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ABSTRACT

Objectives: A novel facile synthesis of zinc oxide (ZnO) and zinc-graphene oxide nanocomposites (ZnGONC) was achieved by modified sol-gel 
technique for their pharmaceutical and therapeutic use.

Materials and Methods: Spherical, crystalline, defect-free Zinc oxide nanoparticles (ZnO NPs) with diameter 70-90 nm were synthesized by modified 
sol-gel technique. Reduced graphene oxide was synthesized by modified Hummers method. ZnGONC were synthesized by in situ method. The crystalline 
nature, size, shape, and dimensions of the NPs, graphene oxide, and nanocomposites were studied by X-ray diffraction method. Transmission electron 
microscopy analysis was carried out to examine the morphology of NPs and nanocomposites.

Results: Fourier transform infrared spectroscopy analysis confirms that the ZnO NPs are surrounded by oxygen and silicon atoms. Antibacterial 
activity of ZnO NPs and ZnGONC was investigated against Gram-positive and Gram-negative bacteria. Zone of inhibition shown by ZnO NPs and 
ZnGONC was found to be higher than six investigated standard antibiotics.

Conclusion: Synthesized ZnO NPs and nanocomposites can be used as antibacterial agents. This eco-friendly method of synthesis of ZnO NPs and 
ZnGONC could be a viable solution for industrial applications in the future and therapeutic needs.
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INTRODUCTION

Nanotechnology has emerged as a valuable modus in the 
pharmaceutical industry as an alternative antimicrobial approach 
because of arrival of antibiotic-resistant strains of microorganisms [1]. 
Nanosized particles, either simple or composite by nature, exhibit 
unique physical and chemical properties and show a potential of 
being used in various biomedical application [2-9]. There is a need 
to develop uniform nanosize drug particles having precise shape, 
size, and physical and chemical properties in the production of new 
pharmaceutical products. The biocidal efficiency of nanoparticles 
(NPs) may be due to combination of small size and high surface to 
volume ratio which facilitates intimate interactions with microbial 
membranes [10,11].

Metal oxides with nanostructure have attracted considerable interest in 
many areas of technology [12]. Among metal oxide NPs, zinc oxide (ZnO) 
has received much attention in the recent past. ZnO nanostructures 
are the forefront of research due to their unique properties and wide 
applications such as ultraviolet blocking properties [13]. The advantage 
of using ZnO NPs is that they strongly inhibit the action of pathogenic 
microbes when used in small concentration [14].

Graphene oxide (GO) which is actually a compact honeycomb structure 
of sp2 hybridized carbon atoms has drawn a huge attention because 
of its outstanding electronic, thermal, and mechanical properties, 
which can be applied in nanomedicine field [15-20]. GO can be used 
to stabilize growing metal NPs and inhibits their aggregation because 
of its unique properties such as large surface area, low cytotoxicity, 
and good water stability. On these basis, GO and its composites have 
a wide range of possible applications on transistors, transparent 
conductors, polymer reinforcement, bioengineering, and biomaterials 
areas [21-23].

A lot of research has been carried out on antibacterial properties 
of Ag NPs and their nanocomposites. In continuation to our 
earlier study [24-30], in the present study, we have focused on 
the synthesis of zinc (Zn) NPs by facile, and cost effective sol-gel 
method and nanocomposite of Zn were prepared with reduced 
graphene oxide (RGO). Antibacterial properties of the synthesized 
NPs and nanocomposites were investigated against Gram-positive 
and Gram-negative bacteria. The aim of this study is to synthesize 
a nanocomposite material with better or comparable antibacterial 
performance.

MATERIALS AND METHODS

Materials
All chemicals used were of analytical reagent grade and used without 
further purification. Chemicals used were graphite powder (<20 µ), 
ZnCl2, NaNO3, H2O2, H2SO4, KMnO4, HCl, NaOH, NaBH4, citric acid, and 
ethylene glycol. All were available in our research lab. The strains 
employed in this work were the Gram-negative bacterium (Escherichia 
coli) and Gram-positive bacterium (Staphylococcus epidermidis). In 
addition, nutrient broth and agar-agar were used to prepare agar 
plates.

Preparation of RGO
GO was synthesized from graphite powder by a modified Hummers 
method [31]. Graphite powder, NaNO3, and H2SO4 were mixed together 
at 0.0°C. Then, KMnO4 was added slowly into the reaction mixture with 
constant stirring. The mixture was heated to 35.0°C and stirred for 
12.0 hrs, and then, 500.0 mL of water was slowly added under vigorous 
stirring. Then, 30.0% H2O2 solution was added to reduce the residual 
MnO2. The mixture was then washed by acidified water (3.0%) and 
then with double distilled water three times followed by filtration and 
drying. RGO sheets were then obtained.
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Preparation of ZnO NPs
ZnCl2 solution and citric acid solution were prepared separately in 
double-distilled water and were mixed together with continuous 
stirring for 15.0  minutes. Ethylene glycol was then added into the 
solution and continuously stirred for 3 hrs. The resultant precipitates 
thus obtained were washed with double-distilled water and then dried 
at 100.0°C in oven for 2.0 hrs. Finally, these were put into the muffle 
furnace at 600.0°C for 2.0 hrs. ZnO NPs were thus obtained.

