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ABSTRACT

Objective: The purpose of the present investigation was to assess antifungal characterization of Burkholderia gladioli strain VIMP03 (JQ867372), an 
isolate from sugar beet rhizosphere. 

Methods: Antifungal characterization was carried out by biochemical, dual culture, and agar well diffusion methods against Ceratocystis paradoxa, a 
soilborne pathogen of sugarcane and other crops. Culture filtrate and ethyl acetate extract obtained from culture supernatant were analyzed by high-
performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analyses, respectively.

Results: The culture filtrate and ethyl acetate extract exhibited effective antifungal activity. Organic acid profile of the culture filtrate was determined. 
Acetic acid was mainly produced by the culture under study. The GC-MS analysis of ethyl acetate extract documented the presence of compounds 
including tetratetracontane, 9-nonadecene, erucic acid, and other hydrocarbon derivatives.

Conclusion: The GC-MS, HPLC, and biochemical profiles of B. gladioli strain VIMP03 (JQ867372) revealed its agro clinical-antifungal potential.
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INTRODUCTION

Phytopathogenic fungi such as Alternaria alternata, Rhizoctonia solani, 
Aphanomyces chochlioides, Sclerotium rolfsii, and Ceratocystis paradoxa 
are the major causes for the soilborne diseases of sugarcane, sugar beet, 
coconut, pineapples, and other crops. C. paradoxa is a causative agent 
of pineapple disease or black rot of sugarcane. The C. paradoxa enters 
through cut ends and proliferates rapidly in parenchymal tissues of 
internodes developing brown-black cavities. It thus damages cane setts 
in the soil, inhibits rooting during the disease development, and affects 
juice quality by decreasing the level of sucrose and glucose [1-3].

Plant growth-promoting rhizobacteria (PGPR) are the helpful microbes 
which promote plant growth by solubilizing phosphate, potash, zinc, and 
sulfur, and fixing nitrogen or decomposing complex organic or inorganic 
matter as well as act as biocontrol mediators. Several researchers have 
reported the application of fungi and bacteria as biocontrol agents 
such as Trichoderma hamatum, Trichoderma viridae, Saccharomyces 
unispora, Candida steatolytica, Pseudomonas fluorescens, Burkholderia, 
Bacillus, and others [4-8]. Plant growth-promoting microbes can be 
used as right substitute to chemical pesticides and fertilizers.

Burkholderia species are the PGPR frequently isolated from rhizosphere 
of various crops [9-13]. They have qualities for potential industrial 
and agricultural applications including production of antibiotics, 
bio-surfactants, bio-plastics, and degradation of environmental 
contaminants [14]. Many Burkholderia species have reported as 
antimicrobial bacteria. Burkholderia species inhibited the growth of 
Ustilago and Fusarium [15]. Gohar et al. [16] characterized antibacterial 
agents produced by marine Burkholderia cepacia. Sultan et al. [17] 
emphasized the role of phthalate-producing B. cepacia K87 in antifungal 
activities against Candida glabrata and R. solani. Elshafie et al. [18] 

reported antifungal activities of Burkholderia gladioli pv. agaricicola 
against Fusarium oxysporum and R. solani. The Burkholderia tropica 
was documented to inhibit the growth of phytopathogenic fungi such as 
Colletotrichum gloeosporioides, Fusarium culmorum, F. oxysporum, and 
S. rolfsii [19].

Most of the Burkholderia species produce bioactive compounds for 
the suppression of plant diseases, especially antibiotics, siderophores, 
organic acids, biocidal volatile organic components, phenolic and 
phthalate derivatives, aromatic complexes, and enzymes including 
chitinase, cellulase, and protease. Bioactive components were well 
documented after agar well diffusion, high-performance liquid 
chromatography (HPLC), and gas chromatography-mass spectroscopy 
(GC-MS) studies by a number of investigators in extracts obtained from 
different plants as well as bacterial and fungal cultures [16,20-27]. In 
the present investigation, antifungal characterization of B. gladioli 
strain VIMP03 (JQ867372), an isolate from sugar beet rhizosphere, 
was carried out by dual culture, agar well diffusion, HPLC, and GC-MS 
methods.

