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ABSTRACT

Objective: The development of any region or territory stems from its own dynamic nature. Distribution and consumption of energy resources 
are varied territorially which in turn is ruled by the number of anthropogenic activities in association with geospatial localization. Such territorial 
dynamics necessitate considerable modifications of the energy infrastructure. Thus, the development of a computational multi-scale unified energy 
consumption model with the usage of geographic information helps in automating data analysis processes for sustainable urban planning, allocation 
of energy-saving infrastructures, and strategic deployment of the renewable energy resources to finely regulate the utilization of energy resources for 
sustainable energy consumption. 

Method: The integration of city-wide energy system models and geographic information systems (GIS) is still in its infancy. The research work is 
divided into five interrelated work packages. The Modelling problem is achieved with the help of analytical hierarchical process. Thus, we propose 
a computational infrastructure for modelling city-wide geospatial energy consumption and automating the data analysis process to provide the 
sustainable environmental policy, which requires artificial intelligence-based geospatial aware comprehensive planning, regarding the modification 
of the energy supply, consumption, activities, and infrastructures in cities. 

Results and Discussion: Thus, end result of the presented research work is fine-grained energy demand estimation from data sources, decentralized 
storage facility, and automated sustainable planning; investigation of GIS-based anthropogenic activities or mobility pattern influencing the wastage 
of energy resources, the transition from purely structural to operational planning, and, finally, the development of a new dynamic-based power market 
design.

Keywords: Computational modeling, Machine learning-based data analysis, Geographic information systems.

INTRODUCTION

We are currently witnessing three essential trends with regard to energy 
infrastructure planning, increasing renewable energy generation and 
storage. [1-5] From planned production toward fluctuating production 
on the basis of renewable energy sources, from centralized generation 
toward decentralized generation, and from expensive energy carriers 
toward cost-free renewable energy carriers [6-12]. Technological 
solutions such as microgrids, smart cities, and smart buildings will only 
be successful when the urban planner knows where to concentrate 
energy resources and consequently estimate the potential for demand 
management, optimize the energy demands, install or share the energy 
resources [12-18]. Otherwise, the huge array of sensor networks 
deployed for smart energy management system for the reduction in 
energy consumption will ultimately be consuming more energy than 
what it is meant to do so [19-21]. Thus, the modifications of the energy 
infrastructure, necessitated by this increasing renewable energy use, 
require an extension of geospatial-based multi-scale modelling of 
anthropogenic energy consumption. Computational data analysis of 
such a model provides valuable input for sustainable policy generation 
to share/install energy infrastructure, precise settlement of energy 
storage infrastructures with respect to territorial dynamic [22]. 

Urban and territorial planning can be defined as a decision-making 
process aimed at realizing economic, social, cultural, and environmental 
goals through the development of spatial visions, strategies, and plans 
and the application of a set of policy principles, tools, institutional 
and participatory mechanisms, and regulatory procedures. Spatial 
planning covers a large spectrum of scales ranging from neighborhood, 
city/municipality, city/region/metropolis to national and supra-
national/transboundary and relies heavily on geographical information 

systems (GIS) to model the built environment [26-23]. It aims at 
facilitating and articulating decisions and actions that will transform 
the physical and social space and affect the distribution and flows of 
people, goods, and activities. Urban design is the multi-disciplinary 
process of shaping the physical setting for life in cities, towns, and 
villages; it involves the design of spaces, landscapes, building and group 
of buildings and the establishment of frameworks and processes that 
facilitate successful development. Thus, from the view of our research 
proposal, integrating GIS and energy system modelling enables the 
generation of a more complete picture of the overall energy system 
and future energy landscapes [24]. We claim that it is not enough to 
consider space and time as additional parameters, but in fact, space and 
time need to be fully integrated into energy system modeling processes 
to better understand the spatiotemporal dynamics of, for instance, 
energy demand, availability and the effectiveness of conventional 
and renewable resources, capacity and load patterns of energy 
infrastructures, including decentralized energy storages, and, finally, 
the return of investments and economic profitability. 

