
Special Issue (April)
Online - 2455-3891

Print - 0974-2441

Advances in Smart Computing and Bioinformatics

CENTRAL PROCESSING UNIT-GRAPHICS PROCESSING UNIT COMPUTING SCHEME FOR
MULTI-OBJECT TRACKING IN SURVEILLANCE

ANKUSH RAI*, JAGADEESH KANNAN R
School of Computing Science and Engineering, VIT University, Chennai, Tamil Nadu, India. Email: ankushressci@gmail.com

Received: 13 December 2016, Revised and Accepted: 03 April 2017

ABSTRACT

This research work presents a novel central processing unit-graphics processing unit (CPU-GPU) computing scheme for multiple object tracking
during a surveillance operation. This facilitates nonlinear computational jobs to avail completion of computation in minimal processing time for
tracking function. The work is divided into two essential objectives. First is to dynamically divide the processing operations into parallel units, and
second is to reduce the communication between CPU-GPU processing units.

Keywords: Parallel computing, Visual surveillance, Graphics processing unit, Multi-core.

INTRODUCTION

The visual surveillance scenario usually involves a varied process
such as environment modeling, motion detection and its estimation,
classification of objects and its tracking in real time; but such jobs are
hefty in nature for the present computing hardware devices. Thus, it
requires the presence of advanced servers or heavily modified devices
to accomplish such computational tasks [1,2]. There are various
relevant extensive investigations have already been made toward
the surveillance or tracking based applications [3-7]. Moreover, such
techniques are majorly comprised pre-trained knowledge of the scenes,
where the objects geometrical interpretation or motion behavior
is predefined to the algorithms in a manner [8,9]. Recent years have
witnessed the success of other robust techniques for detection and
tracking of people. This allowed the interest to be focused over higher
and rich understanding of the scene in terms of computations or pixel
orientations which indeed is a large and daunting task and can only be
achieved with high powered processing units. In particular, this is an
active focal point when there are several multi-networked camera units
are used for security system; where three-dimension interpretation of
the environment is built with the help of parallel behavior of assembled
multiple hardware devices.

In the past decade, there was high rise in the processing units from
central processing units-graphics processing units (CPUs-GPUs)
where more and more cache units are binded with the multi-core
processors [10-13]. Such techniques are extensively being used for
computer vision tasks and image processing by the researchers [14-21].
Moreover, GPUs have played a vital role in this context. Thus, the
developers worldwide have picked GPUs as the load balancing device
for programing their applications [22]. The current generation of
GPUs has many core processors and can accomplish the sequential
task in a minimal execution time at the get go itself. However, the
parallel implementation of the bulky programs over the GPUs requires
redesigning the algorithm; such that the threading and pipelining of
the code can be accomplished for parallel data computations [23-27].
Therefore, in this study, we proposed an algorithm to accomplish the
same effectively for multiple object tracking.

THE MODEL

A parallel execution of a computational program is divided into two
phases such as parallelism phase, computation phase, and interaction
phase between CPU and GPU operations. The operations for object

recognition and tracking algorithm are achieved through cited
literature [28-30]. Thus, the total execution time (ET) for the execution of
a program parallely over CPU-GPU can be represented mathematically
in form of the following equation as:

ET=EP+ECo+EC

E = c + j log n t + n. .t + t (n)T f c c2() θ

Where, EP is the execution time for the division of task in paralleling
sequence, ECo is the execution time for the communication between CPU-
GPU, EC is the computational time over the processors. Furthermore, c
is the number of cycles, n is the number of processors, tf is the average
time to execute a flop by the processor, tc is the time for the load
balancing of the CPU-GPU communication for the division and fetching
of jobs, θ represents communication to communication ratio (from CPU
to GPU), and tc is the time taken for the computational operation over a
GPU processor [31,32].

Now, that we need to reduce the time taken for the parallelism of the jobs
and communication overheads for the CPU-GPU processing. Therefore,
the objectives are respectively divided into two parts such as:

Fig. 1: Workflow operation of the proposed graphics processing
unit schemes

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19651

Full Proceeding Paper

252

Special Issue (April)
	 Rai and Kannan	

1.	 Synchronously parallel bulk sequencing of computational jobs.
2.	 Grid-wise reduction of computation to communication ratio (Fig. 1).

Since parallelization of the jobs is differed by the architecture of the
system, thus a lot of libraries had been already built upon it. However,
to reduce the complexity of GPU based parallelizing process, we
outlined our work upon the novel fussing of page ranking method for
the effective memory utilization to parallelize the number of processing
jobs. This algorithm replaces the recursive rounds of input/output with
one step. This is summed in the following algorithm.

