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ABSTRACT

Over the years, banking sector has suffered severe loss due to several fraudulent schemes and techniques. Development of a rapid behavioral modeling 
method in banking sectors is need of the hour. In this study, we present the solution for such fraudulent by availing real-time anomalistic behavioral 
modeling in banking scenario using the associative rule learning. The presented technique is tested for its validity on the publicly available data sets 
for performance review.
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INTRODUCTION

The increasing familiarity of e-commerce with the vendors and 
consumers is seeing rise in popularity. For quite some time, there is 
a noticeable rise in the banking ethics and cyber fraudulent [1-3]. 
The illegal or unauthorized access to the credit card or its details is a 
criminal offense, and there is nonexistence of an effective way to inhibit 
such thieveries until the past decade [4-7]. The security and surety 
for the making of secured transaction has been an extensive research 
topic for the growth of business, financial institution, and electronic 
commerce [7-9]. In the few other studies, the credit card fraud is 
divided into certain types such as [10]:
1. Bankruptcy fraud
2. Theft fraud/counterfeit fraud
3. Application fraud
4. Behavioral fraud.

Out of this four types of fraud, the second one which implies toward the 
illegal accusation of the credit card and making personal transaction is 
what has been in rise and there were few studies made on it to define 
an approach to inhibit such types of electronic frauds [11-13]. As per 
the study conducted by Euromonitor International in 2006; let alone 
Germany in 2004 had faced over 345 billion pounds of credit card 
fraud [14]. In this study, we discussed such techniques which have been 
proven successful against the cyber frauds over European markets. This 
techniques aid in detecting such frauds by learning the pattern of the 
previous transaction of the card holder and each time verifying it with the 
previously trained pattern to allow the next transactions to take place.

Several techniques had been proposed to overcome the issue. Among 
those attempted, Ghoosh and Reily used neural networks for labeled 
credit card account transactions for its training [15]. Other significant 
works include that of Syeda et al., who used parallel granular networks 
to facilitate the speedup of execution in knowledge discovery with 
comparatively larger attributes from the databases [16]. Stolfo et al. 
introduced a metal earning technique for learning-based fraud 
detection system [17]. In the latter studies, they used Java agents for 
the data mining applications [18]. In the study conducted by Aleskerov 
et al., they introduced CARDWATCH which used neural networks 
with several interfaces to the credit card database [19]. The following 
study proposed an innovative fraud detection database with real-time 
applications using the cascaded neural network (CNN) in a modified 

morphology of water filling algorithm to adjust with the several 
attributes made in credit card transaction.

METHODOLOGY: FRAUD DETECTION USING ASSOCIATIVE 
LEARNING

Experimental set-up
The proposed model is prototyped over MATLAB R2012a under 
Windows platform. The experiments are conducted over the machine 
with hardware configurations of Intel’s seventh generation 8-core 
microprocessor, 8GB RAM giving a fine clocking speed of 2.7 GHz. As the 
emphasis of our work is over the recognition of fraudulent transaction 
states and its correlation for over a larger group of attributes. The 
consolidated databases available online are used as test data sets for the 
algorithm [20,21]. The two databases used are, namely German Credit 
Fraud Data set and Australian Credit Approval Data Set comprising 567 
and 690 instances, respectively (Table 1).

The model
However, we are still far from being remodel the sampling time for a 
database transaction in real time without any sever delay which gives 
anomalistic situation where dependency of the several parameters 
cannot be modeled for the expert system to form an adaptive network 
to perform intelligent operations. Thus, the two essential properties of 
an expert system or artificial intelligence lie within two components, 
i.e., feedback and swarm behavior for ranging associative parametric 
evaluation at every instant in the due process [22-24]. This is where 
our proposed algorithm comes into play which remodel the CNN for 
increasing its effectiveness against multivariable dependencies of 
time-dependent sampling transactions with several attributes to data 
mine in a logical sequencing the architecture of the proposed data 
mining algorithm is presented in the Fig. 1. Furthermore, the modeled 
algorithm using a hybrid of CNN is formalized below:

Algorithm: Unsupewrvised Cascaded Profile Classifier (UCPC)

Input: List of t transactions made & CC(i,j), i.e., template classes of the 
trained vectors for the t-1 transactions.