Enhancing energy models with GIS data will significantly increase 
the granularity and complexity of these models. To deal with this, we 
propose innovative data reduction methods to extract a model of the 
(future) energy system that captures the interactions and relations that 
determine energy system efficiency, security, and sustainability.

Related work
In visions of a future smart energy and mobility system, smart grids match 
the supply from renewable energy sources with the demand from clean 
modes of transport such as electric vehicles. Consumers will play a large 
role in the transition to smart grids as their role changes from passive 
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energy users to so-called prosumers and traders of flexibility in active 
demand-side management systems. The adoption and use of renewable 
energy technologies by these consumers determine the characteristics 
of these future smart energy systems. More specifically, the optimal 
configuration of a future smart energy system will greatly depend on the 
geospatial characteristics that influence both supply and demand.

The important role of geospatial characteristics in transition to a 
more sustainable energy system is widely recognized [1,2,7]. Various 
studies use GIS to support the planning process of renewable energy 
infrastructures. Specific applications include the classification of suitable 
spots for wind and solar farms, storage of hydroelectricity  [1-3], and 
mapping of renewable energy resources, including solar photovoltaic 
(PV), wind, geothermal, biomass, and hydroelectricity [4-10]. These 
studies rely on geospatial data on land use, altitude, building structures, 
and infrastructure. Although the importance of demand-side factors in 
the transition to future smart and sustainable energy system is widely 
recognized, the vast majority of these studies address the potential 
energy supply without considering the demand side.

Including the demand side in models of the future smart energy system 
presents us with several challenges:
•	 The number and heterogeneity of demand-side factors provide a 

data challenge
•	 The number and heterogeneity of demand-side factors provide a 

modeling challenge.

In this research work, we address these two challenges by building 
innovative, data-driven computational models of the future energy system in 
two countries, India and The Netherlands. These cases are complementary 
as the Netherlands is characterized by high data availability, a stable, high 
level of electrification, whereas the Indian system offers abundance of data, 
but the supply of energy to massive population is a daunting task due to 
unavailability of energy distribution infrastructure. This is where the 
presented research work comes into play. The computational modeling will 
help the current Indian energy distribution, storage, and generation system 
more adaptive with the consumer’s activities and enable an economic 
policy generation to establish energy reach in every home. A similar work 
computational framework based on ontology is achieved by Ramanathan 
et al. in 2004 and other works include the discovering patterns for human 
interaction system (2015).

Recognizing persistent patterns in energy consumption will improve 
energy planning and correct dimensioning of the energy infrastructure. 
In urban areas, patterns exist in the energy consumption in various types 
of buildings. In this research work, we will identify energy consumption 
patterns in the cities using fine-grained big data. Estimation of building 
energy consumption has been a field of study for a long time (Zhao 
and Magoules 2012). Most studies distinguish between residential 
and commercial buildings. For residential buildings, it has been shown 
that inhabitant’s behavior is most important for estimating energy 
consumption (Pettersen, 1994). For commercial buildings, behavior is 
generally more predictable.

In this research, we will develop a prediction model based on the 
following data: (1) Physical characteristics of buildings such as 
dimension in square meters and European Energy Label, (2) occupant 
information such as behavioral patterns learned from data and working 
schedules in commercial buildings, (3) geographical information such 
as building’s address, postcode, and geographic orientation, (4) weather 
meters including temperature, humidity, wind, and duration of 
sunshine, and (5) gas and electricity consumption. The data from the 
model are used to both inform spatial planning and design data-driven 
business models for smart energy systems. Profitable business models 
for value creation and value capture in smart energy systems are pivotal 
to realize the transition to smart and sustainable electricity grids. In 
addition to knowledge regarding the technical characteristics of smart 
grids, we need to know what drives companies and consumers to sell 
and purchase services in a smart grid. In a recent review of business 

models for smart grid services in 434 European and US smart grid 
pilot research works, Niesten and Alkemade (2016) found that pilots 
most often discuss three types of smart grid services: Vehicle-to-grid 
and grid-to-vehicle services, demand response services, and services 
to integrate renewable energy. Knowledge regarding demand response 
services is restricted to different types of value creation and capture. 
The review indicated that business models can be profitable when a 
new actor in the electricity industry, that is, the aggregator, can collect 
sufficiently large amounts of load.

