
Vol 10, Issue 9, 2017
Online - 2455-3891 

Print - 0974-2441

A COMPARATIVE STUDY OF ANTIMICROBIAL PROFILE HAVING BROAD SPECTRUM 
BACTERIOCINS AGAINST ANTIBIOTICS

SABIHA IMRAN1*, TWINKLE GUPTA1, AARTI ARORA1, NILANJAN DAS2

1Department of Biotechnology, Manav Rachna International University, Faridabad, Haryana, India. 2Accendere Knowledge Management 
Services, Chennai, Tamil Nadu, India. Email: sabiha.fet @mriu.edu.in

Received: 28 April 2017, Revised and Accepted: 25 May 2017

ABSTRACT

Bacteriocins are ribosomally synthesized antimicrobial peptides produced by microbes owned by different eubacterial taxonomic branches. Most 
of them are small cationic membrane-active compounds that form pores in the targeted cells, disrupting membrane possibilities, and triggering cell 
fatality. The availability of small cationic peptides with antimicrobial activity is a protection strategy found not only in bacteria but also in plants and 
animals. The antibiotics which have extensive applications in the treatment of various bacterial diseases have developed alarming resistance against 
them in many pathogens due to improper use besides this antibiotics have adverse side effects also. There are an extensive variety of bacteriocins 
made by different bacterial genera have promising alternative to antibiotics that needs to be further studied to show the no existence of undesirable 
effects, which must be performed both in vitro and in vivo experimental systems. Most of the bacteriocin have narrow spectrum of their activity and 
effective only on the related species. There is an urgent need for the identification of broad-spectrum bacteriocins isolated from the species from 
different habitats that can be effective against both Gram-positive and Gram-negative pathogens. In this review, we focus on the main physical and 
chemical characteristics of broad-spectrum bacteriocin and discuss their application as an alternative option to antibiotics.
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INTRODUCTION

Bacteriocins are peptides which are produced by both Gram-positive 
and Gram-negative bacteria [1]. They are synthesized by ribosomes 
showing antibacterial activity and are easily digested by enzymes 
such as trypsin and pepsin in human digestive system [2]. Mostly 
bacteriocins do not show any toxic effects and are heat stable [3]. 
Majority of the bacteriocins have a net positive charge which makes 
them fold into amphiphilic conformation when they interact with 
bacterial membranes.

Bacteriocins can be classified into three major classes on the basis of 
their structural and physiochemical properties [4]. Class I or lantibiotis 
are small peptides (<5KDa) which are heat stable and formed from 
two amino acid units of alanine by disulphide bonds or from an 
amino butyric acid linked to an amino acid alanine by a disulphide 
bond [5]. Nisin is a classical example of Class I bacteriocin [6]. Class II 
bacteriocins are nonlantibiotics which can be further divided into 
three subgroups. Class IIa peptides are active against Listeria such as 
pediocin PA-1 [7]. Class IIb consists of complex of two distinct proteins 
and have little activity such as lactococcin G. Class  IIc are heat-stable 
peptides transported by leader peptides such as divergicine A. Class III 
bacteriocins are big peptides having more than 30KDa weight, for 
example helveticins J [8].

Activity of bacteriocins differs with respect to pH. Various studies 
show that maximum activity occurs at pH  4 and pH  5 [9]. Acidic 
pH is favorable for production of bacteriocins by lactobacilli [10]. 
Bacteriocins can lose their activity due to enzymes such as proteinase K 
and pronase E. Bacteriocin has been reported from the bacterial 
species inhabiting in different environmental environment [11] and 
the maximum production of bacteriocin obtained by selecting the best-
adapted culture media having appropriate sugar, vitamins, and nitrogen 
source [12]. It has been found that NaCl inhibits bacterial growth and 
bacteriocin production at higher concentration but shows no effect 
on the production of bacteriocins at concentration as low as 1% [13]. 
Other factors such as temperature and incubation time also affect the 
bacteriocin production which varies strain wise.

