
inhibiting dephosphorylation and activation of Akt by PP2A. In the 
absence of Hsp90, Akt gets activated and cause phosphorylation of 
B-cell lymphoma-2 (BCL2) related pro-apoptotic protein [60-63]. 
Consequently, HSPs are ubiquitous and highly conserved class of 
proteins whose expression is induced in response to a wide variety of 
physiological and environmental insults [57].

inhibiting Hsp90 [45]. In another study, ganetespib therapy was found 
to be effective in improving multiple disease parameters, including 
suppression of autoantibody production and the preservation of renal 
tissue integrity and function in MRL/lpr autoimmune mouse model [46].

Diabetes mellitus
Since a characteristic feature of diabetes is uncontrolled oxidative stress, 
HSPs, being antioxidant, should prove to be helpful in fighting diabetic 
complications [47]. The following are some proposed mechanisms by 
which diabetes may impair HSPs response.

Reduction in translational elongation-factors
Insulin regulates the initiation and elongation phases of translation by 
modulating the initiation-factors (eIF2, eIF2B, eIF3, eIF4B, eIF4E, and 
eIF4G) and elongation-factors (eEF1 and eEF2). In an experimental 
diabetic rat model, the rate of peptide chain elongation was found to 
be reduced due to a marked reduction of EF2. It was evident that the 
insulin therapy restored protein synthesis and also the level of EF2 in 
diabetic rats [48].

Impaired HSF-1 activation
In diabetes, the glycogen synthase kinase-3 (GSK-3) has been found 
to be upregulated. GSK-3 is an enzyme which was initially known to 
regulate the metabolism of glycogen, but now, it has been found to be 
involved in the phosphorylation and subsequent suppression of HSF-1 
activity. Overexpression of GSK-3 impairs heat shock-induced activation 
of HSF-1 [49,50].

Reduction in membrane fluidity
For increased HSPs expression, membrane fluidity is a vital factor. 
Diabetes is associated with glycation, oxidative stress, and insulin 
deficiencies, which reduce the membrane fluidity and make it stiffer as 
a result of which cellular HSPs response is reduced [51].

A decreased expression of Hsp72 mRNA is observed in patients with 
type-2 diabetes [52]. Moreover, in diabetic rodents, pharmacological 
induction of Hsp72 expression improves the insulin sensitivity [47]. 
In the absence of Hsp72, c-Jun N-terminal kinases (JNK) and IKK 
phosphorylates IRS-1 on Ser-307, rendering it a poor substrate for the 
activated insulin-receptor which results in inhibition of insulin signal 
transduction via Akt [53]. Hsp72, by preventing phosphorylation of JNK 
and IKK, cause activation of Akt, which plays two principal roles in the 
metabolism of glucose regulated by insulin (Fig. 5) [54]:
1. It induces translocation of glucose transporter type 4 transporters 

from the cytoplasm to the plasma membrane and,
2. It promotes glycogen synthesis by inactivation of GSK-3 via serine 

phosphorylation,
3. Similarly, inhibition of Hsp90, by AUY922 administration in mice, led 

to inhibition of JNK-1 phosphorylation, cytoprotection, and improved 
insulin signaling in cells [55].

OTHER IMPLICATIONS

Apoptosis
Apoptosis refers to an energy dependent asynchronous, genetically 
controlled process in which the activated apoptotic genes cause self-
destruction of damaged cells. The balance between cell survival and 
death is under genetic control. Apoptosis is a process of cell suicide, the 
mechanism of which is encoded in the chromosomes of all nucleated 
cells [56]. HSPs inhibit apoptosis (Fig. 6). The antiapoptotic action of 
Hsp27 is to:
1. Promote the antioxidant defense by decreasing reactive oxygen 

species [57],
2. Chelate cytochrome-c released from mitochondria to prevent 

the formation of apoptosome with subsequent activation of 
caspases [58,59], and

3. Inhibit Fas-mediated apoptotic pathway by interacting with death-
associated protein 6 (Daxx) [59].

Fig. 4: Toll-like receptors (TLRs) signaling: The role of heat shock 
proteins (HSPs) in systemic lupus erythematosus. HSPs activate 