Such an analysis requires more data and more advanced analysis 
methods in association with dynamic geographical variables, for 
example, climate conditions. Hence, further research in this direction 
will serve as the premise for a more extensive framework that fuses GIS, 
mathematical optimization, and simulation so as to locate the optimal 
area optimal size for the suitability of location for installation of PV 
solar plants aimed at grounds environments. This will help in decision-
making process for locating specific geographical sites that will soothe 
the requirements of installation of renewable energy reservoirs where 
the climate conditions are more susceptible to match the requirements 
or contribute continuous drive power for the generation of energy, 
for example, selection of geographical location for the installation of 
windmill based on climate conditions where their incessant wind flow 
is ensured. Likewise, this approach will coordinate toward the specific 
localization of extra spatially differing renewable sources of energy, for 
example, solar, wind, hydro, bio, or geothermal energy.

Establishment of sustainable energy network and planning is impacted 
by different dynamic variables. In locales where the potential for 
expanding territorial energy supplying networks wanders in various 
regions, the monetary expenses of energy creation, transmission, 
and circulation are hard to estimate. Subsequently, considering the 
geographic segment, utilizing geospatial methods and GIS is a basic 
part in finding the limits to which such an extension is economically 
attainable [11]. In spite of the fact that, the most effective utilization of 
energy storage innovation, for this situation, energy storages, likewise, 
relies on upon spatial parameters, for example, the separation to the 
following piece or to individual houses. The optimal utilization of energy 
storages in energy generation, transmission, and dissemination might 
altogether impact the general expenses of supply ranges. Subsequently, 
energy supply decisions ought to be founded on the spatial arrangement 
of the energy demands and the qualities of the nearby energy supply 
unit area, which verifiably supports the necessary need of GIS. In 
addition, the thought of geospatial perspectives in local energy system 
optimization is especially significant for accurately deciding the supply 
region if the emphasis is on grid-associated technological advances [12]. 
It is inferred from such studies that, among geospatial parameters, the 
topological parameters, for example, availability or nearness of a grid-
associated energy infrastructure, constitute crucial data for both viable 
planning and agent errands.

Aydin et al. present a methodology in view of GIS, fuzzy set theory, and 
multi-criteria decision-making for finding the optimal arrangement 
of a half-breed wind-solar-PV renewable energy system, which can 
possibly diminish the requirement for energy storage [1]. Their 
primary contention is that, contingent upon climate and atmosphere 
conditions, one renewable energy source is supplementing the other. 
As it was, shortcomings and qualities of the individual systems adjust 
for each other. Notwithstanding, this methodology might just be 
material if enough space for power plants is accessible, which is not 
really the case, for occasion, in thickly developed urban environments. 
An extra restricting variable is that building proprietors can choose 
exclusively if and how to utilize renewable energy. In this manner, 
the individual utilization of renewable energy sources is as a rule 
foreordained in that conceivable areas for setting up renewable 
energy power plants are uncommon in thick urban ranges. Similarly, 
Omitaomu et al. portray an adjusted GIS-based multi-criteria decision 
analysis way to deal with decide the suitability for new power 
creating destinations [13]. The methodology considers ecological, 
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geographical, and financial perspectives, among others. Despite the 
fact that this GIS-based methodology is intended to work everywhere 
scales, it is spatially express in that it isolates the whole zone of 
the USA into a huge number of 100  m × 100  m cells and registers 
the suitability of every cell for new power generation locales. Huge 
downsides of methodologies such as mentioned in [1,13] incorporates 
the absence of capacity to consider more dynamic spatiotemporal 
perspectives crosswise over various spatial and temporal scales, or the 
lacking integrability of topological parts of the basic energy network 
as respects the adjusting of uncommon features in energy load shifts 
crosswise over spatially distributed energy storage cells.