METHODS

Bacterial culture
Bacterial culture used for the present study was B. gladioli strain 
VIMP03 (JQ867372), the isolate by Mahamuni [11], Mahamuni and 
Patil [28] from sugar beet rhizosphere having phosphate solubilizing 
and composting abilities.

Phytopathogenic culture
The phytopathogenic culture of C. paradoxa was obtained from the 
Plant Pathology Section of Vasantdada Sugar Institute, Manjari Bk., 
Pune, Maharashtra, India.

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. 
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10i3.16080

Research Article



222

Asian J Pharm Clin Res, Vol 10, Issue 3, 2017, 221-226
	 Mahamuni et al.	

Culture media
Pikovskaya’s broth and agar [29] media were used to cultivate B. gladioli 
strain VIMP03 (JQ867372) at 30°C for 4 days. The Pikovskaya’s agar 
contained (g/L) dextrose 10; NaCl 0.2; Ca3(PO4)2 5; (NH4)2SO4 0.5; KCl 
0.2; MgSO4.7H2O 0.1; MnSO4.H2O 0.0001; yeast extract 0.5; and Agar 18. 
The pH of medium was 7.0 (±0.2). The Pikovskaya’s broth contained the 
same components without agar.

Potato dextrose agar (PDA) was used to cultivate phytopathogenic 
culture of C. paradoxa and also to check in vitro antagonistic activity 
at room temperature for 4-7 days. The PDA contained (g/L) potato 
infusion 200; dextrose 20; agar 20, and the pH of medium was 5.6 
(±0.2).

The pH of both culture media was adjusted using 1N NaOH or 1N HCl. 
Media were sterilized by autoclaving at 120°C for 15 minutes.

Cellulase activity
On cellulose agar plate containing cellulose as sole carbon source 
and pH 7.5 (± 0.2), the bacterial culture B. gladioli strain VIMP03 
(JQ867372) was spot inoculated and incubated at 30 0C (± 0.2°C) 
for 48 hrs. After incubation plate was repeatedly treated with 0.5% 
Congo red for 15 min at room temperature and was counterstained 
with intermittent thorough washing by 1M NaCl solution. The 
nonappearance of clear zone around the colony was considered 
cellulase negative activity [30].

Protease activity
For protease test, culture under study was spot inoculated on milk 
agar having pH of 7 (±0.2) and incubated at 30°C (±0.2°C) for 48 hrs. 
The development of clear zone around the colony against opaque 
background was considered protease positive [31].

Chitinase activity
The culture of B. gladioli strain VIMP03 (JQ867372) was spot inoculated 
on colloidal chitin agar and incubated at 30°C (±0.2°C) for 5 days, 
and chitinase activity was examined as positive if there was zone of 
clearance around the colony [32].

HPLC analysis for organic acids
Organic acids were detected by HPLC in Pikovskaya’s broth, in which 
B. gladioli strain VIMP03 (JQ867372) was cultivated at 30°C (±0.2°C) 
for 4 days. The culture broth was filtered through 0.2 μm filter 
(Millipore), and 20 μl of filtrate was injected to HPLC (Model - Waters 
Alliance Company) equipped with an ultraviolet detector. Organic acid 
separation was carried out on organic acid (Prevail) column (Make 
Grace) with specifications such as length 150 cm and internal diameter 
(ID) 4.6 mm and 25 mM KH2PO4 as mobile phase. At a wavelength 
of 210 nm, retention time (RT) of each signal was recorded. Organic 
acids from the culture filtrate were identified by comparing RTs of 
chromatographic peaks with those of reference standards.

Dual culture method
Primary antifungal activity of B. gladioli strain VIMP03 (JQ867372) 
was checked by the dual culture in vitro assay method [33,34]. 
The culture was spot inoculated at one end of the PDA. After 2 days 
incubation at room temperature, 6 mm agar disc, using growth of fungal 
pathogen C. paradoxa from fresh PDA agar culture, was placed at the 
other marginal side of the plate and incubated at room temperature 
for 7 days. The radii of the fungal colony toward and away from the 
bacterial colony were noted to calculate percent growth inhibition by 
the following formula:

Percent inhibition=(A−a)/A×100

Where, “a” is the radius of the fungal colony opposite to the bacterial 
colony and “A” is the maximum radius of the fungal colony away from 
the bacterial colony.

