
Special Issue (April)
Online - 2455-3891 

Print - 0974-2441

Advances in Smart Computing and Bioinformatics

WORKING OF A CONTEXT-AWARE CONVERSATIONAL ENTITY

PRAGYA SHRIVASTAVA, BHARADWAJA KUMAR G*

INTRODUCTION

An efficient way of communication between human beings is with the 
help of a “language.” Therefore, making the machine to understand our 
way of communication is always a very essential point of research. The 
computer cannot understand the language that we human beings speak 
as such; we need to convert this human-understandable language into 
a machine-understandable form. The actual objective is to make the 
machine understand the significance of a language’s grammar, phrases, 
idioms, vocabulary, and also the context so that the machine can 
respond to questions put forward to it in a way similar to us. An example 
of a chatbot’s working [1] is given in Fig. 1. To achieve this objective, 
many applications such as inverted indexing, cosine similarity, and 
artificial intelligence markup language [2] have been developed, which 
is primarily supported by the bags of words approach and hence lacks 
in semantics.

Automating the text analysis by a machine is not an easy task; it 
involves a lot of challenges in providing a deep understanding of 
natural language to machines. Some very successful solutions given 
by IT industries to assist people are Apple’s SIRI and IBM’s Watson. 
Although both these systems are successful in the aspect of providing 
user assistance, there exist some limitations on its computational 
requirements and its performance. The technical processes involved 
in making the natural language understandable to the machine include 
preprocessing, segment splitting, intention identification, relevant 
answer retrieval, and then framing the answer to the user. This 
understanding, interpretation, and extraction of meaningful sentences 
to develop a conversational entity are performed with the help of 
natural language processing (NLP) [3].

The two main entities of an NLP domain in developing any conversational 
agent include language understanding (U) and language generation (G) 
and are depicted in Fig.  2. NLP is a domain which enables us in the 
development of diversified applications such as:
1.	 Grammar checkers
2.	 Question-answering systems
3.	 Information extractors
4.	 Machine translation and interpreters.

This paper focuses on delineating the working of a conversational 
entity, in other words a question-answering system dealing with a 

particular context. Any question-answering system can be developed 
by making the machine to learn on which question should be mapped 
with which answer, and mapping of question answer can also be viewed 
as a sequence to sequence mapping task. Recurrent neural networks 
(RNNs) [4] with encoder and decoder have proved to be successful for 
sequence-to-sequence mapping [5] since it reduces the manual task 
while training the model. The sequence-to-sequence mapping task 
includes machine translation, named entity recognition, etc. [4]. The 
neural network (NN) of sequence-to-sequence model is jointly trained 
to maximize the conditional probability of mapping the correct answer 
on getting the context aware question or any related question [6].

LITERATURE SURVEY

This section details the three main NLP tasks which are included in the 
architecture of any conversational model: Part-of-speech (POS) tagger, 
text similarity, and encoder-decoder framework.

POS tagging
Knowledge on the POS of a sentence of a language is essential to understand, 
segment, or check the sentences given to the system. In English language, 
totally, eight POS [7] are available and are given as follows: Noun, pronoun, 
adjective, verb, adverb, article, participles, and auxiliaries. Prediction 
of the possible occurrence of the next word from an existing entry of a 
word can also make possible with the help of information about POS in 
a sentence. For example, after an occurrence of an article, the probability 
of appearance of a noun is 91%. Hence, generally, after using an article, 
we will use a noun. For words where the meaning is ambiguous but the 
POS has been identified correctly, the system can try to rectify and place 
the word with the intended meaning if some spelling errors or contextual 
errors have occurred. Generally, POS tagging application is developed by 
training the model with the large corpus and then by applying probability 
distribution on them. After that, the model gets ready to test its POS 
tagging capabilities on any unseen text.

Text similarity
Natural language is ambiguous in nature as the same concepts or 
statements can be expressed in different ways and some different 
meanings can be conveyed with the usage of same phrases but in 
different context. Interpretation of natural language when such cases 
are present in the text becomes complex for the machines to decode. 
To get a better understanding of natural language, few algorithms 

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. 
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19638

Full Proceeding Paper

ABSTRACT
Introduction of new technologies into the world is increasing rapidly, and to assist the users to get equipped with such technologies, industries 
are providing customer care services. Contacting a customer care service is subjective to several overheads of selecting options from a listed set, 
waiting for the switching between selections, and awaiting the support of a customer care executive as the process usually requires a human 
intervention. Hence, a substitute for personnel is required by the IT industries to automate the communication process in assisting the customers.
 Chatbots with context aware question-answering capabilities can be viewed as a good solution to such customer care assistance. Development of a 
chatbot and the complexities involved in getting it to work effectively is delineated in this paper.