The authors of Strachan et al. [14] present an illustration of such 
a methodology, to the point that is secured inside of economically 
inclusive energy systems model of the U.K. For the German hydrogen 
economy, Ball et al. present an optimization approach for getting to the 
geographic and temporal parts of a hydrogen transport infrastructure 
design [15]. The results of both studies uncover that the utilization 
of GIS is pivotal while investigating the effect of the geospatial 
measurement of hydrogen networks and the expanding changes in 
energy generation blend on future energy system infrastructures 
and supply chains. The presented venture gives a flexible modeling 
stage that will empower organizers, earthy people, and governments 
to ascertain, gauge, and screen the ecological effect of changes in the 
energy blend on nearby, territorial, and global scales. The venture is a 
careful way to deal with incorporating GIS and energy system models, 
with clear and exploitable results. Coupling GIS with energy system 
modeling is likewise included in the field of hydrogen supply, demands, 
and infrastructures.

METHODS

The research work is divided into five interrelated work packages. The 
Modeling problems that we address in our computational research 
work are summarized as follows:
Problem set I: Geospatial awareness for energy consumption in 

integration of anthropogenic energy consumption actions.
Problem set II: Integration of networked energy transmission topologies 

into GIS for geo-location-based energy demand estimation.
Problem set III: Policy generation for planning and estimation of 

decentralized renewable energy installation/sharing/storage 
facilities for sustainable energy consumption.

Problem set IV: Dynamic modeling for power market design.

One of the key issues that we strive to overcome in this research 
work is to reduce the complexity of GIS and energy system models. 
We propose to do so using techniques from machine learning. By 
learning models for patterns in the interactions between the many 
parameters of these two models, we can discover which combinations 
of parameter values can and cannot occur in practice. By limiting the 
parameters to take on values that are consistent with a predictive 
model’s expectations, we greatly reduce the number of possible 
assignments to these parameters. In recent work (Verwer et al., 2015), 
we have demonstrated that models learned from data can be efficiently 
combined with mathematical models in a white-box fashion, meaning 
that the entire model is translated into mathematical formulations 
that can be used inside the reasoning engine of a planning system. 
Such a generic approach is very powerful since it allows the use of 
sophisticated methods for mathematical simulation and optimization. 
In particular, we will investigate the use of modern model order 
reduction methods in combination with these learned models. Model 
order reduction (Schilders et al., 2008) is a mathematical method that 
aims to simplify or approximate mathematical formulations, reducing 
the number of parameters, to make simulation and optimization 
computationally feasible. Intuitively, the learned models impose tight 
constraints on the possible parameter values. A model order reduction 
technique can use these constraints to remove parameters that can 
be directly determined from others. Since these relations are learned 
from data, these constraints do not need to hold in general. We only 

care about whether they hold in practice.

Geo-specific modeling involves the search for the best location of 
one or more facilities to support some desired function. The current 
impediments to the application of location models, issues associated 
with the integration of location models into GIS, and future needs in 
GIS functionality to support location models are to come up a modeling 
technique with which the passing of weighted features, decision sets, 
and cascaded fitting examination of multiple coexisting conditions 
could be addressed with the same method. This is where the presented 
dynamic Boolean network (DBN) stands out as it not only supports 
examination of multiple conditions simultaneously but also addresses 
the hierarchical evolution of weighted feature vectors from one 
consequent stage to another.