TLRs which lead to formation of immune complex along with 
activation of T-cells. This induces the expression of cytokines and 

other chemokines

Fig. 5: The protective role of Hsp72 in type 2 diabetes mellitus via 
Akt signaling pathway. Hsp72 prevent phosphorylation of c-Jun 

N-terminal kinases and cause activation of Akt. That leads to 
glucose uptake as well as formation of glycogen



Asian J Pharm Clin Res, Vol 9, Suppl. 1, 2016, 17-24
 Singh et al. 

21

Cancer
Among all types of diseases, the cancer attrition rate is the worst: Only 
5% of cancer drugs entering clinical trials actually reach marketing 
approval. HSP targeting drugs are now emerging as a potential 
anticancer agent because HSPs play a key role in the cytoprotection. 
Their constitutive expression makes the cancerous cells survive [64]. 
The proposed cytoprotective mechanisms of HSPs are:
1. Catalysis of proper folding of misfolded proteins and prevention of 

their aggregation [65],
2. Inhibition of caspase-dependent and caspase-independent cell death 

pathways [66], and
3. Stabilization or proteasomal degradation of proteins providing 

cellular survival [67].

Hsp27 exhibits the acquired resistance of tumor cells and its level 
increases in cancer of prostate [68-70], breast [70], uterus and 
ovary [70,71], head and neck, gastrointestinal tract [72], Hodgkin’s 
disease [73], nervous system (meningiomas, astrocytomas, and 
neuroblastomas), and bladders [74].

Cancer cells abundantly express Hsp70 at different stages of 
tumorigenesis and during anticancer treatment to resist various insults. 
In this context, Wen et al. [75] reported that VER-155008 significantly 
inhibits non-small-cell lung cancer (NSCLC) proliferation and cell cycle 
progression by abolishing Hsp70 overexpression. Li et al. [76] reported 
that MKT-077 analogs have antiproliferative activity against cancer cell 
lines through their ability to inhibit members of the Hsp70 family.

Leu et al. [77] determined that 2-phenylethynesulfonamide (PES) 
interacts selectively with Hsp70 and promotes death of cultured tumor 
cells. In animal models of spontaneous BCL, administration of PES 
significantly protected mice from BCL development without any sign of 
organ toxicity [77,78].

Tran et al. [79] demonstrated that epigallocatechin-3-gallate inhibited 
the expression of Hsp70 and Hsp90 and thereby decreased cell 
proliferation and colony formation of MCF-7 human breast cancer cells.

Hsp90 acts in the cellular carcinogenesis via human epidermal growth 
factor receptor-2 (HER2) signaling pathway (Fig. 7). It is essential for 
the activity of HER2 itself as well as its downstream signaling proteins, 

Fig. 7: The role of Hsp90 in the human epidermal growth factor 
receptor-2 (HER-2) signaling pathway. Hsp90 is essential for 
the activity of HER2 itself as well as its downstream signaling 
proteins. Activation of HER2 receptor by heregulin promotes 

cellular proliferation and prevents apoptosis leading to 
carcinogenesis

Fig. 6: The role of heat shock proteins (HSPs) in apoptosis. 
HSP27 decreases reactive oxygen species, chelate cytochrome-c, 

and inhibit Fas-mediated apoptotic pathway by interacting 
with death-associated protein 6. HSP70 mainly prevent 

oligomerization of apoptotic protease activating factor-1 
(Apaf-1). HSP90 form a cytosolic complex with Apaf-1 and inhibit 

the activation of caspases

e.g., Akt, RAF-1, ERK, etc. [80]. In normal cells, HER2 plays important 
roles in all stages of cell development. However, the mutation or 
overexpression of HER2 could directly lead to tumorigenesis as well as 
metastasis [81]. The activation of HER2 receptor by heregulin ligand 
leads to the phosphorylation of the tyrosine residues of the receptor 
which trigger downstream signaling pathways (PI3K and MAPK) 
promoting cellular proliferation and preventing apoptosis [81].

