
Special Issue (April)
Online - 2455-3891

Print - 0974-2441

Advances in Smart Computing and Bioinformatics

EVALUATION OF CAPTURING ARCHITECTURALLY SIGNIFICANT REQUIREMENTS METHODS

SATHIS KUMAR B*
Department of Computer Science and Engineering, VIT University, Chennai, Tamil Nadu, India. Email: sathiskumar.b@vit.ac.in

Received: 23 January 2017, Revised and Accepted: 03 March 2017

ABSTRACT

Every software development organization strives for customer satisfaction. It is universally accepted that the success of software development lies in the
clear understanding of the client requirements. During requirement elicitation and analysis stage, the system analyst identifies the functional and non-
functional requirements from the customer. Security, usability, reliability, performance, scalability, and supportability are the significant quality attributes
of a software system. These quality attributes are also referred as non-functional requirements. Only a few functional and quality attributes requirement
help to identify and shape the software architecture. A software system’s architecture is the set of prime design decisions made about the system. If the
requirement influences the architectural design decision then, it is referred as architecturally significant requirement (ASR). Identifying and specifying all
the possible ASR are important tasks in the requirement elicitation and analysis stage. In this research, general problems that are faced while capturing
and specifying ASR in requirement elicitation and analysis is studied. Among the different requirement elicitation techniques, use case diagram has been
identified and enhanced to solve the problem of capturing and specifying ASR during the requirement elicitation and analysis phase.

INTRODUCTION

Every software development organization strives for customer satisfaction.
It is universally accepted that the success of software development lies in
the clear understanding of the client requirements. Hence requirement
engineering may be applied to obtain an in depth understanding of the
client requirements, and it is further divided into 4 subtasks. They are a
feasibility study, requirement elicitation, and analysis, specification and
validation [1]. Feasibility study assesses the usefulness of the software
system in the existing environment, requirement elicitation and analysis
help us in discovering and understanding the requirements from the
stakeholders involved in the project. Requirement specification acts as an
aid in documenting the requirements in any prescribed form. It needs to
be agreed on by the requirement engineer and the customers. Thus, these
subtasks serve as the foundation for the further developmental activities
of the software. Finally, validation helps to ensure the correctness of the
collected customer requirements. In practice, requirement engineering
tasks are an iterative process.

During the requirement elicitation, the requirement engineer works
closely with the customer and the end users to understand the hardware
constraints and the domain of work, functional, performance, security,
and other quality requirements [2]. Different types of end users and the
developing team members are the important stakeholders of the software
project, and they view the requirements in a different perspective [3].
Based on this perspective, the requirements are classified as business, user
and system requirements. Business requirements are gathered from the
top level people of the organization, and they focus on vision, constraints,
objectives and scope of the project. User requirements are gathered from
the end user of the system, and they describe the services demand by the
user [4]. It is documented in a user requirements document (URD) using
natural language and diagrams. URD documents are written to provide
an insight of the software project to the customers, and it is a key input
for constructing system requirements. Gathering these requirements
from the user is a very complex task for the requirement engineer. In
general, users fail to articulate their requirements appropriately thus
leading to an incomplete and ambiguous URD.

The system requirements are complete descriptions of the software
system’s functionalities. Software system requirements are categorized

into functional and non-functional requirements. A software system’s
functional requirement describes an expected functionality requested by
the customer and a non-functional requirement describes the effectiveness
of the function provided by the system [5]. ISO 9126 lists 22 different
quality attributes such as usability, efficiency, and portability. These are
also referred as non-functional requirements. For example, in an inventory
management system, order processing, and stock control are important
functional requirements. User interface consistencies and maximum time
to complete one order are the non-functional requirements.

Various stakeholders demand their requirements in different ways [6].
Hence, it leads to requirement conflicts. These conflicts are solved
in the requirement elicitation and analysis stage by analyzing the
necessity of the requirements, prioritizing the critical requirement and
compromising the set of requirements after the negotiation [7].