Applications of bacteriocins
Bacterioncins have many beneficial roles including antibacterial, 
antimicrobial, antineoplastic, and probiotic activity, (Fig. 1) and thus, 
they are effective therapeutic agents [14]. There are some common 
bacteriocins such as pyocin, colicin, pediocin, and microcin which 
have inhibitory properties against different neoplastic cells [15]. 
There are immunotoxins and several bacterial proteins including 
Mycobacterium bovis MPT63, arginine deiminase from Mycoplasma 
arginini, lipidated azurin from Neisseria meningitidis, and azurin 
from Pseudomonas aeruginosa and Enterococcus mundtii strain C4l10 
which have already showed tremendous potential as anticancer 
bacteriocin [16].

Besides being an anticancer agent, bacteriocins are also used as food 
preservative. The food industry has led to search for the natural and 
chemical free products for food preservation as an increased demand 
by the consumers lactic acid bacteria are considered as generally 
recognized as safe (GRAS), which indicates their safe and easy 
application as food preservative that is why they are considered as a 
promising group of bacteriocins producing microorganisms. To know 
the target organism and the conditions in which the bacteriocins are 
active, a deeper characterization of bacteriocin is essential for their 
successful application in food preservatives [17]. Among alternative 
preservation technologies of the bacteriocin, some attention has 
been given to biopreservation to increase its shelf life and its hygienic 
conditions which minimize the nutritional properties [18].

Antibiotics versus bacteriocins
A significant invention in medical sciences is the discovery and 
advancement in the therapeutic applications of antibiotics. Antibiotics 
treat infections in patients having chronic diseases, receiving 
chemotherapy, or having surgeries such as organ transplants and cardiac 
surgery [24-26]. Moreover, antibiotics help to extend life expectancy by 
changing outcomes of bacterial infections [27]. In addition, antibiotics 
are also known to decrease morbidity and mortality rates [26]. They play 
an important role in achieving advances in surgery and saving patient’s 
life [24]. Antibiotics can be either narrow spectrum, i.e. effective against 
specific families of bacteria or broad spectrum, i.e.,  effective against 
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wide range of disease-causing bacteria. Bacteriocins also have many 
antibacterial properties just like antibiotics.

Use of antibiotics possesses many side effects such as malabsorption 
characterized by celiac like syndrome, no proper absorption of 
medications, altered metabolism and absorption of vitamins, 
colonization of resistant organisms, and changed susceptibility to 
infections. Another most common side effect of antibiotic intake 
is antibiotic-associated diarrhea causing frequent watery bowel 
movements [28].

With the growing use of antibiotics, another threat to health has come 
into effect, i.e.,  antibiotic resistance. Antimicrobial resistance is the 
failure of the therapy with a specific agent for an organism. Resistance 
is related to a trait inherent in microorganism which can be intrinsic 
or acquired. One of the largest factors which are leading to antibiotic 
resistance is indiscriminate and inappropriate use of antibiotics [29]. 
Hence, there is a need for some natural antibacterial peptides, such as 
bacteriocins, which can be used as an alternative to antibiotics.

There are few differences between bacteriocins and antibiotics in 
terms of the host cell immunity, mechanism of target cell resistance 
or tolerance, mode of action, toxicity and side effect mechanisms. 
Bacteriocins are antimicrobial peptides (AMPs) produced by bacteria 
which can also have either a broad or narrow spectrum of inhibition 
such as antibiotics (Table 2).

Most of the bacteriocins are considered as narrow spectrum which 
can only inhibit or kill the bacteria with close genetic relationship. The 
bacteriocins produced from Gram-positive bacteria are mostly broad 
spectra that show an inhibitory effect which is directed against bacteria 
of the same species as the bacteriocin producer and also against other 
species and genera different from that of the producer [35]. Very few 
bacteriocins are broad spectrum while bacteriocins with antibacterial 
action against multidrug-resistant strains are quite rare [36] (Table 1).

An example of broad host range bacteriocin is Lacticin 3147 which 
is produced by the GRAS organism Lactococcus lactis subsp. Lactis 
DPC3147 is a strain which is isolated from an Irish Kefir grain [37]. 
A  number of broad host range bacteriocins which are termed as 
lantibiotics, a class of bacteriocins which is produced by Gram-positive 
bacteria, could be an interesting alternative to antibiotics to either 
prevent or treat bacterial infectious diseases which includes bovine 
mastitis, since these substances generally have a broad spectrum of 
activity against Gram-positive pathogens. The lantibiotics undergo 
substantial post-  translational modifications, e.g.,  nisin, which is a 
34-amino acid peptide containing a number of modified amino acids 
which includes dehydrated residues and 5 cross-linking lanthionine or 
beta-methyl-lanthionine residues [38].