Antifungal activity of culture filtrate and ethyl acetate extract
The culture B. gladioli strain VIMP03 (JQ867372) grown in Pikovskaya’s 
broth for 4 days at 30°C (±0.2°C) was centrifuged at 3000 rpm for 
10 minutes, and the supernatant was sterilized by passing it through 
a millipore membrane filter (0.45 μm of pore size). The sporulated 
culture of C. paradoxa was inoculated into sterile molten PDA medium 
(45°C) and poured into sterile Petri dishes. Antagonistic activity of 
culture filtrate was detected by agar well diffusion technique.

A bioassay-directed practice was followed in the process of isolating 
and fractionating ethyl acetate extract. Antifungal principles from the 
cell-free filtrate were extracted by solvent ethyl acetate. Ethyl acetate 
extract was evaporated at room temperature and concentrated. About 
500 ml of ethyl acetate extract was reduced to 15 ml. Antifungal activity 
of concentrated ethyl acetate extract was detected qualitatively by agar 
well technique using 100 μl of the extract.

GC-MS analysis of ethyl acetate extract
The GC-MS analysis was done with thermo GC coupled with ITQ 1100 
mass detector and X-Caliber software and the National Institute of 
Standards and Technology (NIST) Spectral data (GCMSMS, Thermo 
Fisher Scientific). A DB-5 MS capillary column having 30 mm × 0.25 mm 
ID and coated with 0.25 μm film thickness was injected with 2 μl sample. 
The carrier gas helium (99.99%) was used at a flow rate of 1 ml/minute 
in split mode (1:50). The temperature of the column was programed 
at 60-280°C. The injection port and transfer line temperatures used 
were 250°C and 280°C, respectively. The temperature program initiated 
at 60°C for 2 minutes hold, then it was raised at 15°C/min to 160°C, 
which was held for 0 min, and then at 3°C/min to 200°C, which was 
held for 1 minute, and again at 8°C/min to 280°C, which was held for 
6 minutes. The mass spectrum of compounds present in the sample was 
recorded with electron impact ionization energy 70 eV over mass range 
of 50-650 Da amu. The chemical components from ethyl acetate extract 
of culture filtrate were identified by comparing RT of chromatographic 
peaks with those of reference standards from database of the NIST 
library.

RESULTS

The culture under studies, B. gladioli strain VIMP03 (JQ867372), was 
protease and chitinase positive as clear zones were developed around 
the colonies (growth) on milk agar and chitin agar, respectively; while 
the culture was avowed cellulose negative due to non-development of 
clear zone around its colony.

HPLC (peaks) of organic acids is shown in Fig. 1. The organic acid 
profile of the bacterial culture is presented in Table 1 along with RT and 
organic acid content in mg per 100 ml (or mg %). In the culture filtrate 
obtained from Pikovskaya’s broth, four organic acids were detected. 
The highest amount of organic acid produced by the B. gladioli strain 
VIMP03 (JQ867372) was acetic acid (17.22 mg %), which was followed 
by formic acid (1.15 mg %), oxalic acid (0.27 mg %), and pyruvic acid 
(0.11 mg %).

Table 1: Organic acid profile based on HPLC

S. No. Organic 
acids

RT (minutes) Content (mg %) Percent 
area

1 Oxalic acid 1.855 0.27 22.39
2 Formic acid 2.433 1.15 6.06
3 Pyruvic acid 2.609 0.11 7.94
4 Lactic acid – – –
5 Citric acid – – –
6 Gibberellic 

acid
– – –

7 Acetic acid 4.178 17.22 63.60
–: Not detected
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The percent growth inhibition estimated by dual culture method, 
exhibited by the B. gladioli strain VIMP03 (JQ867372), against 
C.  paradoxa was 41%. This finding is in accordance with that of 
Kadir et al. [35] who reported 41-81.7% fungal growth inhibition by 
B. cepacia. Both ethyl acetate and culture filtrate extracts under the 
present investigation inhibited the fungal pathogen growth with zone 
of inhibitions (ZOIs) of 19 mm (standard deviation [SD] ±2) and 24 mm 
(SD ±2), respectively.