Algorithm: Synchronously parallel bulk sequencing algorithm

Input: N number of algorithm or parts of algorithm to be executed
(vertex and edge), n number of processors, l = cost of synchronization,
g = bandwidth.

Output: Scc super step which consists of communication step between
CPU-GPU, computation steps of parallelizing and the synchronization
step.

Step 1: Evaluate and initialize a partition matrix:

i

cc

V,E

i=0

c

j=1

c'

i=0

c

j=1

c'

 if g

w

l

 if g

w

l

=
∑

∑
∑
∑
∑

=

≥

>











1

1

0

ρ









Where, V and E are the vertex and edge of the graph of the memory page,
w is the local computation in process. In addition, the c is the number
of iteration in computation and c’ in the number of communication
overheads.

Step 2: Compute the page rank of the vertex:

ϕ ρ ϕV

i=1

cc

V,E E
n E

V
l g=

−
+ +∑ *

Step 3: Calculate the super step by:

Scc

i=1

cc

V,E V=∑ρ ϕ*

Step 4: End process.

This reduces the variant of the memory page and maps the parallelization
of computational jobs in one go. In addition, it emulates the optimized
mapping of programing model over GPU framework. The other methods
usually have one component per vertex, but the proposed algorithm
uses the single balancing equation for parallelization depending on the
allowable bandwidth in synchronous with the computational workload
that to one iteration based on the page rank equations. This reduces the
memory mapping and thus prioritizes the jobs based on page ranking.
Irrespective of the shuffling the algorithm eschews the hashing table
for effective memory utilization with respect to the amount of the jobs
required for balancing the workload (Fig. 2).

CONCLUSION

Fig. 3 shows in this study, we have successful showed the effectiveness of
the current synchronously parallel bulk sequencing algorithm to reduce

the time of operation for the input and the output cycles. This is a new
affective approach for the others jobs to collaborate and algorithms for
parallel job divisions, while the available GPU devices are ensured to
avoid keeping the devices unnecessarily idle or wait for the another
job to complete its execution as the parallelization and allocation of the
memory is dynamic in nature with the proposed algorithm which suits
it in a many-core processing environment. The result will allow other
multi-camera based computer operations to be addressed in the future.

REFERENCES

1.	 Hu W, Tan T, Wang L, Maybank S. A survey on visual surveillance
of object motion and behaviors. IEEE Trans Syst Man Cybern C
2004;34:334-52.

2.	 Velastin SA, Remagnino P. Intelligent Distributed Video Surveillance
Systems. London, UK: IET Digital Library; 2006.

3.	 Collins RT, Lipton AJ, Kanade T. Introduction to the special section on
video surveillance. IEEE Trans Pattern Anal Mach Intell 2000;22:745-6.

4.	 Howarth RJ, Buxton H. Conceptual descriptions from monitoring and
watching image sequences. Image Vis Comput 2000;18(2):105-35.

5.	 Hu W, Xie D, Tan T. A hierarchical self-organizing approach for
learning the patterns of motion trajectories. IEEE Trans Neural Netw
2004;15(1):135-44.

6.	 Tian Y, Tan TN, Sun HZ. A novel robust algorithm for real-time object
tracking. Acta Automat Sin 2002;28:851-3.

7.	 Wu Y, Liu Q, Huang TS. An Adaptive Self-Organizing Color
Segmentation Algorithm with Application to Robust Real-Time
Human Hand Localization. In: Proceedings of 4th Asian Conference on
Computer Vision, Taipei, Taiwan, 8-11, January; 2000. p. 1106-11.

8.	 Howarth RJ, Buxton H. Analogical representation of space and time.
Image Vis Comput 1992;10(7):467-78.

9.	 Brand M, Kettnaker V. Discovery and segmentation of activities in
video. IEEE Trans Pattern Anal Mach Intell 2000;22(8):844-51.

10.	 Garcia-Rodriguez J, Garcia-Chamizo JM. Surveillance and human-
computer interaction applications of self-growing models. Appl Soft

Fig. 2: The adjustments rate per second as per the proposed super
step by central processing unit and different graphics processing

unit devices at different operational level of the memory usage

Fig. 3: The illustration of the test frames for multiple-object
detection using the proposed load balancing scheme with under

530 iterations of the input training patterns under a feasible time
period with 0.21 delay with that of the real-time video

253

Special Issue (April)
	 Rai and Kannan	

Comput 2011;11(7):4413-43.
11.	 Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum A.