After identifying the possible requirements, it is classified and grouped
into logical clusters. The logical group and their relationship are called
system architecture. According to Taylor et al. [8] “Software systems
architecture is a set of principal design decisions made about the
systems.” In practice, it is difficult to separate requirement engineering
and architectural design activity [9].

The paper is structured as follows: Architecturally significant
requirement (ASR) is described in Section 2. In Section 3, related
research on ASR is described. This is followed by methods for specifying
in Section 4. In Section 5, the evaluation of ASR is described. Finally,
most important findings are summarized in Section 6.

ASR

The core of the software development lies in the conversion of the
requirement into software design. Requirement elicitation and
analysis assure that the conversion process goes on smoothly. The
end product of this stage is the software architecture design of the
system, which is used as the input for the further detailed design and
implementation [10]. Software architecture is a general abstraction of
the system, and it creates a better communication between users and
the developing team to understand the system completely.

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19589

Keywords: Architecturally Significant requirement method, Use case diagram.

Full Proceeding Paper

123

Special Issue (April)
	 Kumar	

The software architect takes the design decisions of the software
architecture using the key requirements. The key requirements
are also termed as ASR. The ASR plays a key role in the architectural
design decision. Identifying and specifying all the possible ASRs in the
requirement elicitation stage is essential [11]. ASR consists of high-level
functional requirements, quality attribute requirements (QAR), technical
and business constraints. According to Lattanze [12] “while functional
requirements describe what the system must do, QAR describe how
the system must do it.” A technical constraint instructs the preference
of the particular hardware, software, standards, operating systems
and other constraints. Business constraints do not force a particular
approach or solution but may imply to apply a particular approach or
a solution. For example, “in order to reduce the software development
cost of y, component x should be reused.” These constraints are fixed
before beginning the process of architect design and are documented
using natural language in all the requirement elicitation methods.

The software architect takes the design decisions of the software
architecture using the key requirements. The key requirements are
also termed as ASR. The ASR plays a key role in the architectural
design decision. Identifying and specifying all the possible ASRs in the
requirement elicitation stage is essential [11].

The key requirements are the deciding factors for the architecture of the
system. The key factors are termed as architectural drivers [13]. According
to Dominick et al. (2002), some of the requirements are important to
shape the architectures, and these requirements are termed as ASR. Both
the architectural drivers and ASR terms are used for the same purpose. In
this research, ASR term is used to specify the key requirements.

Only a few high-level functional requirements, all the QARs, technical
and business constraints are the ASR that influence the architecture
design decision [12]. High-level functional requirements specify a
general description of functionality. For example, for an online shopping
portal the high-level functional requirements are:
•	 The system shall provide placing the order
•	 The system shall support to track the order within 45 seconds
•	 The system shall support to standard payment methods and protocols
•	 The system shall support advertisement
•	 The system shall support any browser.

These high-level functionality requirements are described using
traditional “shall” statements [14]. There are many ambiguities in these
requirements. Some of functional, quality attributes requirements and
constraints are specified individually or mixed.

ISO 9126 lists 22 different quality attributes such as usability,
efficiency, and portability. According to Lattanze [12] “while functional
requirements describe what the system must do, QARs describe how
the system must do it.” In general, QAR and functional requirements
are always combined. It is difficult to specify the QAR alone. For
example, “shall have high performance.” Specifying this performance
requirement statement without functional requirement is meaningless.

Technical constraint describes the preference of the particular hardware,
software, standards and operating systems, etc. Business constraints do
not force a particular approach or solution but imply to apply a particular
approach or solution. For example, “in order to reduce the software
development cost ‘x’ component ‘y’ should be reused.” In the beginning
of the project, technical and business constraints are fixed. The influence
of the quality attributes and functional requirements are identified at the
time of architectural design. Quality attributes are the highly influencing
factor of the architecture compared to functional requirements. The
following section describes various methods for capturing ASR.

RELATED RESEARCH ON ASR

Dominick et al. introduced the term ASR. The key requirements are the
deciding factors for the architecture of the system and are termed as
ASR. High level functional and QARs are important ASR.

