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ABSTRACT

There are many algorithms available in data mining to search interesting patterns from transactional databases of precise data. Frequent pattern 
mining is a technique to find the frequently occurred items in data mining. Most of the techniques used to find all the interesting patterns from a 
collection of precise data, where items occurred in each transaction are certainly known to the system. As well as in many real-time applications, 
users are interested in a tiny portion of large frequent patterns. Hence, the proposed user constrained mining approach and will help to find the 
frequent patterns in which user is interested. This approach will efficiently find user interested frequent patterns by applying user constraints on 
the collections of uncertain data. The user can specify their own interest in the form of constraints and uses the MapReduce model to find uncertain 
frequent pattern that satisfies the user-specified constraints.
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INTRODUCTION

Many algorithms exist for mining huge amount of data using clustering, 
classification, anomaly detection, and association rule mining. Frequent 
pattern mining gives the result on the basis of frequently occurrence 
of data [1]. It finds the pattern and gives the result for the data which 
occurs frequently [2]. However, due to the high uncertainty of the data, 
frequent pattern data mining is difficult to analysis about the presence 
of the user required data [3].

For handling these types of the uncertainty data, the new data 
mining technique helps us to use constraint-based pattern mining. 
The constraint-based mining technique works on the user specified 
constraints [4]. The user can specifics about data which he/she need 
and with the help of that constraint pattern it gives the appropriate 
result. However, there is another problem with this technique, as the 
data are big, it is difficult to execute and it is a time-consuming process. 
Improving the efficiency and performance of the existing algorithms 
the MapReduce concept used in our approach [2]. The MapReduce 
technique will split the data into the small chunks and it will store into 
the separate files. These files are processed and executed separately in 
a parallel manner. Finally, the results are mapped and the result will be 
generated. So using the MapReduce technique the frequent items are 
generated with less execution time.

BACKGROUND

In these recent years, data usage has increased rapidly worldwide. 
So storing the large amount of data are a big problem [5]. The data 
generated from different data generating factors like machine logs, 
human generated data are being stored by companies. They use this 
data for their business improvement and for processing huge amount 
of data, so new tools and approaches have come into the role [3]. Most 
data analyst uses Hadoop for analysis of big data mining frequent 
patterns of itemsets present in transactional datasets, which helps for 
further data mining tasks such as association mining, correlations, and 
clustering [6].

LITERATURE SURVEY

Kharat and Gupta proposed an approach for finding frequent itemsets 
using reverse apriori algorithm [7]. In this paper, the reverse apriori 
algorithm works exactly, the reverse process of the apriori algorithm. 

Reverse apriori algorithm forming large frequent itemsets which 
contain all the combinations of items which occur more frequently in 
the transactions. For finding frequent patterns user have to provide 
their interest in terms of constraint and minimum support count. 
From large dataset, we reduce the combinations of itemset pairs by 
considering minimum support count and user specified constraints. 
With less number of comparisons, the user interested items were 
generated.

Online association rule mining described by Ari and Erdi [6]. In general, 
for finding the relationship between the items, we can use association 
rule mining. In this paper, the author proposed receptor system to find 
the relationship between the items for online data. The online data were 
created by many users in large amount it uses Hadoop system. Hadoop 
system was used to process the event processing language queries to 
find results based on user queries. Using the Hadoop system, the large 
amount of online data handled easily and the query was processed very 
fast.

Leung et  al. proposed the approach for efficiently mine the frequent 
patterns from the huge uncertain data [8]. In this paper, the author 
elaborated the strategy of UF-growth algorithm to find the frequent 
pattern. The UF-growth algorithm was actually motivated from two 
basic techniques that are frequent-pattern growth algorithm and 
U-apriori algorithm [9]. This algorithm first scan database and calculate 
the expected support count for particular items. Arrange in descending 
order of expected support count. While doing this, it also checks for 
the minimum support count and user specified constraints. Once it 
was done with this algorithm again, it has to scan the database and 
construct the UF tree for finding the frequent pattern. The tree will 
grow according to the scanning of transactions.