The GC-MS technique was used to identify the probable antifungal 
compounds of B. gladioli strain VIMP03 (JQ867372) extract that 
possessed antifungal activity, and 9 compounds were identified. GC of 
ethyl acetate extract is shown in Fig. 2.

The number of peaks, the RT, and area and matching factor of the 
compounds present were compared with those of in the NIST database. 
The compounds identified are shown in Table 2 along with RT, molecular 
formula (MF), molecular weight (MW), and their chemical structures 
The first compound identified with less RT (12.20 minutes) was E-2-
octadecadecen-1-ol, whereas the last compound which took longest RT 
(33.33 minutes) to identify was tetratetracontane.

Mass spectra (MS) of the related compounds are shown in Fig. 3a-i.

DISCUSSION

Different solvents have various degrees of solubility for different 
antimicrobial compounds and also organic solvents have more 
powerful antimicrobial activity as compared to aqueous extracts [22]. 
The present study outcomes were not in harmony with the findings of 
Bhuvaneswari and Gobalakrishnan [22] as more ZOI was recorded by 
the aqueous culture filtrate extract. Antibiosis is generally mediated 
by specific or non-specific metabolites of microbial origin, by lytic 
agents, enzymes, volatile compounds, or other toxic substances [36]. 
Lavermicocca et al. [37] purified and characterized novel antifungal 
compounds from Lactobacillus plantarum and also reported that lactic 
and acetic acid produced by bacterium played the most significant 
role in antifungal actions. The VIMP strain produced a variety of 
organic acids as shown in Table 1 and lytic enzymes such as chitinase 
and protease. These might be the reasons that the culture exhibited 
antifungal activities as supported by percent inhibition by dual culture 
method and ZOIs as shown by both ethyl acetate and culture filtrate 
extracts. The ZOI exhibited by culture filtrate extract was 26.31% more 
than the ZOI revealed by the ethyl acetate extract. This might be due to 
the presence of more amounts of lytic enzymes, volatile compounds, 
and other metabolites in concentrated and active states in culture 
filtrate rather than in the ethyl acetate extract. Mahamuni [38,39] 

also reported large ZOI for aqueous culture filtrate extracts against 
fungal phytopathogens such as A. alternata and C. paradoxa. Degree 
of solubility for all antimicrobial components in ethyl acetate extract 
might not be so much extensive.

Many previous reports stated antifungal activities of ethyl acetate 
extracts obtained from the supernatants of different microbial cultures 
as well as of different plant extracts and listed the identified possible 
antifungal compounds based on GC-MS analyses. Many researchers 
reported the antimicrobial role of phenolic, alkaloid, carboxylic acid, 
hydrocarbon, ketone, ester, and phthalate derivatives [17]. Presence 
of tetratetracontane and diethyl phthalate having antimicrobial 

Fig. 1: High-performance liquid chromatogram (peaks) of organic acids

Fig. 2: Gas chromatogram of ethyl acetate extract
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Fig. 3: Mass spectra (MS) of the compounds. (a) MS of E-2-octadecadecen-1-ol, (b) MS of cyclopentane 1, 1(3-(2-cyclopentyl ethyl) 1, 
5-pentadiyl, (c) MS of 7, 9-Di-ter-butyl-1-oxaspiro (4, 5) deca-6, 9-diene-2, 8-dione, (d) MS of phthalic acid butyl 2-pentyl ester, (e) MS 
of 9-nonadecene, (f) MS of heptadecane 9-hexyl, (g) MS of erucic acid, (h) MS of cyclohexane 1, 1-dodecylidenebis (4-methyl), (i) MS of 

tetratetracontane

a

d e f

g h i

b c

Sr. No. Name and chemical structure of the compound MF MW RT (minutes)