Chen et al. [15] conducted an empirical study to characterize ASR. ASR
is difficult to define and express. It tends to be articulated vaguely,
neglected initially and hidden within other requirements.

Alistair [16] conducted a survey on requirement elicitation techniques.
The results of the survey show that interviews, observations,
workshops, protocols, scenarios, and prototypes produce natural
language ambiguity.

Lange et al. [17] addressed the problems with unified modeling
language (UML) descriptions based on his survey with the software
architect. The survey results show that design choice information are
scattered over multiple views, incomplete architecture views, and
inconsistency in software architecture models.

Zhu and Gorton [18] proposed UML profiles for specifying non-
functional requirements in a design model. This method is applicable
only in design stage and not suitable for the requirement elicitation and
analysis.

Sindre and Opdahal [19] introduced a method for specifying security
requirements based on use cases. Filled oval symbol is used for
misuse case and filled stick men is used to specify misusers. Threaten
and mitigate relationship are introduced to specify the relationship
between use case and misuse cases. The mitigation flow describes steps
to handle the vulnerabilities. It clearly shows that misuse case [20]
diagram and its specification is purely a technical document which can
only be handled by an architect and a security designer and not by the
customers.

Lange et al. [17] proposed factor table to specify factors influencing
the architecture. Factor table only focuses in specifying the generic
quality attribute influence factors, and it does not hint any functional
requirements.

Barbacci et al. [21] proposed the quality attribute scenario for
describing quality attributes with respect to operational context. The
drawback of the quality attribute scenario is that it is represented
using natural language. Hence, chances for representing ambiguous
requirement are high.

METHODS FOR SPECIFYING ASR

The ASR plays a key role in architectural design decision. Determining
and specifying all the ASR are a crucial task in the requirement
elicitation and analysis stage [22]. ASR consists of high-level functional
requirements, QARs, technical and business constraints. It is fixed
before initiating the process of architectural design. These two details
are documented using natural language in all the requirement
elicitation methods.

The high-level functional requirements and QARs are recorded only
in the requirement elicitation stage. Documenting these requirements
properly will be helpful for the architect to take quick decision of the
architectural design. Different requirement elicitation methods specify
the architectural requirements in different ways. In this research,
comparison of four approaches for the expression of ASR is done. They
are ASR specification using natural language, use case analysis, quality
attribute scenarios, and factor table method [23].

Natural language specification
Natural language specification portrays the functional requirements
elaborately. Architect requires only the high-level functional
requirements and not a detail requirement. Reading elaborated
functional requirements takes a longer time for the software architect
to capture the architecturally significant functions. Since there is
no guidance for writing the contents, some practitioner writes
functional requirement in detail, and others write briefly. Poorly
written requirements lead to ambiguous, inconsistent, and incomplete
functional as well as QARs. Some of the quality requirements such

124

Special Issue (April)
	 Kumar	

as performance, safety, and security are specified separately. Other
QARs are not identified explicitly which are embedded with functional
requirements. Hence, capturing QARs is a difficult task for the architect.
Hence, missing out the key QAR is possible, due to scattered functional
and QARs.

Quality attribute scenario
Only the high-level functional requirements are not enough to decide
the architecture design. A QAR with respect to operational context is
worthwhile in designing the architecture. The quality attribute scenario
framework is an excellent method to express the quality attributes with
respect to the operational context.

The quality attribute scenario is constructed using the set of framework
elements. Stimulus element is useful to bring the conditions affecting
the architecture. Source element specifies the sources of stimulus.
An environmental condition illustrates the operational context. The
architectural elements are directly or indirectly affected by the stimulus.
System response element makes vivid of how the system responds to
the stimuli. The response measure element depicts the measure of how
the system responds to the stimuli.

Table 1 indicates the quality attribute scenario to “place order”
performance requirement. As the “place order” event affects the
architecture, it is a stimulus element. When the customer initiates the
stimulus, he becomes the source of stimulus. Customer placing order
during busy business hours is a relevant environmental condition.
The external payment gateway is an external architectural element
affected by the “place order” stimulus. Hence, a payment gateway is an
architectural element. The successful completion of the “place order”
is a system response. The payment completed within 45 seconds is a
system measure.