Each of the above problems has hierarchical association, for which 
achieving a comprehensive solution for data-driven sustainable energy 
modeling requires an approach to pass on the filtered processed decision 
formulated from the processing of Problem set I to Problem set II and so 
forth. Problem set I involve the searching for an appropriate location for 
an activity. This problem can be called the locational search problem. It 
is common to refer to the locational search problem as a facility location 
problem. This type of problem can involve the placement of one activity or 
the placement of a set of interrelated facilities. Such problems are called 
single- and multi-facility location problems. For example, the weighted 
feature vectors and decisions sets regarding suitable sites with reduced 
anthropogenic energy consumption action are to be forwarded for 
modeling and processing the data for Problem set II. The same weighted 
feature vectors and decisions sets are usable in association with network 
energy transmission topologies to derive the results whether the location 
and transmission of energy sources are enough to supply the geo-specific 
energy needs or what is the energy demand of the location in particular 
period of time or even where energy can be conserved at specific point 
of time. Such that the weighted patterns extracted from modeling 
of previous step is forwarded for proper computational planning or 
policy generation for the facilitation of installation/shared/storage of 
renewable energy resources or its suitability with particular region at 
particular period of time. Finally, the decisions sets and feature vectors 
so extracted from modeling of Problem Set IV shall be used for including 
flexible demand, energy service providers, and renewables to model the 
dynamic nature of the evolving power market. In the end, this will help 
users in specific location to cut short the wastage of power supply. For 
example: If the climate condition with respected to specific geo-location 
suggests that humidity shall be high in evening, then the user shall be 
liable to save power in morning time by switching off air conditioners 
and utilizing it when it is certainly required. This is where smart grids, 
smart cities, smart buildings and internet of things (IoT) come into play. 
The presented research provides a computational infrastructure for such 
sensor-based infrastructures (smart grids, smart cities, smart buildings 
and IoT) by intelligently processing and understanding the territorial 
dynamics of the energy resources. Later, the decisions sets or policies 
are to be forwarded to smart infrastructures. Otherwise, simply flooding 
the energy distribution network with array of sensors will only lead to 
more extensive usage of energy supply than what it is meant to reduce.

The modeling approach can be summarized as: Suppose that we divide a 
city into approximately 60000 cells, each measuring 78 acres. In each cell, 
62 variables were measured, including land use, land cover, proximity to 
a water source, and seismicity. Each of these variables was converted to 
a subscore function and added together to form a site suitability score. 
Single-site location analysis can often be approached with some form of 
ranking or scoring process, which is based upon a set of attributes. From 
this, a map was produced which identified those cells which scored higher 
than one standard deviation above the mean. Information associated 
with various attributes is typically converted to subscores and combined 
into suitability scores for compatibility with use for the next problem set. 
Next, a network is defined where the nodes represent the centroids of 
the cells in the form of arcs pointing from state x to state y with time 
dependency as one of the dimension. The arcs depict possible directions 
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which can be taken by the problem set through a given cell. Thus, chances 
are there for considerable error, which may exist in the networking 
of features based upon the certain attribute. This can be eliminated 
with the co-simulation model of DBN. The decision sets extracted by 
solving on problem will act as an attribute for that cell, and hence, the 
costs or weights can be defined as some weighted combination of the 
suitability scores through which the network passes. A case is depicted 
where the problem set has a width of influence upon the weights and 
is associated with the footprint of the next problem set in a given cell. 
Given a topological network, complete with arcs and associated costs of 
operation, feasibility of a decision can be identified as the least cost (most 
suitable) outcome. The beauty of this DBN process is that it can be solved 
optimally for large problems where the processing time for the desirable 
outcome is few hours on modest workstations. Because this process is 
fast, it can be repeated for a wide variety of parameter, weights associated 
with different components of the suitability score, allowing us to test the 
sensitivity of the variation to various levels of importance weights. The 
more efficient solution from cosimulation supported by DBN algorithm 
can be made for a given application, the more flexibility there is in order 
to check for fitness of data and sensitivity analysis.

