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ABSTRACT

Objective: In the past decade, development of machine learning algorithm for network settings has witnessed little advancements due to the slow 
development of technologies for improving bandwidth and latency. 

Methods: In this study, we present a novel online learning algorithm for network-based computational operations in image processing setting. We 
take a different route and focused on creating an unsteady checkpoint based system which reacts to the sequences in a constructive and destructive 
manner. While the past studies are focused on discarding instances to keep the bounded state of the support set

Results and Discussion: The main advantage posed by the above algorithm is the setup it put forth for scheduling training and processing based on 
memory bound to the support set on timely basis and thus forming a decomposable or expanding sequence when the other instance pairs are added 
in relational to the previous trained hypothesis, such that the trained hypothesis is always bounded and deducible from the other previous pairs of 
instances. The training is achievable in small number roof instances with high accuracy.

Keywords: On-line learning, Image processing over network, Hypothesis deduction.

INTRODUCTION

The learning algorithms based on kernels such as support vector machines, 
Gaussian process, regularization networks are proven its usefulness in 
many batch settings processing environment [1]. However, for developing 
an online learning algorithm one can implement it by using the sliding 
buffer in combination with batch algorithms [2]; but the extension of 
kernel learning methods to online learning method has its own unsolved 
challenges which inhibit its real-time applicability in the scenario of data 
services. The challenges for online learning algorithms are as follows:
1.	 When applied to Hilbert space method due to the high dimensionality 

of the weight vectors the standardized online settings for those 
corresponding to linear methods are often prone to overfitting. This 
can manage by the effective utilization of prior probabilities in the 
function space by regularizing it.

2.	 Second, as the number of observations increases it becomes more 
complex to functionally represent the classical kernel estimators; 
according to the represented theorem, there will be linearly 
increase in a number of kernel functions with the total number of 
observations [3]. As it is prone to happen more often while depending 
on loss function used [4]. Therefore, there is an increase in the 
complexity of the overtime with higher storage requirements [5,6].

3.	 Third, the training time required for a batch or for an incremental 
update algorithm will always increases super-linearly with 
observations. Although incremental update algorithms tried to 
overcome the problem, still cannot prove its ground over bounds 
of operations required per iterations [7]. Whereas, projection 
algorithms tries to limit the number of updates per iteration and 
thereby ensuring the complexity to remain constant. Consequently, 
they are computationally expensive and required multiplication 
operations at each of its steps [8-10].

In the following sections, we present the new approach to tackle such 
problem and have implemented the system over an online image 
restoration process as a testing scenario to gauge the affectivity of the 
algorithm. Section 2 includes the model and the algorithm, whereas the 
section 3 includes the results and conclusions of the study.

METHODOLOGY: SEQUENTIAL INCREMENTAL ONLINE LEARNING 
ALGORITHM (SIOLA) WITH RISK ESTIMATOR

The experimental setup for the application and testing of the proposed 
algorithm is shown in Fig. 1. After that, the algorithm is executed to run 
over the network to learn the data slip and latter recover the missed 
data through the proposed SIOLA online learning algorithm. Unlike 
other algorithm, we take a different route and focused on creating an 
unsteady checkpoint based system which reacts to the sequences in a 
constructive and destructive manner. While the past studies are focused 
on discarding instances to keep the bounded state of the support set, 
instead we employ a sequence based fusion techniques that reacts 
to the pattern in a way which can let it build itself the past instances 
by keeping the biasing and computing through the sequences to 
dynamically create a support set and thereafter adjoining the essential 
part of it which latter shall help develop the same checkpoints by 
the application of the similar sequence [11-13]. The variation in the 
hypothesis is encoded and decode through a sequence which is based 
on the trading equilibrium of sparseness. The algorithm described 
below as follows:

Algorithm: SIOLA

Input: si, sj are the time instances of the support pairs, St is the support 
set, Ht is the online hypothesis at time t and pt is the pair equilibrium 
sequence.