This method is similar to natural language specification, but it uses
the structured way of representing the QARs. Each quality attributes
scenario focuses on any one of the quality attributes. Reading all the
quality scenarios and creating a relationship between the quality
attributes is a difficult task for a software architect.

Factor table
Lange et al. [17] introduced the factor table to analyze factors that
influence the architecture design, which are classified as organizational,
technological, and product factor. A factor table is constructed using
3 columns. The first column shows the influencing factors of the
architecture. Some of the factors are flexible and changes can be made
by the architect after the negotiation with the customer. However,
few factors cannot be changed by the architect. These flexibility and
changeability issues are indicated in the second column. The third
column illustrates the impact of the factor or impact of the changed
factor by architect.

Table 2 shows the online shopping portal system performance
requirements specified using factor table. The factor table is an
effective format to specify all influence factors. The factor table is more
generic and it does not describe the factors which affect the functional
requirements. Hence, it is tough for the architect to take quick design
decisions.

UML use case model
UML use case model [4] is a composition of use case diagram, use case
specification, and supplementary documents [24]. The use case model
is a communication medium between stakeholders and developing
team [25]. The usages of use case model artifacts for capturing the ASR
are discussed briefly in the next section.

Use case diagram
The use case is the core of the UML because it is the driver for
constructing UML diagrams. It is a collection of related scenarios to
achieve a particular goal [26]. The actor may be a machine or human
who invokes the system [27]. Use cases can be represented either as
case diagram or in a textual form. The textual form is termed as use
case specification.

Use case diagram shows a static view of the system functionality. It also
depicts the use case and actor relationships. Application development
standards, quality attributes of the system, legal and regulatory
requirements and other requirements that do not fit naturally into the
use cases are specified in the supplementary document [24].

Fig. 1 shows a simple order processing system use case diagram. The
customer can place and track the orders. In this use case diagram, the
customer is the actor. “Place order” and “track order” are use cases.

The <include> and <extend> are useful to create relationship between
use cases. The <include> relationship is helps to remove the similar
set of events repeatedly. The repeated flow of events is moved into a
separate use case called addition use case, and the primary use case is
called base use case. If base use case includes an addition use case, then
it should invoke the additional use case at least once before it finishes
the steps. Fig. 2 shows the flow of <include> relationship.

In an order processing system, whenever the customer places an order,
the system first validates the customer credentials. Similarly, whenever
the customer tries to track the order, the system validates the customer

Table 1: Quality attribute scenario for place order

Raw quality attribute Place order shall complete quickly
Stimulus Customer place the order
Source (s) Customer
Relevant environmental
condition

During peak business period

Architectural elements Payment gateway software
System response Payment successfully completed
System measure Payment completed within 45 seconds

Table 2: Factor table for performance factor of the product

Product factor performance Flexibility and changeability Impact
More users accessing online portal
at the same time

Customers demand more and more performance There is a tightness between performance and flexibility
throughout the system

Fig. 1: Order processing system UCD

125

Special Issue (April)
	 Kumar	

credentials. Here, the customer credentials validation flow of events
is similar for both use cases. The same flow of events are moved into
a new use case called validate use case which avoids the duplication
of same flow of events. Fig. 3 shows using the <include> relationship,
the “place order” and “track order” use case can include the “validate
customer” use case. Whenever the customer uses the “place order”
and “track order” use cases, the “validate customer” use case is called
compulsorily.

An <extend> relationship is useful to denote optional and exceptional
events. The exceptional or optional behavior flows of events are created
as a separate use case called extending use case. Whenever the base
use case reaches the exception flow or optional flow condition, then the
extending use case will be invoked. Fig. 4 describes the flow of <extend>
relationship.

Fig. 5 depicts the usage of <extend> relationship. In the order processing
system, usually the customer orders are processed sequentially, but
in some exceptional cases, the orders are processed immediately.
Whenever the place order use case reaches the rush order exception
condition, then it will invoke the place rush order use case, otherwise, it
will complete its own flow of events.

