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ABSTRACT

Objective: This research encompasses of developing a cyber-physical system, i.e., a system which can control the physical process of cloud formation 
by utilizing the light detection and ranging technology to modulate its frequency while directed on aerosol cloud to control the movement of cloud, 
formation, and precipitation in a test-bed setting. 

Methods: This involves utilization of advanced algorithms, image processing techniques to model cloud behavior, and artificial intelligence to control 
the laser frequency modulation and pulse count, directed or incidence angle to understand the response between laser effects on aerosol cloud.

Results and Discussion: It will enable studying the detailed effects of laser-induced cloud nucleation and also in modeling the cloud behavior with 
respect to the feedback loop between induced affect through lasers upon the aerosol cloud. 

Keywords: Computing technique, Modelling of cloud seeding, Feedback control of cyber physical system. 

INTRODUCTION

The last decade has witnessed the emergence of a new cloud seeding 
technique based on laser‐induced water condensation. This has 
acquired a form of new research status for potentially utilizing ultra-
short laser pulses for cloud seeding [1-6]. The observation of the 
phenomenon in various conditions by several groups is now well 
established, and some basic processes at play are identified [7-14]. The 
challenges that are being addressed in the current pre-proposal are as 
follows:
a.	 The first challenge lies in understanding the full complexity of the 

different pathways contributing to this mechanism which constitutes 
the most challenging question ahead in this field. Both the aerosol 
microphysics and the plasma photochemistry have to provide a 
deeper view and understanding of laser-generated particles from 
their nucleation to their ultimate evolution [15-18].

b.	 The second challenge ahead regards with the development of a 
controlled method for the atmospheric seeding of clouds. Assessing 
its fine-tuned parametric calibration on a sufficiently large scale 
requires automation and further knowledge on the efficiency of laser-
induced condensation in various atmospheric conditions, to enable 
realistic modeling of the observed particle nucleation and growth 
and allow determining the cloud types, regions, and conditions, in 
which precipitation enhancement could be expected [19-23].

Thus, the project proposes to address the above-mentioned challenges 
by studying and developing a cyber-physical system (CPS) for controlling 
light detection and ranging (LIDAR)-induced cloud seeding as platforms 
of software and hardware, respectively, accounting for modeling the 
climate data and surveying local demand for rain. This automated 
command system for cloud seeding using artificial intelligence will 
achieve the controlled and calculated enhancement of artificial rain. 
It will be developed and completed based on the technique of CPS, 
bringing together three operations on the level of the laboratory test-
bed, province, and cities. Here in this study we presents utilizing new 
technologies of computing and modeling technique, spatial-temporal 
databases, GPS, and state-of-the-art algorithms of artificial intelligence 
in integration with meteorological products (such as radar, satellite, 
weather station database) to gauge cloud nucleation of cloud in order 

to achieve the following: 
a.	 controlled cloud seeding, 
b.	 accurate prediction of artificial rainfall, 
c.	 automate modeling of such multimodal data, and
d.	 controlling/issuing the real-time instructions and
e.	 command the LIDAR system for rain enhancement 

Thereby, operating cloud seeding through a computationally controlled 
CPS.

This research work focuses on the system’s architectural outlines of 
design, configuration, and functional utility of software, modelers 
for understanding aerosol microphysics in relation with the plasma 
photochemistry to realize the goal of enhanced understanding of 
artificial cloud seeding process.

METHODS

Architecture for CPS-based cloud seeding
Fig.  1 illustrates the proposed framework. Its relative impacts of 
selected observing systems are assimilated for the control experiment 
using various configurations in terms of their fractional contributions 
to the reduction of a global measure of 24-hrs forecast error. It 
combines geographical specific data of wind, temperature, surface 
pressure, satellite images, and images of clouds extracted terrestrially 
with respect to the verifying historical data of tropospheric specific 
regional areas for subsequent computation and analysis. Fig. 2 shows 
the framework for extracting the convective cloud functional flow for 
the forecast algorithm namely Dynamic Boolean Network (DBN). There 
are three main threads: The echo tops forecast, the precipitation, and 
the precipitation phase. The image data are in 1  km resolution, with 
5-minute update rates, and 0-to-2-hr forecast loops. The algorithm 
steps include the fundamental line and convective weather interest 
detections using functional template correlation and region analysis; 
our secondary interest lies in the detections using thresholding and 
region size sorting on convective and non-convective elements and a 
rule-based precedence ordering where the primitive images are used 
to assemble the final weather classification image. Multiscale tracking 
module takes the line (envelope) and cell sets of track vectors from 
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each radar and sorts them according to weather type, providing the 
appropriate motion to each area of weather.