Naik and Mankar proposed the approach for mining of frequent pattern 
itemsets present in uncertain database with the help of probabilistic 
support values [3]. Here, aprori algorithm used with the probabilistic 
support values for finding frequent patterns. Normally, apriori 
algorithm repeatedly produces the probabilistic frequent itemsets using 
a bottom-up strategy. Each iteration was performed by the following 
two steps. First join step, used for generating new candidates and 
next pruning step, used for calculating the probabilities frequentness 
of items and calculating the probabilistic frequent itemsets from the 
generated candidates.
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Mining of frequent pattern from uncertain data was described by 
Tanbeer et al. [10] Some cases the decision tree will be useful for finding 
the frequent items. In this paper, author applied compact tree structure 
on uncertain database to extract frequent patterns. They proposed the 
technique of prefix capped uncertain frequent pattern (PUF) tree which 
will efficiently find the frequent itemset from uncertain database. This 
technique first used to find the prefix of the particular item set, with 
the help of these prefixes the compact tree was constructed. Applying 
the constraint of minimum support counts on the tree it converted into 
compact tree which satisfy minimum support count constraint. Finally 
by applying PUF compact tree based algorithm on it finds the frequent 
itemsets for given uncertain database.

PROPOSED SYSTEM

The proposed approach uses user-specified constraints and 
MapReduce technique for mining frequent patterns of data. This 
system used uncertain big data which finds the frequent patterns of 
user given constraints from huge amount of data [5]. As shown in Fig. 1, 
first consider the uncertain database. Then, apply user constraint on 
it such as minimum support count and constraint on attribute. Using 
MapReduce it finds valid single tone and valid non-single tone patterns 
from uncertain database. By considering both valid single tone and 
non-single tone items it finds the valid frequent pattern from uncertain 
data which satisfy user constraints.

It uses MapReduce function two times for mining process.
1.	 First, it is used for finding the singleton itemset.
2.	 Second, it is used for finding non-singleton itemset.

A finding valid singleton items from big data
After considering user constraint, system apply MapReduce function on 
database for finding the valid single tone pattern. For finding the valid 
single tone items, it only considers items which satisfy user constraints. 
It simply adds all the expected values of item from all transaction to 
find its support counts. Thus it finds the valid single tone item with its 
support count.

Finding valid non-singleton patterns
After finding the valid singletons from uncertain data which satisfies 
user constraint next step is to find non-singletons. For that, it finds 
projected database for each singleton items.

Algorithm for Projected database
For each transaction in sample data set do
	 For each item from singletons in transaction do
Return (x, prefix of Tj ends with x).

In this algorithm x refers item, Tj represents transaction number. The 
output of the algorithm gives projected database of Tj. First calculate 
projected database and with the help of that we can calculate non single 
tone item with their user expected support count. For every item in 
projected database, we can build a tree for item (x) as (x -  projected 
database). If support count is greater than minimum support count 
then return that item set else do not consider that itemsets. Thus with 
the help of these projected database of each item, it finds valid non 
single tone items with its support count.

Constraint check in first map function
If we do constraint check in the first reduce function then it requires 
less number of constraints. Because map function shuffle and sort all 

pairs. In opposite if we push constraint check in first map function, it 
checks each and every item of transactions. Hence, pushing constraint 
check in reduce function will be more time efficient.

In this approach, we push constraint check in the first map function. It 
will returns only items which satisfy user defined constraints. Hence, 
less number of bookkeeping is required and less number of pairs to 
be shuffled. Hence, it will be time efficient (less no of pairs need to 
shuffled) and space efficient too (less no of bookkeeping to be stored).

Succinct constraint
If collection of all patterns satisfying the constraints is succinct power 
set then it is succinct constraints.

Anti-monotone constraint
If all the subset of pattern which satisfies anti-monotone constraint also 
satisfies same constraint then it is called as anti-monotone constraint.

Mining frequent patterns by applying AM constraints
There are two types of patterns:

1.	 First one is satisfying both constraints succinct and anti-
monotone.

2.	 And second one is which satisfy only anti-monotone constraint.

Here considering the rules of anti-monotonicity. As per the definition, if 
any of the frequent patterns is not satisfying anti-monotone constraint 
then its superset also does not satisfy anti-monotone. So with this, we 
can remove unwanted pattern. We use the property of anti-monotone 
and MapReduce approach to find the valid singletons with the first set 
of MapReduce function.