The complete flow of use case can be depicted using the <extend> and
<include> relationship in the use case diagram. Most of the practitioners
failed to use these relationship properly because of the similar definition
of <include> and <extend> (Martin, 2000). The direction indicated in
the<extend> relationship also misleads a common practitioner.

The UML use case diagram depicts only the functional requirements,
and it does not hint on any. Few QARs are embedded with the functional
description specified in use case specification. The next section
describes the usage of use case specification.

Use case specification
A use case diagram depicts a high-level functional requirement. Each
use case specified in the use case diagram is expressed in detail using
a predefined structure. The use case specification template contains
precondition, post condition, basic, alternative, and sub flow sections.

The basic flow section portrays the regular order of steps needed to
complete the purpose of the use case. The alternative flow section
brings out the occurrence of other than the regular sequence of events.
Optional flows indicate the optional sequence of steps. An alternative
set of steps and exceptional set of steps of the use case are described in
this section. The essential conditions to be satisfied before initiating the
use case are outlined in the pre-condition section. The post condition
outlines the conditions to be satisfied at the time of completion of the
use case, irrespective of the type of termination. The complex flows of
events are divided into small flow of events called sub-flows. The sub-
flow can be used to specify the repeated set of events, and this is similar
to a subroutine in a programming language.

The textual form of place order use is shown in Table 3. In an online
order processing system, create, delete, modify, and confirm orders
are sub-flows of “place order use case.” When customer selects the
product which does not have a delivery to the customer location, it is an
alternative flow. The chosen product cost less than the cash on delivery
option; it is an alternative flow. In both alternative flows, the customer
has to go back to create order option again to complete the place
orders. The usage of natural language in use case specification leads
to incomplete and ambiguous requirement. Capturing and tracking the
requirements in use case specification is difficult. QARs are often used
while describing other requirements.

Supplementary documents
A supplementary document elucidates the QARs which are important
ASR of the system. For example, the place order option should be
completed within 45 seconds is a performance requirement. It also
specifies the technical and business constraints which are also ASR.

There is no prescribed template for supplementary documents. Hence,
some practitioner describes in detail and others describe it shortly. Most
of the ASRs are documented vaguely. For example, high performance

Fig 2: Control flow of <include> relationship

Fig. 3: <include> relationship in order processing UCD

Fig. 4: Control flow of <extend> relationship

Fig. 5: Usage of <extend> relationship in order processing UCD

126

Special Issue (April)
	 Kumar	

and 100% uptime are vague ASRs. Highly available, fault tolerant are
important QARs often used while describing other requirements. This
type of embedding style will affect capturing ASR.

The term supplementary gives an impact to the practitioners that it is
an additional and optional document [24]. Hence, many of them give
less attention to read this document. Ignoring or missing the QAR leads
to project failure. This inattention and ambiguous ASR specifications
mislead the architect while designing the architecture.

EVALUATION OF ASR SPECIFICATION METHODS

The influence of the high-level functional requirements and QARs are
identified in the requirement elicitation stage. Documenting these
requirements properly enable the architect to take a quick decision

on the architectural design. Different requirement elicitation methods
specify that the ASR’s are represented in different ways. In this thesis,
we evaluate four approaches for the expression of ASR. They are
ASR specification using natural language, use case analysis, quality
attribute scenarios, and factor table method. To evaluate and compare
the various architecturally significant specification methods, different
criteria are used. The criteria are, effectively capturing the high level
functional and QARs, better negotiability and to support quick architect
design decision by the architect.