Here, we intend to use our own newly mathematically modeled 
coactivated Boolean networks for machine learning algorithm. Unlike 
the current neural network, the DBN is modeled on much more deeper 
level. The biological neuron consists of several networks of microtubules 
which enable each neuron to response based on the data type or make 
it data driven. Thus, the current DBN which we are inclined to use 
will enable our CPS system to model the feature sets by enabling the 
check for conditional existence of other multiple-dependent conditions 
called coactivation. This coactivation network will be employed for 
the computation as it is topologically complex in several ways, and 
we intend to use it on our research with the combination of evolving 
Boolean networks.

The DBN element can be represented as r items, for which there is a 

sequence of m number of frames given by X X X Xx x x
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Here, X is the set of possible values of a frame. A frame could be a short 
video segment, a short sequence of image blocks. Content frames 
may overlap spatially, temporally, or both. Here, overlapping time 

of windows is 2  seconds long and starts every 185 ms; with overlap 
of 15/16 being used as frames. Suppose that C, B, and Y are matrix 
of filtered output, Y is the matrix of filters for stimulant variable and 
response variable for each X, such that C=XBY. Then, C is a superframe 
of B. The length of a frame S is equivalent to the total number of frames 
in it and is denoted by |S|.
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where Xx0  is the covariance map from X which asserts to the 
association formed between the frames S(t) with that of stimulant and 
response variable. Xi is the position of input record. Cl is the cluster 
value which contains various values from 1 to l.

Now, at each step, we calculate:
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Where Cli is the ith information symbol at the lth subcarrier (when 
output of one iteration is propagated to the input of the other), Ts is the 
symbol period, Sl is the waveform for the lth subcarrier, Nsc is the number 
of subcarriers (number of matching iterations), fl is the frequency of 
the subcarrier, and π(t) is the pulse shaping function. Following this 
process, to complete the dataset in all records, the dynamics of the 
equation for a computational job using Boolean networks is computed 
as shown below: At time t, standard deviation is requested by micro 
devices.
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where I txy
i ( )  is the consequent frame with the location of each pixel 

value in the form of (x, y) for the frame at time t, I txy
i ( )  averaged 

over information of all 
I txy
i ( )

 value for time t. Hence, STD for the 
frame comprising object ( i

0 ) and its multiscale object region ( i
s ) 

can be mapped as the quantitative information about its trajectory in 
continuous frame sequence can be derived from:

s I t I ti xy xy= ( ) − −( )∑( )1 2

Now, we need to derive the symmetry of the object and its multiscale 
object region to optimize the classification process using the attribute-
based level adaptive algorithm [24,25].

Where symmetry breakdown allows us to ease the identification 
problem of the object by looking for the intercorrelation between 
symmetry of the object and the symmetry of its multiscale object 
region [26]. Hence, the relationship between it can be learned in one 
shot for object classification, which is given as:

Fig. 1: Overview of the proposed cyber-physical system for 
controlled cloud seeding through light detection and ranging 

(LIDAR) system and simultaneous modeling of aerosol 
microphysics which is aided by the data extracted from three-
dimensional cloud motion vectors after processing it through 

computer vision algorithms. Thereafter, forming the correlation 
from the processed data with the data extracted from LIDAR 
regarding plasma photochemistry with the help of artificial 

intelligence

Fig. 2: Block diagram of the processing mechanism of the 
proposed framework
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here, x(i, p) is an indicator to the event that the solution is in state i 
during the pth phase of feature instance and ni is the number of 
phases of state i. Thus, forming a dynamic sequence, the nodal degree 
distribution was fat-tailed with high-degree hub nodes to be located in 
presented polymorph neural network using sequence of information 
to excite the necessary regions and access the information in an 
associative form. This enables the machine not only to learn but also 
to embark the cross-relationship between various data for prediction 
or simulation-based logical conclusion; herein, the processing is done 
over neural net-based shell environment [27]. Computationally, this 
topology was embedded parsimoniously in terms of the connection 
distance between coactivated nodes and the framework with which 
the weather intelligence shall be implemented is shown in Fig. 2. Most 
connections or edges were separated by short sequence of excitatory 
data, significantly shorter than random networks; with P < 10−3 in 
the permutation test. Relatively few edges were long distance, and 
these were often interhemispheric projections between bilaterally 
homotopic regions where 14% of longest connections (defined as top 
10 percentile) were homotopic; significantly more than random.