In this review paper, an emphasis has been given to highlight and 
discuss exclusively on the application of broad-spectrum bacteriocins as 
an alternative to classical antibiotics. The mechanisms of some broad-

spectrum bacteriocins and antibiotics have also been discussed and an 
attempt has been made to emphasize the effectiveness of bacteriocins 
as an effective alternative to the antibiotics having least harmful effects 
against the host organism in contrast to antibiotics.

AMPs
The search for novel AMPs involves the identification of active peptides 
from natural sources which are followed by the design of synthetic 
peptide analogs for structure-function studies. De novo peptide design 
approaches have also been used for various purposes such as structure-
based modeling, predictive algorithms, and introduction of non-coded 
modifications to conventional peptide chemistry [39].

Structure and charge distribution
Generally, two physical features are common for AMPs: A  cationic 
charge and a significant proportion of hydrophobic residues. The 
formerly property enhances selectivity for negatively charged microbial 
cytoplasmic membranes whereas the latter facilitates interactions 
with the fatty acyl chains [40]. There are also few anionic AMPs, such 
as dermcidin, although other biological activities seem to be more 
important for these peptides [41].

LI-F type AMP
Paenibacillus polymyxa strain JSa-9, a soil isolate that displays 
antibacterial and antifungal activities in vitro, has been found to produce 
LI-F type  AMPs named AMP-JSa-9. LI-F type peptides are a group of 
broad-spectrum cyclic lipodepsipeptide antibiotic effective against 
Gram-positive bacteria and filamentous fungi. AMP-JSa-9 are a group 
of cyclic lipodesipeptide antibiotics which are composed of a peptide 
ring that consists of a six amino acid residues and a 15-guanidino-3-
hydroxypentadecanoic acid moiety and exhibit a broad antimicrobial 
spectrum with particularly high potency against Gram-positive bacteria 
and fungi [42,43]. Earlier studies suggested that the positively charged 
guanidinium group at the end of the 12-carbon lipidic tail and the 
presence of hydrophobic amino acids in the depsipeptide sequence of 
LI-Fs are important for the antibacterial activity [44].

Mechanism of tigecycline
Some antibiotics are broad spectrum such as tigecycline is a semi-
synthetic derivative of minocycline. It is mechanistically similar to 
aminoglycosides, macrolides, streptogramins, and oxazolidinones in 
that it binds to the 30 seconds ribosomal subunit [45]. This blocks the 
entry of aminoacyl tRNA to its acceptor site which prevents the bacterial 
protein synthesis and its growth. It overcomes two types of genetic 
mechanisms which are primarily responsible for clinical tetracycline 
resistance: Efflux and ribosomal protection [33,45]. However, it 
remains vulnerable to the multidrug efflux pumps of Proteeae and 
P. aeruginosa and less frequently, Bacteroides spp. through a different 
mechanism [46].

Doripenem monohydrate
Doripenem monohydrate is another broad-spectrum carbapenem 
antibiotic which derives its bactericidal action from inhibition of 
bacterial enzymes called penicillin-binding proteins (PBPs) [47-50]. 
These enzymes are responsible for synthesis of the bacterial cell wall, 
i.e.,  cross-linking of the peptidoglycan. The primary PBPs which are 
inhibited by the carbapenems are the high-molecular weight enzymes 
1a, 1b, 2, and 3 [50,51]. The inhibition of PBP 1a and 1b results in the 
formation of spheroplasts and rapid bacterial killing [52]. The inhibition 