Keywords: ncreasing rapidly, and to assist the users 

Received: 19 January 2017, Revised and Accepted: 20 February 2017

 School of Computing Science and Engineering, Vellore Institute of Technology University, Chennai Campus, Chennai, Tamil Nadu, India.
 Email: bharadwaja.kumar@vit.ac.in



203

Special Issue (April)
	 Shrivastava and Kumar	

have been introduced in the past which help to establish the correct 
intention being conveyed and to find the key point (attention) of the 
user’s query or question. Similarities in the text can be listed into three 
categories [8] and are listed below:
•	 Morphological similarity
•	 Spelling similarity
•	 Semantic similarity.

Morphological similarity
In English, there are different forms of words and a slight change in 
the word affects the meaning, usage, tense, as well as the POS of the 
particular word. Example: Work, works, worked, worker, working are 
all forms of the same word with different tenses and POS. However, all 
forms of that word will always indicate a similar meaning, i.e., the base 
meaning will never change.

Storing each and every possible word in a language and along with its 
various word formations is a highly impossible task in any language. 
Hence, to reduce the length of the vocabulary, only the base/root form 
of every word in the language is stored. A vocabulary holds most of the 
words in the language, and not all the words, storing all the words is 
never possible for any language. To obtain the root/base form of every 
word, potters stemming method is used and some examples are given in 
Figs. 3-5. It stems down each word to its base form so that every form 
of a word can be mapped to one. By this process, the base meaning 
of the word is preserved which helps in understanding the keyword 
around which the whole statement is framed. It also helps in breaking 
down the complex sentence into simpler smaller segments. Sometimes, 
this process might distort the intention of the statement, but it is very 
useful when we have a large corpus with a huge number of words and 
we cannot store every form of word in the vocabulary [9]. For example, 
the words “compute” and “computer” become “comput” after stemming. 
With the help of this root word, the machine will understand that context 
is related as both the words are formed from the same root word.

Spelling similarity
When we intend to write down a particular word due to a spelling 
mistake and sometimes the similarity which exists between the 
intended word and some other word, the word turns out to be a 
totally another one. For example: “Leather” can be mistakenly typed 
into “Weather.” Spelling mistake could be result of anything such as 
typing error, change in the pronunciation, or lacking knowledge of any 
word and many more. Hence, intelligence is required by the machine 
to either assume the correct replacement or to rectify the spelling 
error. Sometimes, replacing the words deals with the context on which 
previous conversation is done or sometimes on the particular topic on 
which the bot has been developed. The replacement of a word due to 
similarity and spelling mistake can be dealt by addressing the number 
of conversions required to change the current word into the actually 
intended word. For doing this conversion, we need to have a count on 
the number of characters which will get inserted/deleted/substituted 
with appropriate costs for each conversion. By summing the cost of all 
these individual conversions in a word, we get the total cost to convert 
one word into another and then the word with least cost is preferred.

To apply this algorithm, first, we check if the word is present in the 
vocabulary or not. If not, then we apply edit distance algorithm that 
will calculate the cost of converting the given word into any other word 
from the vocabulary. Then, the word which has least cost of conversion 
will replace the given word and working of the edit distance algorithm 
is given in Fig. 6.

Semantic similarity
Semantic similarity describes the set of words which point to the same 
meaning. Sometimes, the same word acts differently depending on its 
position. Hence, to first understand this, POS tagging is needed, and 
then on the basis of the tag of that word, its synonyms are extracted. For 
example, “address” can be treated as a noun as well as a verb depending 
upon its position in the statement [9].

Fig. 1: Chatbot

Fig. 2: Natural language processing

Fig. 3: Stemming ruleset-1 as proposed by Potter’s method

Fig. 4: Stemming ruleset-2 as proposed by Potter’s method

Fig. 5: Stemming ruleset-3 as proposed by Potter’s method



204

Special Issue (April)
	 Shrivastava and Kumar	

For estimating the semantic similarity, Dekang Lin algorithm which is 
built on the basis of a wordnet is used. This algorithm is represented in a 
tree structure and stores the relation between hypernymy and hyponymy 
of each word. To check the similarity between two words, it estimates 
the probability of lowest common subsummer of the word under analysis 
and the intended word. Using this probability values, we can estimate 
how much closer these words are to each other. The formula used in the 
Dekang Lin algorithm to calculate the subsum is given in Fig. 7, and the 
tree structure followed by the wordnet is depicted in Fig. 8.