1 E‑2‑octadecadecen‑1‑ol C18H36O 268 12.20

2 Cyclopentane 1,1 (3‑(2‑cyclopentyl ethyl) 1,5‑pentadiyl C22H40 304 16.01

3 7,9‑Di‑ter‑butyl‑1‑oxaspiro (4,5) deca‑6,9‑diene‑2,8‑dione C17H24O3 276 19.35

4 Phthalic acid butyl 2‑pentyl ester C17H24O4 292 20.32

Table 2: GC‑MS profile of ethyl acetate extract

  (Contd...)
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activity was recorded based on GC-MS studies of endophytic fungal 
extracts [40]. Antifungal B. cenocepacia strain VIMP01 (JQ867371) 
produced tetratetracontane, heptadecane-9-hexyl, and 7,9-Di-
ter-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione [38], whereas 
B. gladioli strain VIMP02 (JQ811577) produced compounds such as 
9-nonadecene, 7,9-Di-ter-butyl-1-oxaspiro(4,5) deca-6,9-diene-2,8-
dione, phthalic acid butyl 2-pentyl ester, and tetratetracontane [39]. 
Usha et  al. [26] documented antimicrobial compounds of marine 
Streptomyces cacaoi strain SU2 (JF730119) in the ethyl acetate 
extract by GC-MS such as phthalic acid butyl ester and 1 nonadecene 
derivatives. El-Baz et  al. [23] listed the presence of antimicrobial 
tetratetracontane in ethyl acetate extract of Jatropha cureas leaves. 
The presence of antimicrobial heptadecane was also reported by 
Khairy and El-Kassas [41] in ethyl acetate extract from blue green 
algae such as Anabaena flos-aqua, Anabaena variabilis, and Oscillatoria 
angustissima. Taha et al. [42] reported antifungal activity of seed oil 
from Eruca sativa containing erucic acid, a major fatty acid, along with 
garlic oil against dermatophytes causing hair diseases. Gopalakrishnan 
et al. [43] reported that ethanolic extract of stem of Cayratia trifolia 
contained bioactive tetratetracontane. Rabha et al. [44] detected oxalic 
acid and extracellular hydrolytic protease and chitinase enzymes in the 
extract obtained from endophytic fungus, C. gloeosporioides, having 
antifungal traits. Results of the present investigation are in accordance 
with metabolites reported by the above researchers. It may be the first 
documentation highlighting the production of antimicrobial formic acid 
and erucic acid by any Burkholderia culture. Combination of organic 
acids, enzymes such as chitinase and protease, and antimicrobial 
compounds as identified by GC-MS exerted antifungal activity in 
the present investigation. These components may affect fungal cell 
wall, proteins, and nucleic acids. However, differences at the level of 
antifungal activities, HPLC, and GC-MS profiles can be explained on the 
basis of cultural differences, media composition, growth conditions, 
and diversity in antifungal metabolites.

CONCLUSION

The present study outcomes highlighted antifungal activity in the 
culture filtrate and ethyl acetate extract of B. gladioli strain VIMP03 
(JQ867372) due to the presence of antimicrobial principles. On the basis 
of biochemical, HPLC, and GC-MS analyses, the number of bioactive 
principles was detected such as lytic enzymes such as protease and 
chitinase; organic acids such as acetic, formic, oxalic, and pyruvic 

Sr. No. Name and chemical structure of the compound MF MW RT (minutes)

5 9‑nonadecene C19H38 266 20.83

6 Heptadecane 9‑hexyl C23H48 324 20.98

7 Erucic acid C22H42O2 338 26.57

8 Cyclohexane 1,1‑dodecylidenebis (4‑methyl) C26H50 362 33.19

9 Tetratetracontane C44H90 618 33.33

GC‑MS: Gas chromatography‑mass spectrometry

Table 2: (Continued...)

acids; and other compounds including erucic acid, 9-nonadecene, 
heptadecane 9-hexyl, and tetratetracontane. Many of the bioactive 
principles were not reported earlier for any Burkholderia species. 
Regarding the culture under the study, the GC-MS and HPLC profiles 
in combination may be unique. The culture may have agroclinical 
potential to develop biofertilizers having fungicidal activity, especially 
against pineapple disease causing C. paradoxa. Field studies should be 
conducted in the future to access the impact of B. gladioli strain VIMP03 
(JQ867372) in declining the incidence of pineapple disease.
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