Preparation of ZnO/GO nanocomposites
ZnCl2 and GO were mixed together in double-distilled water to have a 
metal oxide loading of 10 wt%. The solution pH was adjusted to 10.0 
using NaOH solution and stirred continuously for 4.0 hrs. Then, 50 ml 
of 0.1 M NaBH4 was added and stirred continuously for 3.0 hrs. The 
resulting material was then filtered and washed several times with 
double-distilled water and dried in oven at 80.0°C. It was then calcined 
at 400.0°C for 3.0 hrs.

RESULTS AND DISCUSSION

Characterizations
The X-ray diffraction pattern of the ZnO NPs and ZnO-GO nanocomposites 
samples were obtained (Fig.  1) using an X-ray diffractometer (XRD) 
(Panalyticals X.Pert Pro, P.U. Chandigarh). The XRD pattern of RGO 
indicates a broad diffraction peak at 2θ=24°. The broadening and shift 
of the characteristic diffraction peak of graphite from 26.58° to 24° 
in RGO which was due to the short-range order in stacked stacks. All 
XRD diffraction peaks of ZnO powders are shown in good agreement 
with hexagonal structure of ZnO reported in JCPDS File Card No.  05-
0664. Peaks of ZnO at 31.7°, 34.4°, 36.2°, 47.4°, 56.6°, 62.9°, 65.5°, 68.0°, 
and 69.1° that are corresponding to (100), (002), (101), (102), (110), 
(103), (200), (112), and (201) lattice planes, respectively, indicating the 
formation of the wurtzite structure of ZnO NPs. No peaks of impurity 
are observed, indicating that the high purity ZnO was obtained. The 
XRD spectra of nanocomposites have peaks corresponding to both RGO 
and ZnO NPs.

The size, morphology, and distribution of ZnO NPs in ZnO-GO 
nanocomposites were examined using a transmission electron 
microscopy (TEM) (TECNAI 200 Kv TEM [Fei, Electron Optics], AIIMS, 
Delhi). Fig. 2 shows TEM images of ZnO NPs, (a) RGO, and (b) ZnO-GO 
nanocomposite, and (c) the inset of Fig.  2a shows that the ZnO NPs 
have a spherical shape. The TEM image reveals that the ZnO NPs are 
dispersed on the GO (Fig.  2c). In addition, the TEM image shows an 
average particle size of approximately 90  nm for the NPs. From the 
TEM images, the GO surface looks smooth and integrated (Fig. 2b). In 
the case of ZnO-GO nanocomposite (Fig. 2c), a large number of ZnO 
nanocomposites with average diameters 21.7±2.3 nm were observed 

Fig. 1: X-ray diffractometer of zinc oxide nanoparticles, reduced 
graphene oxide, and zinc-graphene oxide nanocomposite

Fig. 3: Fourier transform infrared spectra of zinc oxide 
nanoparticles, reduced graphene oxide and zinc oxide graphene 

oxide nano-composites

Fig. 4: (A) Zone of inhibition (ZOI) produced by different standard 
antibiotics with Staphylococcus epidermidis (B) and (C) different 

concentration of zinc oxide nanoparticles (ZnO-NPs) and ZnO 
graphene oxide (ZnO-GO) nanocomposites. ZOI produced 

with S. epidermidis, (a) ZnSO4, (b) 100 ppm concentration of 
ZnO-NPs, (c) 500 ppm concentration of ZnO-NPs, (d) 1000 ppm 

concentration of ZnO-NPs, (e) ZnSO4 and grapheme, (f) 100 ppm 
concentration of ZnO-GO nanocomposites, (g) 500 ppm 

concentration of ZnO-GO nanocomposites, (h) 1000 ppm 
concentration of ZnO-GO nanocomposites

CBA

Fig. 2: Transmission electron microscopy images of (a) zinc oxide 
nanoparticles, (b) reduced graphene oxide, (c) zinc-graphene 

oxide nanocomposite

cba

Fig. 5: Zone of inhibition (ZOI) produced by different standard 
antibiotics with Escherichia coli (A) and different concentration of 
zinc oxide nanoparticles (ZnO-NPs) (B) and ZnO-graphene oxide 

(GO) nanocomposites (C) with bacteria. ZOI produced with E. coli, 
(a) ZnSO4, (b) 100 ppm concentration of ZnO-NPs, (c) 500 ppm 
concentration of ZnO-NPs, (d) 1000 ppm concentration of ZnO-