RNN-based sequence-to-sequence model
Artificial NNs (ANNs) are inspired from the information processing 
capabilities of our biological brains. We have many NN [10] architectures 
such as feed forward NN (FFNN), RNNs [11], and long short-term 
memory (LSTMs). RNNs are the ANNs with cyclical connections, and 
an RNN [12] can actually map the sequence of entire length of previous 
input sequences to each output layer.

Sequence-to-sequence mapping tasks [13] include machine translation, 
question-answering systems, and conversation agents. However, in 
case of dialog process, multiple turns of inputs are needed unlike other 
sequence-to-sequence mapping process. Deep NNs (DNNs) has achieved 
an excellent performance on many tasks such as image recognition, 
speech recognition, and many more. However, DNNs cannot be applied 
to problems where length of the sequences is unknown a-priori, for 
example, machine translation task. RNN-based approaches have proved 
to be successful in sequence-to-sequence mapping task.

RNNs can be thought of FFNN unfolded in time space, and hence, 
they suffer from the problem of what is known as exploding and 
vanishing gradients problem in the literature. LSTM architecture is 
designed to overcome the problem of vanishing gradients through 

gating mechanism. LSTM usually consists of memory cells and all 
those cells have three multiplicative units - the input gates, the output 
gates, and the forget gates that allow us to read, write, and reset the 
cells. LSTMs have been proven to be successful in learning long-term 
temporal dependencies, and hence, they can be effectively used in 
mapping sequences with even longer input and output sequences. 
Several attempts have been carried out to address the sequence-
to-sequence learning with the support of NNs where encoder and 
decoder have been utilized. Since we want to build the conversational 
agent, our aim is to predict the response (the next sentence), given the 
context (previous sentences in the conversation). Hence, we aim to 
develop a context-specific chatbot and we wish to reduce the regular 
problem of dealing with a large vocabulary. Our approach is based on 
sequence-to-sequence model and is described in the study done by 
Buck et al. [16].

ARCHITECTURE

The development of a context-specific bot is our prime concern, and 
this bot should be aware of contextual similarities and differences to 
mimic the conversation on a topic with the human user. To develop such 
an application, we do not need to manage large vocabulary because our 
context will always be limited, but we need to include an architecture 
that can easily evaluate the question as well as can maintain a track 
of even long conversations. The architecture that is generally used to 
accomplish this goal is depicted in Fig.  9 and consists of two major 
modules: Query modulation and question-answer mapping.

Query modulation
Whenever a user asks the question, it is passed through some filters to 
convert the question into a modulated query. Three filters are used to 
convert the question into a query: Spelling correction, stemming, and 
synonyms finder. First, the user’s question is tokenized and sent for spelling 
correction, and after that, each and every word will be passed through 
stemmer which will step-down the words into its basic form so that 
machine can categorize the word into an existing word in the vocabulary or 
into a new word. At the end, the words will be passed through a synonym 
finder to list all the possible synonyms of each word so that even if a known 
question is asked in a slightly different way, the machine can find its way 
to answer the question. At its final stage, the question is reconstructed by 
replacing every possible word with its synonym from the vocabulary and 
this reconstructed query will be given as an input to the next level.

Question-answer mapping
The query, received from the first module, will be tokenized, and then, it 
will be given word-by-word to the NN. This approach uses an RNN model 
where the input sequence is read as one word at a time to obtain a fixed 
length vector representation termed as thought vector and another 
RNN is used to generate the output sequence which is conditioned on 
the vector obtained from the first RNN. Fig. 10 shows the processing of 
a query using sequence-to-sequence mapping in an RNN.

This sequence-to-sequence mapping model can be used for question/
answering and conversations with very little changes in the architecture. 
Here, the input sequence is the context (series of previous conversation) 
and the output sequence is a reply. During the training, the true output 
is fed into the decoder and learning takes place using back propagation. 
The model is trained to maximize the probability of the true reply given 
the source sentence. During the inference/testing, we feed the predicted 
word at the current time step as the input in the next step.

IMPLEMENTATION

A python-based stemmer, spell checker, and synonyms finder [14] has 
been utilized and tensor flow has been used for applying the RNN to 
establish the sequence-to-sequence model.

Spell checker
To check the spellings of words, a vocabulary has been created which 
consists of all the words that could be used for the conversation. 