We now consider the new compression scheme in more detail. It is 
based on an atypical form of vector clustering, which merges groups 
of deterministic test cubes using the logical formulations of autonomic 
hierarchy process while allowing some degree of their incompatibility. 
The overview of the method is shown in Fig. 1. Here, the test data are 
compressed into scan chains based on the following logic. Let Ck be the 
test vectors where k=1,2,3,…n of size m × n and n is the block size of 
data. The data need to be pre-processed or divided into scan lines of 
test vectors as follows:
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where Ci(.) is the required size to encode the indices value at each 
section. Here, the partitioned scan lines are decomposed with the 
help of combined approach between autonomic hierarchy process to 
perform pair-wise comparison judgments. However, to achieve better 
parameterization, we have used fuzzy logic.

Here, the decomposition principle calls for structuring the hierarchy to 
capture the basic elements of the problem. This step in the context is to 
handle a variety of complex and comprehensive multi-criteria decision-
making problems which have several alternatives to implement and 
quite a lot of criteria are used to check and evaluate the implementation. 
To apply the fuzzified analytic hierarchy process (FAHP), initially, 
the comprehensive problem needs to be structured into different 
hierarchical levels with regard to the properties or attributes of the 
problem considered. Now, for each fuzzy set X, the membership function 
is given by µA which takes the value of the interval [0,1], i.e., mA: X→[0,1]. 
Thus, the fuzzified membership values can be represented as:
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Here, m1 and m2 are the two membership functions, followed by l and u 
are the respective upper and lower limits where the sub-membership 
functions are bounded within l≤m1≤m2≤µ.

Since we have already established why our own newly mathematically 
modeled coactivated Boolean networks for model formation through 
machine learning algorithm is the best solution, now we discuss the 
mechanism of DBN (Fig. 1a). Unlike current neural network, the DBN 
is modeled on much more deeper level (Fig. 1b). The biological neuron 
consists of several networks of microtubules which enable each neuron 
to response based on the data type or make it data driven (Fig.  1c). 
Thus, the current DBN which we are inclined to use will enable the 
computational framework to model the feature sets by enabling the 
check for conditional existence of other multiple-dependent conditions 

Fig. 1. Topological representation of the functional coactivation 
network. (a) Force-based layout of the minimum spanning tree is 
used to locate nodes in relation to their topological (rather than 

anatomical) proximity to each other. Different modules are coded 
by color, and rich club nodes are represented by squares, with the 
size of all nodes proportional to their weighted degree (strength). 
(b) Nodes in anatomical space, colored according to proportion of 
times they present activations and deactivations. (c) Illustration 

of deeper microtubule connection within a biological neuron 
which is computationally modeled in DBN to have better learning 

efficiency with plasticity and elasticity in DBN with better 
chances of forming correlation with the given data and respond 

intelligently in data-driven scenario, nodes arranged in the 
same layout as a, and colored as in b. In addition, note that the 
rich cluster concentrates most of the activations, whereas the 

periphery and particularly the default-mode network concentrate 
the deactivations (Fig. 1). Edges represent the top 1 percentile 

of most consistently reported activation and deactivations 
(no directions shown for clarity purposes). Edges can be seen 
spanning across different modules. Although the network cost 
is usually found to be overall low, as measured by the distance 
of connections, the network topology still managed to balance 
integration and segregation between all topological artificial 

neural regions: The clustering of the network threshold at sparse 
levels is much higher than random, while retaining a similar path 
length. In all these respects, the organization of the coactivation 

network is convergent with properties of a comparable functional 
connectivity network generated from resting-state of excitatory 

sequences. As known from prior study, and reproduced here, 
a pattern recognition state of polymorph neural networks for 

feature extraction and encoding of it for both the unstructured 
data and semantic datasets (which is an example of small world 

encoding), with fat-tailed degree distributions and parsimonious 
distance distributions