NPs, (e) ZnSO4 and grapheme, (f) 100 ppm concentration of 
ZnO-GO nanocomposites, (g) 500 ppm concentration of ZnO-
GO nanocomposites, (h) 1000 ppm concentration of ZnO-GO 

nanocomposites

CBA

Table 1: ZOI (mm) shown by different standard antibiotics with 
Staphylococcus epidermidis and Escherichia coli

Bacterium Standard antibiotics

TE 25 C 25 P1 AMP 10 S 10 S3 300
Staphylococcus 
epidermidis

19 17 15 NS 23 NS

Escherichia coli 11 9 NS NS 13 NS
ZOI: Zone of inhibition
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uniformly on the surface of the GO. The high-magnification TEM image 
(Fig. 2c) further reveals that ZnO-GO nanocomposites are almost 
spherical in shape.

The chemical functional groups of ZnO NPs and ZnO-GO nanocomposites 
were characterized using attenuated total reflectance Fourier transform 
infrared (FTIR) spectrometer (Perkin Elmer - Spectrum RX-IFTIR, P.U. 
Chandigarh). Fig. 3 shows FTIR spectra of ZnO NPs, RGO, and Zn-GO 
nanocomposites. In the FTIR spectrum for RGO, the peaks at 1731, 
1625, and 1183 cm−1 are assigned to the C=O stretching, C=C stretching, 
and C–O stretching, respectively. The broad peak at 3250 cm−1 in the 
FTIR spectrum of the ZnO-NPs/GO nanocomposite might be attributed 
to the O–H stretching vibration of absorbed water molecules. The 
following functional groups were identified; O–H stretching vibrations 
(3240-3300 cm−1), C=O stretching vibration (1720-1740 cm−1), C=C 
from un-oxidized sp2 C–C bonds (1590-1620 cm−1), and C–O vibrations 
(1250 cm−1) in the FTIR spectrum of ZnO-GO nanocomposites which 
confirms the formation of nanocomposites.

Antibacterial study
The different researchers have reported antibacterial property of 
different metal NPs [32-35]. We have tested antibacterial activity 
of the ZnO NPs and ZnO-GO nanocomposites on Gram-positive (S. 
epidermidis) and Gram-negative (E. coli) bacteria using agar well 
diffusion method. Table 1 shows zone of inhibition (ZOI) (mm) shown 
by different standard antibiotics with S. epidermidis and E. coli. Table 2 
shows antibacterial effect of ZnO NPs and ZnO-GO nanocomposites 
against Gram-positive (S. epidermidis) and Gram-negative (E. coli) 
bacteria are indicated by measuring the diameter of ZOI (mm). Fig. 4 
shows that ZOI produced by different standard antibiotics with S. 
epidermidis (a) and different concentration of ZnO-NPs and ZnO-GO 
nanocomposites (b) and (c). Fig. 5 shows that ZOI shown by different 
standard antibiotics with E. coli (d) and different concentration of ZnO-
NPs (e) and ZnO-GO nanocomposites (f) with bacteria.

Agar plates were prepared using nutrient broth and agar-agar. The 
wells of 8.0  mm diameter were punched with the help of steel borer 
into the agar having the test microorganism (at concentration about 
5×105 CFU/ml). The wells were filled with 100.0 µl of ZnO NPs 
and ZnO-GO nanocomposites of different concentration. A  range of 
standard antibiotics (Hexa disc) was also used as the control. After 24.0 
hrs incubation at 37.0°C, the diameters of the inhibition zones were 
measured against the test microorganisms and optical images were 
documented by a high definition optical camera.

The highest ZOI shown by standard antibiotics is 23.0 and 13.0 for 
S. epidermidis and E. coli, respectively. The highest ZOI shown by ZnO 
NP and ZnO-GO nanocomposites is 28.0 and 23.0 for S. epidermidis 
and E. coli, respectively. Hence, both ZnO and ZnO-GO nanocomposites 
show better antibacterial properties than six standard investigated 
antibiotics.

CONCLUSION

ZnO NPs, RGO, and ZnO-GO nanocomposites have been prepared 
through facile and easy sol-gel methods. ZnO NPs samples exhibit good 
antibacterial activities against Gram-negative bacterial strain E. coli 
and Gram-positive strain S. epidermidis, but ZnO-GO nanocomposites 

exhibit better antibacterial activity. The increase of concentration 
of both ZnO NPs and ZnO-GO nanocomposites results in increase in 
antibacterial activity. Antibacterial property of both, i.e., ZnO NPs and 
ZnO-GO nanocomposites was compared with six standard antibiotics. 
The highest ZOI shown by standard antibiotics is 23.0 and 13.0 for 
S. epidermidis and E. coli, respectively. Highest ZOI shown by ZnO NP and 
ZnO-GO nanocomposites is 28.0 and 23.0 for S. epidermidis and E. coli, 
respectively. Hence, both ZnO and ZnO-GO nanocomposites show better 
antibacterial properties than six standard investigated antibiotics.
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