Many Hsp90 inhibitors (e.g., benzoquinone, ansamycins, herbimycin-A, 
and geldanamycin) block the binding of ATP to Hsp90 leading to 
destabilization of Hsp90 complex which results in proteasomal 
degradation of the RAF, Akt, and mutant p53 and inhibition of tumor 
growth with activation of apoptosis [15,80,82].

Geldanamycin downregulates Akt in Epstein-Barr virus-positive NK/T-
cell lymphoma and thereby induces apoptotic cell death [83]. In another 
study, ganetespib (STA-9090), a non-geldanamycin Hsp90 inhibitor, 
caused inhibition of proliferation and induction of apoptosis in NSCLC 
cell lines [84]. Jensen et al. [85] reported that NVP-AUY922, a novel small 
molecule Hsp90 inhibitor, potently inhibits the proliferation of human 
breast cancer cell lines. Georgakis et al. [86] found that 17-allylamino-
17-demethoxy-geldanamycin (17-AAG), a Hsp90 inhibitor, induced cell 
cycle arrest and cell death in a dose- and time-dependent manner in 
mantle cell lymphoma cell lines. Exposure of NSCLC cell line with IPI-
504 causes degradation of echinoderm microtubule-associated protein-
like 4-anaplastic lymphoma kinase fusion protein, an oncogenic driver 
in NSCLC, which leads to a potent inhibition of downstream signaling 
pathways and to the induction of growth arrest and apoptosis in 
cancer cells [87]. Several other Hsp90 inhibitors have been reported in 
clinical settings, including AT13387, CH5164840, CUDC-305, MPC3100, 
PU-H71, SNX-2112, and XL888 [88].

Consequently, an interesting strategy for anticancer drug could be to 
combine Hsp90 and Hsp70 inhibitors [89].

Protein triage
One of the major physiological roles of HSPs is in the protein 
homeostasis [90]. Sometimes, abnormal protein synthesis, denaturation 
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of proteins by heat or chemicals, etc., leads to the formation of misfolded 
or non-native polypeptides. The peril of these inactive polypeptides is 
controlled by either of the two pathways [67]:
1. Refolding by chaperones or HSPs and
2. Degradation by ubiquitin-proteasome system.

There exists a balanced coordination between these two separate 
pathways. HSPs bind to the non-native polypeptides and cause release 
of the active or properly folded native protein (Fig. 8). If the misfolded 
protein cannot be refolded, the proteasome favors its destruction by 
promoting their ubiquitination [67]. In some cases, the non-native 
protein may aggregate, which can again be desegregated with the 
help of HSPs [91]. The ability of HSPs to restore or destruct damaged 
proteins confers on them a key role in protein quality control and 
in the regulation of the protein triage [67]. The decision of HSPs to 
direct “folding versus degradation” remains poorly understood, but 
it probably depends on the type and intensity of the stress stimuli 
(external or physiological).

CONCLUSION

The recent evidence indicates the connections between HSPs and the 
cellular machinery in the different diseased states. Collectively, the 
studies suggest that HSPs can be used as novel molecular targets for 
both the pharmacological and therapeutic interventions to prevent 
various diseases. With the effort of dedicated laboratories, there should 
be optimism about the rapid development of novel chemical therapies 
for unfolding/misfolding diseases based on the function of the core 
domain of HSPs. An understanding of different sites for subunit-
subunit interaction, target substrate protein binding, phosphorylation 
and interaction with cytoskeletal elements, small metabolites, 
pharmaceuticals, and nucleotides need to be characterized chemically. 
Furthermore, continued research is needed to define the physiological 
and biological function of nearly all HSPs identified to date.
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