c

ba
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called coactivation [25-27]. This coactivation network is employed for 
the computation as it is topologically complex in several ways and we 
intend to use it on our research with the combination of evolving Boolean 
networks. The nodal degree distribution was fat-tailed with high-degree 
hub nodes to be located in presented polymorph neural network using 
sequence of information to excite the necessary regions and assess the 
information in an associative form. This enables the machine not only 
to learn but also embark the cross relationship between various data 
for prediction or simulation-based logical conclusion. Computationally, 
this topology was embedded parsimoniously, in terms of the connection 
distance between coactivated nodes. Most connections or edges were 
separated by short sequence of excitatory data, significantly shorter 
than random networks; with p<10−3 in the permutation test. Relatively 
few edges were long distance, and these were often interhemispheric 
research workions between bilaterally homotopic regions where 14% 
of longest connections (defined as top 10 percentile) were homotopic; 
significantly more than random.

This allows the wiring of the learned neurons to be plastic (left, which 
rigidly affinity to particular sequence of data and exhibits the constant 
state once excited) and the elastic neurons (right, which returns to its 
initial state; mainly used for transfer of sequence from one network 
point to other). The spot and arrow above each receptor represent 
excitation that stimulates the pixel receptor. The sequence of numerical 
response units which is generated by the elastic and plastic neurons 
helps create responses to spot intensity of 2.0. For the coactivation 

network, it is possible to assign functional as well as anatomical labels 
to the modules using Boolean networks [28,29]. To do this, we will 
consider the high-level behavioral domains used which describe each 
contrast in the primary literature: Geospatial specificity, anthropogenic 
action-interaction, perception, and interception. We then labeled each 
edge according to the domain most frequently causing coactivation of 
the corresponding pair of regions. In the occipital module, the highest 
proportion of intramodular modeling is set aside, as once modeled, 
the polymorph neural network has proven its evolutionary nature and 
self-modeling in dynamic scenario in previous studies corresponded to 
coactivation by perception (39%) and the other domains coactivated 
<20% each; similarly, in the default-mode module, other domains 
each accounted for <21%; whereas, in the central module, 62% 
of intramodular edges were coactivated by action. Thus, it seems 
reasonable to say that the presented research has firm prominence 
with its scope fulfillment and is relatively specialized for action, the 
occipital module for vision-based perception. Action and cognition 
tasks in regard to weather prediction accounted for approximately 
the same proportion of intramodular edges in the other software AI 
modules (34% and 38%, respectively), and therefore, we described it 
as specialized for such modeling of executive functions.

Geo-specific modeling involves the search for the best location of 
one or more facilities to support some desired function. The current 
impediments to the application of location models, issues associated 
with the integration of location models into GIS, and future needs in GIS 
functionality to support location models are to come up with a modeling 
technique with which the passing of weighted features, decision sets, 
and cascaded fitting examination of multiple coexisting conditions could 
be addressed with the same method. The computational framework is 
divided into three phases.

Phase I of this research included creating knowledge acquisition 
procedures to produce a group of data that could be helpful in cascading 
the relationship between the factors, for example, geographical 
topologies, energy usages, populace, and climate connected with each 
other; we will utilize FAHP. Analytical hierarchy process alludes to 
a decision strategy used to rank order of an arrangement of options 
in light of different criteria. Finally, analytic hierarchy process has 
been broadly used as a multiple criteria decision-making tool or 
a weight estimation technology in many research fields, including 
determination, evaluation, planning and improvement, decision-
making, and forecasting. The traditional analytic hierarchy process 
algorithm needs to correct judgments. Especially, considering the 
unpredictability and vulnerability required in decision issues, it is once 
in a while improbable or even difficult to require precise judgments. 
Subsequently, it is more regular or reasonable that a decision-maker 
is permitted to give fuzzified judgments. The learning acquisition in 
Phase I delivered a modular methodology for the evaluation of the 
membership functions of relative combinatoric factors impacting the 
system (Fig. 2).