Table 4 describes architecturally significant specification methods
and evaluation criteria. Natural language specification is a freeform
method and it presents the functional requirements in detail.
Extracting high-level functional requirement is a hard task for the
architect. Some of the quality requirements such as performance,

Table 3: Place order use case textual representations

Place order
Brief description

The use case explains how a customer places an order into the system
Flow of events
Basic flow
This use case begins when the customer desires to create, delete, modify and confirm the order

1. The system requests the customer to specify the function which he/she would like to perform
2. Once the customer selects the option, based on customer selection the respective sub flow is called

If the customer chooses “create order” option then the create order sub flow is called
If the customer chooses “delete order” option then the delete order sub flow is called
If the customer chooses “modify order” option then the modify order sub flow is called
If the customer chooses “confirm order” option then the confirm order sub flow is called

Create order
1. The system requests the customer to fill the product, quantity, payment mode and delivery address information
2. After entering the details, the system creates order id and these information are stored in the system
3. The system displays the stored order information with the corresponding order number

Delete order
1. The system displays the placed order list and requests the customer to choose the order number to be deleted
2. The customer chooses the order number to be deleted
3. The system displays a confirmation message to delete the order
4. If the customer confirms to delete the order then the system removes the order from the system

Modify order
1. The system displays the placed order list and requests to choose the order number to modify
2. The customer chooses the order number
3. The system displays the order information for modification
4. The customer modifies the order and select finish
5. The system displays a confirmation message to update the order
6. The customer confirms the modification
7. The system updates the order in the system

Confirm order
1. The system displays the ordered list and requests to choose the order number to confirm
2. The customer chooses the order number
3. The system displays the order information to confirm the order
4. The customer confirms the order
5. The system displays the payment options to choose
6. The customer chooses a payment option
7. The system displays the payment details
8. Once the customer fills the requested information, the system generates the bill and finally system confirms the order
9. The system generates the bill details to the customer

Alternative flows
Cash on delivery is not possible

If, in the confirm order sub flow, the customer chooses the cash on delivery option and if the order amount is <500 the system displays “no cash
on delivery for <500” message and initiates the “pay now” option

No delivery location
If the customer selects a delivery location to deliver the product which does not have delivery option in create order sub flow, then the system
displays that delivery is not possible

Pre‑conditions
The login use case must be successfully completed

Post‑conditions
If the use case is successful, the updated order information is stored. If not the same order information is maintained

127

Special Issue (April)
	 Kumar	

safety, and security are specified separately. Other QARs are not
identified explicitly.

The quality attribute scenario [21] is constructed using a set of
framework elements. Stimulus element is useful to describe the
conditions affecting the architecture. Source element describes the
sources of stimulus. Environmental conditions describe the operational
context.

The architectural elements are directly or indirectly affected by the
stimulus. System response element describes how the system responds
to the stimuli. The measure of how the system responds is presented in
the response measure element. Each quality attribute scenario focuses
on any one of the quality attributes. Reading all the quality scenarios
and creating a link between the quality attributes is a challenging task
for the software architect.

Hofmeister introduced the factor table to analyze factors that affect
the architecture design, and these are categorized as organizational
factor, technological, and product factor. A factor table is constructed
using 3 columns. First column describes the influencing factors of the
architecture. Some of the factors are flexible and changes can be made
by the architect after the negotiation with the customer. However, few
factors are not possible to change by the architect. These flexibility and
changeability issues are elaborated in the second column. Third column
indicates the impact of the factor or impact of the changed factor by
architect. The factor table is useful to specify all influence factors. As
the factor table is more generic, it does not describe which functional
requirements are affected by which factors. Hence, it is difficult task for
the architect to take quick design decisions.

UML use case model is a composition of use case diagram, use case
specification and supplementary documents [24]. Use case is a
collection of related scenarios to achieve a particular goal. The actor
may be a machine or human who invokes the system. Use cases can
be represented either as a use case diagram or in a textual form. The
textual form of the use case is termed as use case specification. Use
case diagram shows a static view of the system functionalities. It also
depicts the use case and actor relationships. Each use case is described
in detail in the use case specification using predefined structure.
Application development standards, quality attributes of the system,
legal and regulatory requirements and other requirements that do not
fit naturally into the use cases that are specified in the supplementary
document [24]. The UML use case diagram depicts only functional
requirements, and it does not hint any QARs. Few QARs are embedded
with functional description described in use case specification.
A supplementary document describes QARs of the system. It also
specifies the technical and business constraints which are also a part
of ASR. There is no prescribed template for supplementary documents,
hence some practitioner describes in detail and others describe it
shortly.