Furthermore, note that the rich cluster concentrates most of the 
activations, whereas the periphery and particularly the default-mode 
network concentrate the deactivations (Fig.  3). Edges represent 
the top 1 percentile of most consistently reported activation and 
deactivations (no directions shown for clarity purposes). Edges can 
be seen spanning across different modules. Although the network 
cost is usually found to be overall low, as measured by the distance 
of connections, the network topology still managed to balance 
integration and segregation between all topological artificial neural 
regions: The clustering of the network threshold at sparse levels is 
much higher than random, while retaining a similar path length. In 
all these respects, the organization of the coactivation network is 
convergent with properties of a comparable functional connectivity 
network generated from resting-state of excitatory sequences. As 
known from prior study, and reproduced here, a recognition state 
polymorph neural networks for feature extraction and encoding of it 
for both the gray-scaled and negative images (which is an example 
of small world encoding), with fat-tailed degree distributions and 
parsimonious distance distributions.

This allows the wiring of the learned neurons to be plastic (left, which 
rigidly affinity to particular sequence of data and exhibits the constant 
state once excited) and the elastic neurons (right, which returns to its 
initial state; mainly used for transfer of sequence from one network 
point to other). The spot and arrow above each receptor represent 
excitation that stimulates the pixel receptor. The sequence of numerical 
response units is generated by the elastic and plastic neurons, which in 
turn helps create responses to spot intensity of 2.0. For the coactivation 
network, it is possible to assign functional as well as anatomical labels 
to the modules using Boolean networks. To do this, we will consider 
the high-level behavioral domains used which describe each contrast 
in the primary literature: Action, cognition, interaction, perception, and 
interoception. We then labeled each edge according to the domain most 
frequently causing coactivation of the corresponding pair of regions. In 
the occipital module, the highest proportion of intramodular modeling 
is set aside, as once modeled, the polymorph neural network has 
proven its evolutionary nature and self-modeling in dynamic scenario 
in previous studies corresponded to coactivation by perception (39%) 
and the other domains coactivated less than 20% each; similarly, in 
the default mode module, other domains each accounted for less than 
21%; whereas, in the central module, 62% of intramodular edges 
were coactivated by action. Thus, it seems reasonable to say that the 
proposed research has firm prominence with its scope fulfillment 

and will be relatively specialized for action, the occipital module for 
vision-based perception. Action and cognition tasks in regard with 
weather prediction accounted for approximately the same proportion 
of intramodular edges in the other software AI modules (34% and 38%, 
respectively), and therefore, we described it as specialized for such 
modeling of executive functions.

RESULTS AND DISCUSSION

As in the CPS controlled cloud chamber, we watched that the upgrade 
of the LIDAR-induced cloud motion by the two-axial laser is enough to 
induce airborne cloud seeding, modifying cloud motion vectors and 
induced condensation (Fig. 4). The above-depicted model of water 
particles dictates quantitatively affirmed this subjective contention. In 
view of high-perceivability conditions and air-mass back directions, we 
considered an underlying cloud vector for circulation. In the first place, 
the watched impact diminishes when the foundation signal from LIDAR 
expands, i.e. when more water droplets are accessible for discontinuous 
dispersion. In addition, the effects could vary from laboratory test-bed 
to remote mainland or urban land, which were likewise considered, 
without influencing the outcome subjectively. The perceivability 
gave the water molecules focus, which was equivalent to 126 mm−3. 
Somewhere around 8 and 400 ppm for each dispersed water molecule 
were considered, with refractive lists in the range 1.23-1.45 generally 
experienced in fogs. Regardless of the possibility that an overestimation 
of the filament (97) and of corresponding diameter across (196 mm) 
was considered in the study, we found that induced dispersion could 
expand the Mie backscattering coefficient by at generally 0.1-0.2%. 
In this way, induced localization of cloud motion vectors gives the 
predominant commitment to the CPS-based cloud seeding.

Fig. 4: The two cyber-physical system controlled axial lasers 
acting on the cloud particle under closed condition forming 

vortices and cloud motion vectors for cloud transportation and 
changing its morphology by controlling the entropy of particles, 

dynamics, and temperature

Fig. 3: Topological illustration of the functional network of 
coactivation in Dynamic Boolean Network for classification of 
features. Here, the layout of the features corresponding to the 
minimum spanning tree is used to locate nodes in relation to 

their topological proximity to each other. Different modules are 
coded by color proportional to their weighted degree. In addition, 

those nodes in anatomical space are colored based upon its 
proportionality to activations and deactivations
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CONCLUSION

In this study, we have shown that CPS-guided lasers could be employed 
for cloud seeding in closed surrounding. The modified cloud motion 
vectors generated by pulses of ultra-short laser can help in accelerated 
condensation of water by increasing the entropy. This result would 
help in understanding the effects in open atmosphere and triggering 
cloud formation in ARD regions of India. This helps us in extracting the 
essential parameters to fine tune the complete cloud seeding process, 
and thus, the outcome of the research could be operated at lower cost 
than that of cloud seeding offered by chemical rockets.
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