Table 1: Potent narrow‑ and broad‑spectrum bacteriocins

Bacteriocins Narrow/broad 
spectrum

Activities

Cerein 7 [19] Broad spectrum Antibacterial
Bifidocin A [20] Broad spectrum Antibacterial
Lantibiotic lacticin 3147 [21] Broad spectrum Antimicrobial
Acidocin J1229 [22] Narrow spectrum Antimicrobial
Amylovorin L471 [23] Narrow spectrum AntibacterialFig. 1: Major activity profile of broad-spectrum bacteriocins
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of PBP 2 causes the rod-shaped organisms to become spherical and 
inhibition of PBP 3 results in the formation of filamentous-shaped 
organisms [53]. The PBP preferentially bound by doripenem which 
vary with the organism. In the case of Escherichia coli, doripenem 
preferentially binds to PBP 2, followed by PBP 1a, 1b, and 3. For 
P. aeruginosa, doripenem binds preferentially to PBP 2 and 3, followed 
by PBP 1a and 1b. With Streptococcus pneumonia, doripenem shows 
high affinity for PBP 1a, 2b, and 2x.

Mode of action of bacteriocins
Bacteriocins show different modes of action. In some cases, the target of 
action is the bacterial membrane. Other bacteriocins, however, inhibit 
essential enzymes within the cell such as leuconocin S or pediocin 
JD [54] and colicin E9 [55]. Some bacteriocins, such as nisin, show two 
common killing mechanisms sharing a common denominator [56-58]. 
It disrupts the integrity of cell membrane by forming pores leading to 
efflux of small metabolites due to dissipation of membrane potential, 
resulting in termination of biosynthetic processes and cell death. At 
lower concentrations, it binds with lipid II molecule of peptidoglycan 
layer resulting in prevention of proper cell wall synthesis, whereas 
at higher concentrations, this complex initiates membrane insertion 
creating pores in the bacterial cell wall. Hence, the nisin-lipid II 
complex facilitates the dual prevention mode of action involving cell 
wall synthesis and membrane pore formation [57]. Bacteriocin, such as 
cerein 7, is a peptidic antibiotic which is produced by Bacillus cereus 
Bc7 (CECT 5148) shows a broad spectrum of activity against Gram-
positive bacteria but is inactive against Gram-negative bacteria [59].

Lacticin Q
A unique killing mechanism of leaderless bacteriocins, such as lacticin Q, 
has been well characterized [60]. It causes membrane permeabilization 
of strains without need of any specific receptors [61]. It forms a huge 
toroidal spore (HTP) causing leakage of intracellular components and 
large molecules which results in the cell death. HTP is formed due to 
electrostatic interaction of cationic lacticin Q molecule with negatively 
charged membranes, coupled with flip-flop. Another mechanism for 
selective antimicrobial activity of lacticin Q is the accumulation of 
hydroxyl radicals through Fenton reaction, with variations within 
species and even within strains. The selective toxicity of lacticin Q 
molecule depends on strains’ ability to scavenge hydroxyl radicals [62].

These interactions can be either non-specific in the case of bacteriocins 
which show a broad activity spectrum (i.e.,  pediocin AcH/PA1 or 
nisin) or receptor-mediated in the case of species or strain-specific 
bacteriocins such as lactacin B. In some cases, there is an absolute need 
for the presence of the proton motive force which allows the successful 
interaction of the bacteriocin with the target membrane. In other cases, 
the interaction of the bacteriocin with the membrane is spontaneous. 
The result of this interaction is the generation of non-specific pores that 
allow an efflux of protons, ions, and amino acids but not cytoplasmic 

proteins. This efflux causes dissipation of the membrane potential and 
the collapse of the energy generation cellular machinery [63].

CONCLUSION

The effectiveness of bacteriocins as food preservatives is well 
demonstrated. Although nisin is the only purified bacteriocin used 
commercially, others are inhibitory against foodborne pathogens 
such as Listeria monocytogenes, their synthesis, and mode of action 
distinguish them from clinical antibiotics. Some of the mechanisms of 
broad-spectrum bacteriocins, such as lacticin, showed the effectiveness 
of bacteriocins against Gram-positive and Gram-negative bacteria. In 
addition, organisms that show resistance to antibiotics are generally 
not cross-resistant with bacteriocins, and unlike antibiotic resistance, 
bacteriocin resistance is not usually genetically determined. As the 
bacteriocin possesses much advantages over antibiotics could be 
considered as a potential safe alternative antimicrobial agent.
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