To calculate the software effort estimation using use case point
method, the complexity of the use case is calculated based on use
case transactions. The transactions are identified using use case
specification, which is documented in natural language. The usage of
the natural language results in the unstructured use case specifications
which affect the use case transaction count.

CONCLUSION

Most of the requirement elicitation and analysis methods use natural
language as a communication medium except use case diagram
in use case model. The use case diagram is used during customer
interaction to capture and negotiate the functional requirements.
Visual representation of high-level functional requirements using use
case diagram is considered as a best method. This use case diagram is
constructed using the raw user document. This diagram is useful for
discovering, analyzing, and documenting functional requirements.
Using this diagram, an architect can understand the scope of the
project and will be able to perform the initial decomposition of the
system. It is a communicational vehicle for user and developer team.
A requirement engineer can utilize this diagram to negotiate the
functional requirements with the customer.

The architecture design decision depends on QARs with respect
to operational context. QARs are scattered in natural language
specification method and use case model. Factor table only focuses in
specifying the generic quality attribute influence factors, and it does
not hint any functional requirements. The quality attribute scenario
is a best method for documenting quality attributes with respect to
operational context. The drawback of the quality attribute scenario
is that it is represented using natural language. Hence chances, for
representing ambiguous requirement are high.

During the requirement elicitation stage, the customer is interested in
specifying the functional requirements. Very less priority is given for
conveying the QARs.

All the architectural requirement specification methods have failed
to support the architect in quickly capturing the architectural design
decision inputs which are used to construct the software architecture.
The reason is that the functional and QAR are presented in different
documents.

In this context, introducing a systematic graphical representation
method for presenting functional and QAR in one diagram is a useful
research. Using the proposed graphical representation method:
•	 Architects can capture the ASR
•	 System Analyst can motivate and capture more requirements from

customer
•	 Project Manager can calculate the effort estimation easily and

correctly.

Table 4: Architecturally significant requirement specification methods and evaluation criteria

Criteria Natural language Factor table Quality attribute scenario Use case model
Easy to capture high level
functional requirements

Difficult to capture from the
detailed system requirement
document

Functional requirements
not specified

Difficult to capture
functional requirements
other than quality
attributes involved
functions

Use case diagram
depicts functional
requirement visually
and completely

Easy to capture quality
attribute requirements

Performance, security and safety
are identified explicitly others
are difficult to identify from the
system requirements

Capture generic quality
attribute requirements
and not specific to related
functional requirements

Capture all quality attribute
requirements

Difficult to capture
from various
documents

Negotiability Difficult Difficult Easy for quality attribute
requirements

Easy for functional
requirements

Quick architect design
decision

Difficult Difficult Difficult Difficult

128

Special Issue (April)
	 Kumar	

To evaluate and compare the various architecturally significant
specification methods, different criteria are used. The criteria are,
effectively capturing the high-level functional requirements and QARs,
better negotiability and to support quick architect design decision by
the architect.

A visual representation of the high-level functional requirements
using use case diagram highly satisfies the criteria of capturing the
high-level functional requirements in a trouble free manner. The
quality attribute scenario frame can easily capture QARs. A use case
diagram satisfies only the functional requirement negotiability criteria.
A quality attribute scenario satisfies only QAR negotiability criteria. All
the architectural requirement specification methods fail to support an
architect to effortlessly capture the architectural design decision and to
construct software architecture. The reason is that the functional and
QARs are scattered across many documents.

The use case diagram has already proven that it is an ideal communication
mechanism, to describe the high-level functional requirements. Quality
attribute scenario is considered as the best method for describing
quality attributes with respect to the operational context. Such visual
representation method improves the understanding ability and
enhances the communication between the user and developers. Thus,
combining use case diagram with the quality attribute scenario in one
diagram aids in capturing more ASR requirements from the user and
helps the software architect to effortlessly take quick design decisions.

