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ABSTRACT

Objective: This study presents a modeling solution for the arboreal epidemic like Huanglongbing. Usually, the spread of such plant disease is modeled 
based on the four parameters such as susceptibility, exposure, infectiousness, detection, and removed, but such a model is deprived by the time as a 
dimension to model such variations. Due to this, the time for which infection, exposure, detection, and removal time is censored form modeling studies 
of disease spread through heterogeneous plant species. 

Methods: Here, we computationally modeled those key factors for Huanglongbing (HLB) spread and used image processing technique for aerial 
images for segmenting field which can be utilized for cut-off the prodigiously infected field regions

Results and Discussion: The research presented in this work characterize such heterogeneous transmission with the integration of temporal, spatial 
modeling of latent period of season and effects on the host, infection period, and dispersal parameters corresponding to the hostage. The outcome 
form this research will enable to control the arboreal epidemic.
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INTRODUCTION

Under the jeopardy of emerging epidemic, it is critical to gauge the key 
epidemiological factors to prognosticate the probability and degree of 
further spread, and adscititiously to quantify the viability of sundry 
methodologies for epidemic control [1,2]. Inference model is required 
in such heterogeneous scenarios of host population through which the 
epidemic is spreading to control the impacts of pathogen spread and 
disease control [3-5]. This information like denuded or irresistible status 
of the plant group are censored because numerous disease parameters 
are unobservable, and the information are erroneous for detection of 
disease and are censored in time [6,7]. The examples of spread used 
to gauge the dispersal and transmission parameters may likewise 
mirror the effects of ailment or vector control measures. Currently, 
the utilization of spatiotemporal dynamical models has been an 
expanding accentuation on to address the quandary of the transmission 
processes of epidemics [1,4]. For such dynamical models, the frequently 
assessed parameters might be fussed with generally constrained and 
skeptical information [5,6]. Non-monotonic logic inference, upheld by 
cutting-edge computational techniques, is especially tractable and is 
progressively the approach in this scenario [7-10]. Due to its advantage 
over other examination methods such models offer inferences from 
several interconnected obnubilated processes. Although there is withal 
a high need to incorporate the seasonal factors and the age of the host 
for epidemic dynamics [11-13]. These are a few extra challenges in 
assessing the key epidemiological parameters for a formerly obscure, 
elevating pathogen (Fig. 1).

METHODS

Here, to extract the features of uneven green coloring apart from its 
nature color in the fruits and leaves of the given sample of images we 
use Attribute based Level Adaptive Thresholding Algorithm (ABLATA) 
for feature extraction. Thus, based on weighted spatial localization of 
neighboring pixels the threshold value of the cluster is determined 
through sets of evolving Thresholding t using ABLATA [15,16]. 
Mathematically, an image is a two-dimensional (2D) function, f(x, y), 
where x and y are the coordinate values in spatial domain or plane; 
and the magnitude of f(x, y) is the intensity value of the pixel at (x, y). 

If x, y and the magnitude of f(x, y) in an image are discrete quantities 
then the image is said to be digital image. Image may be represented as 
2D matrices whose elements are intensities of pixels present in image. 
Almost all image processing related operations operate on these pixels 
either in spatial domain or in frequency domain or transform domain. 
The function f(x, y) can be expressed as
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Now, each digital image has certain finite number of elements 
characterized by some coordinate values and intensity value. The 
coordinate indicates the position of pixel in an image. In equation 1 
the image elements f(NX−1, NY−1) represent the maximum number of 
resolution starting from f (0,0).

Suppose that f is the set of categorized pixels band and “P” is a 
uniformity predicate defined over groups of connected pixels. 
Segmentation is simply a partitioning of the set F into a set of connected 
subjects or regions (P1, P2,… Pn) such that n

i=1

P =Fi∪  with Pi∩Pj = φ when 

I ≠ j. The uniformity predicate i = 1 pixels represented as P (Pi) is true 
for all regions Pi and P(Pi∪Pj) and is false when Pi is adjacent to Pj. The 
thresholding algorithm for binary images is applied as:
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Where, r() is the mean value; gi and gi+1 are the lower bound and upper 
bound, respectively, of the given thresholding pixel boundary condition.

The unnatural bias for partitioning is avoided by selecting small sets 
of points and different measure of dissociation. The problem with 
such criterion for thresholding is that it does not consider association 
with clusters. To circumvent this problem, the cost of thresholding 
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at runtime as a function of the total pixel threshold to all those levels 
formed in the above step is determined and taken in account through 
the pixel association rule.

Thus, we have the generic equation normalization is defined as:
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Where, assoc (Nx, Ny) = ΣX∈m, V∈n W(u,v) is the total connection from pixels 
of set A to all set B. Using this definition of the disassociation between the 
groups, small isolated points are partitioned out and will no longer have 
distinct N values, since the cut value will almost be a large percentage 
of the total connections from the small set to all other pixels. If no other 
level changes are found then terminate the operation. The mechanism of 
segmented image is finally generated after extraction operation.