DISCUSSION AND RESULTS

The process discussed with an example of small uncertain data Table 1. 
In the example, user constraints are used as follows.

1.	 Minimum support count should be >0.5 and
2.	 Minimum wind speed should be >5 kmph from Table 2.

It returns itemset which has support count >0.5 and wind speed >5 kmph 
from Table 1.

From the information given in Table  1, to find the valid singleton 
patterns, it can understand that items a, c, d and f from item set 
satisfy constraint. It does not consider item e because it not satisfies 
constraint of minimum wind speed. First, map reduce function reads 
all transactions. For each item (a, [0.2, 0.5, 0.3, 0.9]), (c, [0.8, 0.9]), 
(d, [0.6, 0.6]), (e, [0.6, 0.5, 0.5]) and (f, [0.9, 0.6]) and returns the 
singleton items as result (a:1.9), (c:1.7), (d:1.2) and (f:1.5). These are 
valid singleton items with their corresponding support count. Here, 
the reduce function does not consider (e, 4 kmph), as well as (b:0.4) 
because they not satisfy with the users constraint.

For finding the non-singleton items map reduce function reads 
Transaction T1. Map function returns item and its prefix in T1 as 
([c], [a:0.2, c:0.8]) and ([f], [a:0.2, c:0.8, f:0.9]). This function does not 
returns “a” because there is only one item for its prefix. After reading 
T2, it will returns ([c], [a:0.5, c:0.9]), for T3 ([d], [a:0.3, d:0.6]) and ([f], 
[a:0.3,  d:0.6, f:0.6]). And at last for T4 it will give ([d], [a:0.9, d:0.6]). 
Now these returned pairs are shuffled and tree is built on it with item’s 
support count. According to the tree second MapReduce function 

Fig. 1: Proposed system architecture
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returns non singletons and their support counts. Non singletons 
itemsets will be ([a, c]: 0.61), ([a, d]: 0.72), ([a, c, f]: 0.72), ([a, d, f]: 0.36).

Example: Suppose we need to calculate expected support 
count for X=(a, c) in Transaction T1 then Support 
count  (X)=P(c,T1)*max{P(a.T1)}=0.2*0.8=0.16. Like this calculate for 
all transactions where (a, b) occurs, in our case in T2 we get 0.45 so if 
we add both we get expected support count for X = (a, b) = 0.61.

We mine the same a tiny sample set of an uncertain Big database as 
shown in Table 1 with minsup = 0.5 and wind speed = min (x  -  wind 
speed) ≥5 kmph. Again, based on the auxiliary information, we learn that 
domain items a, c, and f (but not b) satisfy user constraint. Then, for the first 
Transaction T1, the map function outputs (a:1.9), (c:1.7), (d:1.2) and (f:1.5).

(a, [0.2, 0.5, 0.3, 0.9]), (c, [0.8, 0.9]), (d, [0.6, 0.6]), (e, [0.6, 0.5, 0.5]) 
and (f, [0.9, 0.6]) as valid singletons and their corresponding expected 
support values.

Pushing constraint checks into the map function is both space-efficient 
(due to the reduction in the number of pairs returned by the map 

function) and time-efficient (due to the reduction in the number of 
pairs to be shuffled and sorted).

CONCLUSION

Mining frequent data from large amount of data are a big challenge 
in recent trends. This paper deals with the big data analytics which 
returns a user interesting patterns from huge amount of uncertain data. 
This approach helps to mine uncertain data using user constraints. 
Usually, mining the large amount of data is a time-consuming process. 
Hence, the map reduce helps us for finding user interested patterns 
more efficiently with respect to time and space.
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Table 1: Small uncertain data set

Tid Content
T1 (a:0.2, b:0.2, c:0.8, f:0.9)
T2 (a:0.5, c:0.9, e:0.6)
T3 (a:0.3, d:0.6, e:0.5, f:0.6)
T4 (a:0.9, b:0.2, d:0.6, e:0.5)

Table 2: Description of data

Item Wind speed (kmph)
a 8
b 9
c 15
d 12
e 4
f 10