REFERENCES

1.	 Davis AM. Software Requirements: Analysis and Specification. Upper
Saddle River, NJ, USA: Prentice Hall Press; 1993.

2.	 Kulak D, Guiney E. Use Cases: Requirements in Context. Upper Saddle
River, NJ: Addison-Wesley; 2012.

3.	 Davey B, Cope C. Requirements elicitation- What’s missing? J Issues
Inf Sci Inf Technol 2008;5:543-51.

4.	 Gottesdiener E. Good practices for developing user requirements.
CrossTalk J Def Softw Eng 2008;21:13-6.

5.	 Huang JC, Settimi R, Zou S, Solc P. Automated classification of non-
functional requirements. Requir Eng 2007;12:103-20.

6.	 Coughlam J, Macredie RD. Effective communication in requirements
elicitation: A comparison of methodologies. Requir Eng 2002;7:47-60.

7.	 Herrmann A, Paech B. Practical challenges of requirements prioritization
based on risk estimation. Empir Softw Eng 2009;14:644-84.

8.	 Taylor RN, Medvidovi N, Dashofy EM. Software Architecture
Foundations, Theory, and Practice. Hoboken, NJ: John Wiley & Sons,

Inc.; 2010.
9.	 Somerville I. Software Engineering. India: Pearson Education India;

2011.
10.	 Babers C. Architecture Development Made Simple. El Paso, TX: CJC

Publishing; 2003.
11.	 de Boer RC, van Vliet H. On the similarity between requirements and

architecture. J Syst Softw 2009;82:544-50.
12.	 Lattanze AJ. Architecting Software Intensive Systems. Boca Raton:

CRC Press; 2009.
13.	 Base L, Clements P, Kazman, R. Software Architecture in Practice.

Boston, MA: Addison-Wesley; 2003.
14.	 Karl W. Software Requirements: Practical Techniques for Gathering

and Managing Requirements Throughout the Product Development
Cycle. Redmond, WA: Microsoft Press; 2003.

15.	 Chen L, Babar MA, Nuseibeh B. Characterizing Architecturally
Significant Requirements. IEEE Software; 2013.

16.	 Cockburn A. Writing Effective Use Cases. Boston: Addison-Wesley;
2001.

17.	 Lange CF, Chaudron MR, Muskens J. In Practice: UML Software
Architecture and Design Description. IEEE Software; 2006. p. 40-6.

18.	 Zhu L, Gorton I. UML Profiles for Design Decisions and Non-
Functional Requirements. Sharing and Reusing Architectural
Knowledge - Architecture, Rationale, and Design Intent, SHARK/ADI
‘07, IEEE; 2007.

19.	 Sindre G, Opdahal AL. Eliciting Security requirements with misuse
cases. Requir Eng 2005;10:34-44.

20.	 Booch G, Rumbaugh J, Jacobson I. The Unified Modeling Language
User Guide. Amsterdam: Addition-Wesley; 2001.

21.	 Barbacci M, Ellison R, Lattanze A, Staffor J, Weinstock C, Wodod W.
Quality Attribute Workshops (QAWs). 3rd ed. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellor University; 2003.

22.	 Sangwan R, Neil C, Bass M, Houda ZE. Integrating a software
architecture-centric method into object-oriented analysis and design.
J Syst Softw 2008;81:727-46.

24.	 Bittner K, Spence I. Use Case Modeling. Boston: Addison-Wesley;
2002.

25.	 Anda B, Sjeberg D, Jorgensen M. Quality and understandability of use
case models. Proceedings of the 15th European Conference on Object-
Oriented Programming; 2001. p. 402-428.

26.	 Cockburn A. Writing Effective Use Cases. Boston, MA:
Addision- Wesley; 2000.

27.	 Armour F, Miller G. Advanced Use Case Modeling: Software Systems.
New York: Addison-Wesley; 2000.

23. Bass L, Bergey J, Clements P, Merson P, Ozkaya I,
Sangwan R. A comparison of Requirements Specification Methods
from a Software Architecture Perspective. Pittsburgh: Technical
Report, Carnegie Mellon Software Engineering Institute; 2006.
Available from: http:// www.sei.cmu.edu/reports/06tr013.pdf. [Last
accessed on 2016 Dec ??]

	PointTmp
	OLE_LINK1