Output: Ho is the online hypothesis and updated p't .

Step 1: For t = 1, 2, 3 ….

Step 2: Receive new instance St.

Step 3: Attach time instances of the pairs.
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s *s *q
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S p (t t ) //Binding process.t
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Step 4: Evaluate the risk of pairing and remaining time instance of 
memory bound.

While ki ≠ kn
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Step 5: Update the hypothesis with chain sequence by checking for risks 
involved.

if R[ki]≤R[St]

{
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}

else

{

Print “failed to update.”

ki = Null//Assign

ki = ki+1

}

Step 6: Add instances to the support set.

if ptti≤ki

{

( )
k

t i t+1 i+1
t

k=l

(p t +p t )
exp p  . t

k!

∞

− ∆∑

}

else

{

St = St−1

}

}//end while.

Step 7: End process.

Fig. 1: Experimental setup of the image transmitted through four 
sequentially arranged data processors using anisotropic image 
transformation algorithm [9]. The respective restored output 

images during each phases of the online hypothesis so generated 
are shown above

Fig. 2: Flow chart of the proposed sequential incremental online 
learning algorithm algorithm

Fig. 3: (a) The mean slip rate v/s time in seconds for the first 
phase in flow of data transmission, (b) Mean slip rate v/s time in 

seconds for the end phase in flow data transmission achieving 
saturation at converge level, (c) plot of the time v/s flow and 

the transmitted data (x); giving rise to curvelet transformation 
for the half pattern length of sequences used in the proposed 

algorithm
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The main advantage posed by the above algorithm is the setup it put 
forth for scheduling training and processing based on memory bound 
to the support set on timely basis and thus forming a decomposable 
or expanding sequence when the other instance pairs are added in 
relational to the previous trained hypothesis, such that the trained 
hypothesis is always bounded and deducible from the other previous 
pairs of instances. The training is achievable in small number roof 
instances with high accuracy. The workflow chart of the proposed 
algorithm is given in Fig. 2. Here, the Fig. 3a represents the onset of 
the data slip rate due to the bounded memory units to update the 
online hypothesis. However, the by the end of the recovered image the 
data slip rate haven’t shown any fluctuation in loss of data, thereby 
converging the results at the saturation level with respect to the time 
(Fig. 3b). The advantage that our online learning algorithm put forth 
is its adaptability in re-organizing the online hypothesis so generated 
during the process run. This lead to a curvelet transformation for the 
process to end at the point where the front data and the half pattern 
length saturates (Fig. 3c). The process is cyclic in nature and does not 
require unnecessary updation in due process.

CONCLUSIONS

The average online error of the proposed SIOLA algorithm is a 
function directly dependent on the size of support sets for different 
data sets. This algorithm solves the challenges with online learning by 
computationally proving convergence rates and error bounds in the 
size of the support sets with descent in the number of the mistakes 
made which gradually saturates at nominal level (Fig. 4). We summarize 
the contributions of this study as a new algorithm for online learning 
algorithm with a dynamically bounded support set and an extension of 
the exemplified previous online learning technique (Fig. 4). Here, the 
size of the solution is guaranteed to be bounded by the SIOLA to solve 
the memory explosion problem. In addition, the size of the support set 

is adaptable with the memory bound units thus the size of the support 
sets is comparatively smaller than the budgets based learning methods. 
This allows the applications of to rely over online based processing 
methods such as image processing, novelty detection for online and 
time-varying problems. Our works solve the online to batch conversion 
to a bounded batch solution, which is scalable in the quadratic size of 
the support sets. The result put forth in the study provides the essential 
theoretical insights in the scenario of drifting targets and dynamic 
hypothesis.
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Fig. 4: (a) Data slip rate for the network flow during the data 
transmission, (b) 3D plot of the data slip rate in combination with 

the time flow and the transmitted data (x)
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