Fig. 7: Formula of Dekang Lin

Fig. 6: Edit distance rules

Fig. 8: Example of wordnet



205

Special Issue (April)
	 Shrivastava and Kumar	

Whenever user enters the word, the program first checks whether the 
word exists in the vocabulary or not. If not, then it takes each possible 
word from the vocabulary and calculates the number of changes 
required to convert one word into another. Taking the word with 
the smallest distance, it checks whether the distance is less than the 
threshold value or not. If it is less than that the threshold, it replaces the 
word or else it keeps the word as it is.

Synonyms finder
A complete sentence is taken as input and POS tagging is performed 
according to the position where it is placed in the sentence. After this, it 
finds a list of possible synonyms for the word according to its POS. At the 
end, it checks which word exists in the vocabulary, and according to that, 
it alters the sentence [15]. For all those words whose synonym does not 
exist or whose synonyms are not in the vocabulary are left unchanged.

CONCLUSION

Achieving a good replacement to human assistance is not so easy, 
and developing human-computer interfaces is very difficult owing to 
the ambiguities present in NLP. Some of the challenges in achieving a 
chatbot have been discussed in this paper. Although a lot of research 
work has already been carried out, a lot more needs to be done for 
developing such intelligent and interactive systems.

REFERENCES

1.	 Abdul-Kader SA, Woods J. Survey on chat bot design techniques in 
speech conversation systems. Int J Adv Comput Sci Appl (IJACSA) 
2015;6(7):1.

2.	 Marietto MD, de Aguiar RV, Barbosa GD, Botelho WT, Pimentel E, 
França RD, et al. Artificial intelligence markup language: A  brief 
tutorial. Int J Comput Sci Eng Surv 2013;4(3):1-20.

3.	 Chowdhury GG. Natural language processing. Annu Rev Inf Sci 
Technol 2003;37(1):51-89.

4.	 Yao K, Zweig G, Peng B. Attention with intention for a neural 
network conversation model. 29  October, 2015. arXiv preprint 
arXiv:1510.08565.

5.	 Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly 
Learning to Align and Translate. In: Proceedings of the International 
Conference on Learning Representations (ICLR), San Diego, CA; 
2015.

6.	 Zhou X, Hu B, Chen Q, Tang B, Wang X. Answer sequence learning 
with neural networks for answer selection in community question 
answering. 22 June, 2015. arXiv preprint arXiv:1506.06490.

7.	 Taylor A, Marcus M, Santorini B. The Penn treebank: An overview. In: 
Treebanks. Netherlands. Springer; 2003. p. 5-22.

8.	 Steven B, Klein E, Loper E. Natural Language Processing with Python. 
Sebastopol, CA: OReilly Media Inc.; 2009.

9.	 Zou WY, Socher R, Cer DM, Manning CD. Bilingual word embeddings 
for phrase-based machine translation. In: EMNLP. October, 2013. 

Fig. 10: Using the sequence to sequence framework for modeling 
conversations

Fig. 9: Architecture

Fig. 11: Snapshot of explicit output of spelling checker

Fig. 12: Snapshot of explicit output of spelling checker



206

Special Issue (April)
	 Shrivastava and Kumar	

p. 1393-8.
10.	 Bengio Y, Ducharme R, Vincent P, Jauvin C. A  neural probabilistic 

language model. J Mach Learn Res 2003;3:1137-55.
11.	 Vinyals O, Le Q. A neural conversational model. 19 June, 2015. arXiv 

preprint arXiv:1506.05869.
12.	 Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with 

neural networks. In: Advances in Neural Information Processing 
Systems. Cambridge: MIT Press; 2014. p. 3104-12.

13.	 Graves A. Supervised sequence labelling. In: Supervised Sequence 
Labelling with Recurrent Neural Networks. Berlin, Heidelberg: 
Springer; 2012. p. 5-13.

14.	 Bird S. NLTK: The Natural Language Toolkit. In: Proceedings of the 
COLING/ACL on Interactive Presentation Sessions 2006  July 17. 
Association for Computational Linguistics. p. 69-72.

15.	 Lowe R, Pow N, Serban I, Pineau J. The ubuntu dialogue corpus: 
A large dataset for research in unstructured multi-turn dialogue systems. 
30 June, 2015. arXiv preprint arXiv:1506.08909.

16.	 Buck C, Heafield K, van Ooyen B. N-gram counts and language models 
from the common crawl. In: LREC. Vol. 2. May, 2014. p. 4.

17. Jean S, Cho K, Memisevic R, Bengio Y. On using 
very large target vocabulary for neural machine translation. 18
 March, 2015. erforarXiv:1412.2007v2.


