
Special Issue (April)
Online - 2455-3891

Print - 0974-2441

Advances in Smart Computing and Bioinformatics

SECURE AND RECOVERABLE SPLIT KEY MANAGEMENT TECHNIQUE FOR CLOUD STORAGE

THEOPHILUS RAKESH S, PRADEEP KV

ABSTRACT

Establishing mutual trust between a cloud service provider (CSP) and a client has always been a challenge. Managing the key as a whole on either of
these sites poses a security risk and also questions the integrity and availability of the data itself. In this paper, we propose an effective solution to
manage key at the client’s location, while the CSP still manages a portion of the key. The proposed technique secures the key itself and also provides a
fail-safe mechanism to retrieve the key if lost.

Keywords: Cloud service provider, Certificate authority, Key management problem, Plain text, Ciphertext.

INTRODUCTION

With the growing demand and usage of cloud services, it is imperative
to provide security to the data at a prime level. To achieve optimal
security, the data are encrypted using algorithms such as RSA and
Diffie-Hellman. These algorithms generate a “key” to actually perform
the encryption. Managing this “key” is a part of the key management
problem. If this key is revealed or compromised, it poses a direct threat
to the integrity of the data.

Managing this key at the clients’ site or at the cloud service providers’
(CSP) site poses a serious security threat to the data itself. The existing
security scheme does not allow the client or the CSP to save or choose this
key. A third-party termed as a certificate authority (CA) is involved. The
CA chooses the key that the client and the CSP require for communication.
This again exposes a security threat. What if, the CA is compromised?
Hence, this is not really an optimal solution for this problem.
Effective synchronization is also a problem in this case. To overcome
synchronization delay, some of the public keys come pre-installed in the
operating system; we use these days. Although the time one requires to
crack the private key generated by the CA is exponential, the very fact that
it can be cracked makes the existing system less attractive. To overcome
this, the existing system uses some key discarding techniques. Where a
key is discarded or destroyed after a period. This again raises another
question: How many times should one update their local machines with
new keys? The major drawback of the existing system is that it does not
provide an effective solution for key-recovery if lost.

Securing the key and proving a key recovery mechanism ensures trust
between a client and a CSP. In this paper, we propose a technique to
manage the key at the client and the service providers’ site while the
integrity of the key remains protected. We encrypt the key and split
it into equal halves. We term them sub-keys. One-half is stored at the
client’s location and the other at CSPs location. The hashing technique
is not revealed to the CSP. If the actual key is lost at the clients’ site, we
take the sub-key from the CSP and merge it with the sub-key at client to
regenerate the actual key.

LITERATURE SURVEY

Assorted key-management techniques were studied from the paper [1].
Symmetric key-management scheme, group key management, and
various other new key-management techniques were understood from
this paper [3]. This journal was greatly helpful in understanding various
encryption algorithm and its role in key management. The symmetric and

TWO PHASE PROTOCOL

Phase I - Encrypting the data
This is a straightforward mechanism to encrypt the data where we
use a symmetric or asymmetric algorithm to encrypt the data. The
research focuses on managing” the key” that is used for encryption by
the algorithm. We do not really pay attention to the algorithm we use.
This encrypted data are then stored at the CSP’s end, while the actual
encryption is done at the client’s site.

Phase II – “The split key technique”
Once the encryption algorithm leaves a “key” as a residue. We apply a
hashing function to the key and split the actual key into two equal “sub-
keys.” This can be done vice-versa as well. This is done at the client’s site.

THE SPLIT KEY TECHNIQUE

The plain text or the hashed primary key is given as an input to an
application which then splits it into equal halves. The application’s output