Thus, let us suppose that levels based dependencies between different 
colored parts can be expressed as p(A|B) where A is the sets of nodes 
estimated by ABLATA in previous steps during normalization and B 
is the voting element for A which express the feature description for 
the local sub-patches in form of a sets of nodes given by the training 
sets of a number of images on iteration basis [14]. Thus, the location of 
different parts is dependent, that is,
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However since, equation 4 creates a consolidated regions Ri from 
Levels Li and Pixels pi. Therefore, the entropy H of two positions can be 
mathematically defined as:
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Where, S is the splitting function and f(Ri,Li) which is the function 
represented in equation 3 recursively with Ri and Li as its hierarchical 
input parameters and tft  is the segmented region with integrated 

facial features.

Thereby, for all such functions comprising an image is a subset of V. This 
allows us to write a two-pixel image over the interval [0.1/2) to [1/2.1). 
On continuing this pattern, the traversal of the whole image can be 
summed into 2j equal subintervals for Vj vector subspaces. Hence, the 
scaling functions of the wavelets can be written as:
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Thereby, the wavelet coefficients are given by:
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Now for mapping the whole farm based on the severity of the infection 
as the color values ranges from red (worst) to green (un-infected) 
can be achieved based on the deviation of given sample images can 
be summed using standard deviation as function of covariance as 
represented below:
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Now, to form model for the epidemic spread let us suppose that e be 
the number of states of infection represented in the form of three colors 
where red represent infected, blue represent susceptible to get infected 
and green represent health state. Other parameters are: Passively 
immune can be presented by ie, susceptible denoted as ue and infectives 
be ve. Similarly, the exposed period of infection in the latent period per 
specimen S is divided into two classes: Initial is and transfer function 
denoted as us. By considering the epidemic-secondary spread of infection 
availability of plants and density of immune plants, the equations that 
describe the spread of the epidemic signals can be written as:
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Fig. 1(a and b): Illustration of Huanglongbing epidemic and its 
feature extraction using the proposed method
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Where, e=ie+ue and S = is+us

In the system (1.1) μe, is priority index, A is the contact rate and k+1 is 
forward reaction rate constant. c is the total period of average immunity. 
γ is the recovery rate and δ is the parameter denotes the infection 
period such that the ve will join the ue class. μs is probability that the 
preceding delay threshold is violated and k−1 is its reverse latent period 
of signals. β2 and β3 are the interaction rates of operational number of 
plants with the initial and recovered classes, respectively (β2 > β3).

Since ie+ue+ve=e and is+us=S, the above system can be reduced to the form:
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The region of prediction of the above system is:
T u , v , e, u , S u v N e, 0 u S S1 e e s e e 1 s= ( ) ≤ + ≤ ≤ ≤ ≤ ≤{ }:0

Here, the unique solution of the above equation exists in T for all positive 
values of dispersal time which are mathematically well posed (Fig. 2).

RESULTS AND CONCLUSION

When dealing with the emerging disease at rapid rate of transmission 
the requisite is to observe and model the key factors to initiate the 
control measures. Here, we computationally modeled those key factors 
for Huanglongbing (HLB) spread which can be utilized for cut-off the 
prodigiously infected field regions as shown in Fig.  3. Unlike other 
statistical technique, this provides an authentic time feasible solution 
by modeling anteriorly unidentified aspects of HLB, that is, its temporal 
model and sequence of infection spread. This investigation efficaciously 
showed how dispersal and transmission parameters for the case of HLB 
differed with host and temporal variation. We supplementally affirmed 
a direct relationship between primary and secondary infection zone 
represented in the form of orange in Fig. 2. This form a layout of getting 
an optional contamination to decide the cut-off regions for spread of 
disease and its control in a farm land.

Comprehension of different pathosystems of comparative intricacy and 
scale is represented in this study (Fig.  2). The output results exhibited 
the application of computational techniques to utilize infection spread 
through a spatially and transiently heterogeneous environment regardless 
of the secondary infection. The utilization of the parametric model to 
anticipate future results of HLB infection spread, and in additament the 
adequacy of control, together with the consistency of results, for instance, 
concerning the impacts of time of host’s infected period, all provide the 
quantifications to check the more periodic cycles and seasonal alterations 
to estimation of the prognostications from the model.
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Fig. 3: Length scale of the dispersal kernel, α, by average age of 
subregion at estimated epidemic start time. The line in black is 
the linear model fitted to the mean length scale in terms of the 

mean age

Fig. 2: (a) Sample field for citrus plants for epidemic mapping 
(b) sample segmentation of the field using the row and column 

arrangement of each sample images from the field using the 
posteriors and subregions. The color of the region represents 

the severity of the infection as the color values ranges from red 
(worst) to green (un-infected). Orange represents the secondary 

spread of Huanglongbing
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