Output: CC′(i,j), final state of the transactions (1 or 0 for validation).

for bjq //for each transaction instances
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//Run the conventional water filling algorithm for set CC(i,j), get water 
level W

W=P(CC(i,j)=Pt+1|Pt+n=Si),1≤i<N, N≤j≤1

Where P is the probability of states and S the number of states 
S={S1,S2,…Sn} & N is the number of water channels.

for t = 1 to X:

 Hn=tanh(wHX XN+wHH HN-1+BN)
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Update CC’(i,j)(attribute classes) with the channel N & ∆wXX as weighted 
subchannels to buffer the state sequences:
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Where, m, n belongs to runtime transactions made in real time.

end loop

end while loop
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else

Print “Transaction Invalid”

end//if

end loop

Given a sequence of input vectors (X1, X2, X3,…, Xn) from CC(i,j), a 
sequence of hidden states (H1, H2, H3,…, Hn) and a sequence of outputs 
(O1, O2, O3,…, On) are generated in due process. Notions in these 
equations are, namely, wHX is the input-to-hidden weight matrix, wHH is 
the hidden-to-hidden (or recurrent) weight matrix, wOH is the hidden-
to-output weight matrix, and the vectors BN and BO are the biases. The 
expression replaces the inputs received from feedback loops with a 
special initial bias vector checked for nonlinearity while ensuring that 
the training is done coordinate-wise. Ƞ is the learning rate, t’ is the time 

of the next frame, ki is the local induced field of activation potential for 
the ith neuron, kj is the coactivation neuron field for the next sequence 
of activation units, and δH and δO are the pointer variable for the field 
and subfield trace of an emotion, respectively. Where the integrated co-
emotional involvement with the principal and subsequent emotional 
states derived from RCCC.

As shown in the snippets of transaction (from German credit card 
database) at Table 2 of the sample attributes of the transaction, six 
classes have been defined as the principal attributes of the parameter 
which are encoded through the cascaded logical network into a 
sequence. Here, place of transaction made for represents the locality 
of the company/mall/hotel, etc., for whom the transactions are made 
to pay; this in turn may be the subset of the region of transaction. The 
plot representation of this data is shown in Fig. 2a which shows the 
total cascaded length of the sequence in bits required to be made for the 
German credit card database. This shows the length of rise in cascaded 
sequence is ideally increases in linear fashion. Fig. 2b shows the plot 
for testing time versus sequence generated for the CNN. Here, the time 
required to train the network is comparatively low than the previous 
methods cited in the literature, thereby giving high computational 
processing for large credit card transactions database with a promise 
for real-time application. Fig. 2c shows the transaction profiles of the 
four transactions ids portrayed in Table 2. The nodes in the transaction 
profiles show problematic transactions having high chances of being 
malicious. Furthermore, the curve shown in the plot of transactions 
Profile 3 and 4 are instantly made at the same time with the same 
machines and for the same reasons, thereby giving an overlap but since 
the distribution of the transactions are concorded thereby did not show 
much variance in water filling channels and hence are considered to 
legitimate whereas upon comparison with that of transaction Profile 2 
and 1, the trough observed in the curve shown in Fig. 2c represents high 
chances of transactions being malicious but with the similar pattern 
and thus corresponding to the activities perused by the same criminal 
in the same regional locality.

Table 1: Enlisted database used in the experiment

Database Number of 
instances

Area Number of 
attributes

German credit fraud data 
set

567 Financial 16

Australian credit approval 
data set

690 Financial 14

Fig. 1: Flowchart of the proposed algorithm describing the 
workflow process
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CONCLUSION

In this study, we have presented a novel data mining algorithm 
for detection of credit card fraud. The learning model proposes 
an associative cascaded learning network with several attributes 
taken in association through a water filling algorithm. The different 
process in the processing of huge volumes of credit transaction 
has been listed. We have tested our detection framework with the 
German credit card database and also with the Australian credit card 
database. The performance analysis of the study gives an effective 
way of using such hefty process in relatively lower computational 
time bounds. The proposed UCPC algorithm greatly automates the 
data mining process with no human intervention at both the training 
and testing phases. There is still a huge room for improvement with 
this framework to increase the accuracy to the best it can possibly 
offer.
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