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19586

Full Proceeding Paper

Department of ???, VIT University, Chennai Campus, Chennai, Tamil Nadu, India. Email:asha.s@vit.ac.in
Received: 23 January 2017, Revised and Accepted: 03 March 2017

asymmetric key algorithms and various other hashing algorithms were
understood from this journal. The mathematics behind them and how
 they are used in real life was also understood. The necessity of securing
the data was understood from the paper [4]. How aggregated data can be
hashed without any hassle and the various drawbacks in handling large
amount of data for hashing to achieve security was also
understood. How key management is used in this scenario was also
understood. The concept of group key. Splitting key into n parts and
installing them at various client location was understood from the paper
[5]. The concept of symmetric key usage was deeply studied with the help of
 research paper [7]. The classification of the symmetric key, how they are
used in wireless sensor networks and its management schemes were
understood. Key distribution techniques were also understood from this
paper. This paper was useful in identifying how the split key technique can be
 implemented in symmetric key. The concept of split
key-management was derived from the paper [8]. The various
methods of key-management were understood from this paper.
How key-management applies to a cloud storage platform was also
 understood from this paper. The use of hashing algorithms
was studied from the paper [10]: Data encryption standard,
advanced encryption standard, and Blowfish: Symmetric key
cryptography algorithms simulation based performance analysis. A
brief study on group key management was studied from: Group key
management technique based on logic-key tree in the field of wireless
 sensor network. Possible attack methods and recovery attack methods
 were studied from Key recovery attacks on recent authenticated ciphers.

110

Special Issue (April)
	 Rakesh and Pradeep	

is two files. If the key is split first then, the two halves are given as input to
the hashing algorithm. This hashing technique can be kept secret.

Once the sub-keys are hashed, we randomly chose one to stay at the
client’s location and the other to be stored at the CSP’s location. Now that
the key is split into parts, effective synchronization and authentication
mechanisms should be in place to generate the primary key from the
sub-keys and to maintain trust between the client and the CSP.

Synchronization
When a client needs to access the data at the CSP’s location, the two
sub-keys should be combined to generate the actual key. The same
application that was used to split the key into two equal halves is used
to merge the two sub-keys to form the primary key in cipher text.

This merged output file is taken as the input to the hashing algorithm.
Here, the ciphertext file is converted into a plain text file.

Authentication
No additional authentication is required because the primary key
cannot be regenerated with out using the right subkeys. The subkey
present at the CSP’s location could be the authentication for the client
and vice-versa.

DESIGN

As the owner of the data, it gives all the right for a client to generate and
manage their own key. We assume, security at all levels in the client’s
premises is optimal.

The algorithms and the hashing techniques used are not our primary
concern. The key that is used for the encryption by the algorithm is our
main focus. Moreover, as this is done at the client’s location, we trust
all the other clients as well. Should the client be a huge enterprise?
The proposed idea can be implemented with or without a local key
management server (KMS).

With a local KMS
Introducing a KMS locally lessens the burden on the client’s machine.
This, however, increases administrative work and also increase
security risk of KMS being compromised. But here, as the keys at
KMS are already hashed and split the intruder cannot get any useful
information. This method is suitable if the number of client in a LAN
network is large.

Here, the KMS can also implement the splitting of the key, deploying
them on the client machines based on requirement and necessity.

Without a KMS
Without a KMS, each of the client presents locally is responsible for
generating their own key and performing the split-key technique. The
clients then can freely request and access the data needed at the CSP at
their will.

ACCESSING THE DATA AT CSP

Accessing the data at the CSP requires the actual key. In this case, the
combination of the subkeys. The application that was used to split
the key is used to generate the primary key by simply joining the two
subkeys. As discussed earlier, there is no authentication required. The
subkeys themselves act as an authentication factor.

TRANSFER OF KEYS OVER LAN

Once the key is split into halves and stored at the consumer’s and
provider’s location, we need an effective mechanism to transfer one-
half of the key at the provider’s location to the consumer’s location. To
achieve this, separate consumer and provider programing methods are
used.

This transfer of key is practically achieved using python socket
programing.

The consumer method
This method is capable of receiving the key in the form of an array of
bytes. As socket programming is used, byte ordering is taken care by
default.

This method also comprises of the key join method so that, once both
halves of the keys are gathered they are joined together.

Algorithm
1.	 A consumer socket is created
2.	 The socket is binded with the local IP and a Port no.
3.	 The socket is now made to listen passively at the given port no.
4.	 The connection received from the CSP’s end is accepted
5.	 The contents received is stored in a local variable
6.	 The contents are then written to an output file.