Efficient Simulation of Large-Scale Spiking Neural Networks Using
CUDA Graphics Processors. In: Proceedings of the 2009 International
Joint Conference on Neural Networks, Atlanta, GA, USA, 14-9 June,
2009; p. 3201-8.

12.	 Nasse F, Thurau C, Fink GA. Face Detection Using GPU-Based
Convolutional Neural Networks. In: Proceedings of the 13th International
Conference on Computer Analysis of Images and Patterns. Berlin,
Heidelberg, Germany: Springer-Verlag; 2009. p. 83-90.

13.	 Uetz R, Behnke S. Large-Scale Object Recognition with CUDA-
Accelerated Hierarchical Neural Networks. In: Proceedings of 2009
IEEE International Conference on Intelligent Computing and Intelligent
Systems. Vol. 1. Shanghai, China, 20-2 November, 2009; p. 536-41.

14.	 Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron K.
A performance study of general-purpose applications on
graphics processors using CUDA. J Parallel Distrib Comput
2008;68(10):1370-80.

15.	 Jang H, Park A, Jung K. Neural Network Implementation Using CUDA
and OpenMP. In: Proceedings of the 2008 Digital Image Computing:
Techniques and Applications, Canberra, ACT, Australia, 1-3 December;
2008. p. 155-61.

16.	 Kim J, Hwangbo M, Kanade T. Realtime Affine-Photometric KLT
Feature Tracker on GPU in CUDA Framework. In: Proceedings of
IEEE 12th International Conference on Computer Vision Workshops
(ICCV Workshops), Kyoto, Japan, 27 September, 4 October; 2009.
p. 886-93.

17.	 Oh S, Jung K. View-point insensitive human pose recognition using
neural network and CUDA. World Acad Sci Eng Technol 2009;60:723-6.

18.	 Schwarz M, Stamminger M. Fast GPU-based adaptive tessellation with
CUDA. Comput Graph Forum 2009;28(2):365-74.

19.	 Simek V, Asn RR. GPU Acceleration of 2D-DWT Image Compression
in MATLAB with CUDA. In: Proceedings of the 2008 2nd UKSIM
European Symposium on Computer Modeling and Simulation,
Liverpool, UK, 8-10 September; 2008. p. 274-7.

20.	 Stone SS, Haldar JP, Tsao SC, Hwu WM, Sutton BP, Liang ZP.

Accelerating advanced MRI reconstructions on GPUs. J Parallel Distrib
Comput 2008;68(10):1307-18.

21.	 Hwu WW. GPU Computing Gems Emerald Edition. 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 2011.

22.	 Garcia-Rodriguez J, Angelopoulou A, García-Chamizo JM, Psarrou A,
Orts-Escolano S, Morell-Gimenez V. Fast Autonomous Growing
Neural Gas. In: Proceedings of the 2011 International Joint Conference
on Neural Networks (IJCNN), San Jose, CA, USA, 31 July, 5 August;
2011. p. 725-32.

23.	 Nickolls J, Dally WJ. The GPU computing era. IEEE Micro
2010;30:56-69.

24.	 Satish N, Harris M, Garland M. Designing Efficient Sorting Algorithms
for Manycore GPUs. In: Proceedings of IEEE International Symposium
on Parallel and Distributed Processing, Rome, Italy, 23-29 May; 2009.
p. 1-10.

25.	 CUDA Programming Guide. Version 5.0, 2013. Available from:
http://www.docs.nvidia.com/cuda/cuda-c-programming-guide. [Last
accessed on 2013 Jun 12].

26.	 Kirk DB, Hwu WW. Programming Massively Parallel Processors:
A Hands-on Approach. 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.; 2010.

27.	 Rai A. Attribute based level adaptive thresholding algorithm for object
extraction. J Adv Robot 2015;1(2):64-8.

28.	 Rai A. Attribute based level adaptive thresholding algorithm
(ABLATA) for image compression and transmission. J Math Comput
Sci 2014;12:211-8.

29.	 Rai A. An introduction of smart self-learning shell programming
interface. J Adv Shell Program 2015;1(2):3-6.

30.	 Rai A. Dynamic data flow based spatial sorting method for GPUs:
Software based autonomous parallelization. Recent Trends Parallel
Comput 2014;1(1):15-8.

31.	 Rai A. Dynamic pagination for efficient memory management over
distributed computational architecture for swarm robotics. J Adv Shell
Program 2014;1(2):1-4.

32.	 Rai A. Parallelizing mutations for genetic algorithm. Recent Trends
Parallel Comput 2015;1(3):7-9.