Fig. 1: Flow diagram

Fig. 2: With a key management server at client’s location

Fig. 3. Without key management server at client’s location

111

Special Issue (April)
	 Rakesh and Pradeep	

The contents of the output file are equivalent to the file that was
transmitted from the CSP

The provider method
This method, basically transfers the one-half of the key that it has to
the consumer. This key can be stored or put in the provider’s place by
various means. It can be as simple as just copying the half of the key and
physically dumping it at the provider’s end. As the split keys are already
hashed, there is no real security threat here.

Algorithm
1.	 A provider socket is created
2.	 The created socket is connected to the local IP address and the port

no. the consumer is listening
3.	 The file to be transferred is referenced using file object
4.	 Then, the contents of the file are then read using the file object and

stored in a local variable
5.	 The contents of this variable are then transmitted through the port

no. to the given IP address byte-by-byte.

The number of bytes received at the receiver’s end is in the same order
in which it was transmitted.

CONCLUSION AND FUTURE WORK

As discussed throughout, splitting the key into equal halves and
encrypting them provides security to the “key” itself. If the primary
key is lost at the client’s side, we can still recover or regenerate the
primary key by merging the two subkeys. Hence, providing a fail-safe
mechanism to retrieve key if lost.

Future research can include simplifying the process of splitting the key and
synchronization process. An additional authentication mechanism can be
in place at the CSP’s location to validate if the requester is authorized.

ACKNOWLEDGMENT

1.	 Shnaikat KN, Al-Qudah AA. Assortment of key management
techniques for wireless sensor networks. Int J Adv Technol Eng Res
2014;6(6):49-63.

2.	 Bala S, Sharma G, Verma AK. Classification of symmetric key
management schemes for wireless sensor networks. Int J Secur Appl
2013;7(2):117-38.

4.	 Jayaraj V, Indhumathi M, Mathimalar V, Hemalatha S, Durai U. Secure
data aggregation using efficient key management technique in wireless
sensor network. Int J Comput Appl 2014;89(9):6-11.

5.	 Metan J, Murthy KN. Group key management technique based on
logic-key tree in the field of wireless sensor network. Int J Comput
Appl 2015;117(12):9-15.

6.	 Huang D, Mehta M, Medhi D, Harn L. A Key Management Scheme for
Wireless Sensor Networks Using Deployment Knowledge. Hong Kong:
IEEE INFOCOM; 2004.

7.	 Bala S, Sharma G, Verma AK. Classification of symmetric key
management schemes for wireless sensor networks. Int J Secur Appl
2013;7(2):117-38.

8.	 Key Management for Cloud Data Storage: Methods and Comparisons.
2014 Fourth International Conference on Advanced Computing &
Communication Technologies; 2014.

9.	 Trappe W, Song J, Poovendran R, Liu KJ. Key management and
distribution for secure multimedia multicast. IEEE Trans Multimed
2003;5(4):54457.

10.	 Thakur J, Kumar N. DES, AES and blowfish: Symmetric key
cryptography algorithms simulation based performance analysis. Int J
Emerging Technol Adv Eng 2011;1(2):6-12.

11.	 Renjith PR, Sojan A, Gopinadhan PK. A novel method for symmetric
encryption using split plaintext key pair (Pi,Ki) algorithm. Netw Secur
Cryptogr NSC 2011;2:36-41.

12.	 Buyya R. Introduction to the IEEE transactions on cloud computing.
IEEE Trans Cloud Comput 2013;1(1):1-9.

13.	 Liu H. Study of authentication with IoT testbed. Dartmouth MA, USA:
Department of Electrical and Computer Engineering, University of
Massachusetts. IEEE 14-16 April; 2015.

15.	 Bogdanov A, Dobraunig C, Eichlseder M, Lauridsen MM, Mendel F,
Schläffer M, et al. Key Recovery Attacks on Recent Authenticated
Ciphers. Switzerland: Springer International Publishing; 2015.

REFERENCES

also thanks Dr. B.

Author sincere thanks Prof. Pradeep KV, SCSE in guiding his to
achieve this feat. Author appreciate all the help received from his peers in
 the due to course of this research and Rajesh Kanna,
Programme Chair, SCSE Cloud computing, VIT University Chennai Campus.

14. Cloud computing security challenges and threats: A systematic
map. Int J Adv Eng Technol 2015;.

3. European Payments Council. Guidelines on Algorithms Usage and Key
Management, Version 4.0. : EPC (European Payments Council);
2014.