Phase II includes usage of results from Phase I for network generation. 
For the uniform network, all individuals test units have the same 
degree. We utilize the configuration model, communicated with a stub 
connection algorithm, to make arbitrary graphs with a predefined 
degree dissemination. By haphazardly associating individual sets, 
we diminish higher order structure. For every node, we first allot it a 
degree k, and after that, we make a set of k stubs that represent each of 
these edges with just a solitary tail association with a node. We rehash 
this for all nodes and after that join these stubs into an expert set. This 
set is then arbitrarily separated into equal parts, and a stub from every 
subset is coordinated to one from the other subset, shaping a complete 
edge [30]. On the off chance that there is an uneven number of stubs, 
an arbitrary individual set is given an additional stub. We do not permit 
self-connections or copy edges between nodes (Fig. 3).

For the gamma-distributed-degree organize, every individual is 
doled out a degree drawn from a discretized rendition of the gamma 

Fig. 3: Flowchart of the control flow processing of fuzzified 
analytic hierarchy process

Fig. 2: Illustration of fuzzified analytic hierarchy PROCESS for the 
preliminary study. Note that only static population and climate 

data ae taken into account in this study
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distribution with a mean degree. The gamma dissemination was chosen 
because it permits the mean and fluctuation to be changed freely, with 
any difference somewhere around zero and limitlessness conceivable. 
Discretization was performed by first drawing an arbitrary number 
from a persistent gamma distribution with mean qualities, adjusting to 
the closest whole number, and after that including one. It was affirmed 
numerically this made a circulation with the coveted properties over 
the required scope of mean and standard deviation values. The system 
is then made utilizing the stub interface algorithm. An edge is built 
between every pair of collective factors with a likelihood p, free of 
the presence of different edges. The subsequent degree dispersion is 
binomial. Every edge of each node is then rewired with likelihood p. 
Rewiring includes separating from the distal node and associating with 
another arbitrary non-self and non-neighbor node such that double 
edges are avoided and the uniform degree of the system is preserved.

Phase III: Now, for the prediction of the energy usage data, the 
branching process calculations of the network so formed in Phase II can 
tell us about the probability of usage emergence by capturing stochastic 
effects that are important when analytic hierarchy process levels are 
subside with one another but do not accurately capture the dynamics as 
prevalence levels become significant. For this task, which gives forecast 
on deterministic models that track both live data and susceptible 
network nodes are appropriate. This is where the presented coactivated 
DBN stands out as it not only supports examination of multiple 
conditions simultaneously but also addresses the hierarchical evolution 
of weighted feature vectors from one consequent stage to another [31]. 
Each of the above problems has hierarchical association, for which 
achieving a comprehensive solution for data-driven sustainable energy 
modeling requires an approach to pass on the filtered processed 
decision formulated from the processing of hierarchical levels to 
consequent hierarchical levels and so forth.

RESULTS AND CONCLUSION

There are many common challenges in multiscale modeling, including 
validation and design of tools for programming and executing multiscale 
simulations. This presented theme issue seeks to establish common 
frameworks for theoretical modeling, computing, and validation and to 
help practical applications to benefit from the modeling results.
•	 It is observed that multiscale problems do not typically have a closed 

solution (except for some idealized situations when a single-scale 
model at the finest level). To simulate a large enough system with 
multiple scales at the level of detail required, one has to combine 
models at various scale resolutions and invariably deal with different 
physics. Multiscale systems can be characterized by the fact that 
there is a form of approximation or coarse graining involved in 
the multiscale modeling, corresponding to an error below some 
threshold scale of interest.

•	 On the other hand, it is not possible to coarse grain everything as 
it incurs a loss of information at each step. Coarse graining also 
involves the exchange of information between the fine scale and the 
coarse scale. In some cases, this can be approximated as a one-way 
coupling between the scales, but, in others, a fully two-way coupling 
framework is required.

•	 The exchange of information between multiple scales leads to error 
propagation within the multiscale model, thus affecting the stability 
and accuracy of the solution. Furthermore, it probes the question as 
to whether any mutual approaches for careful error analysis can be 
carried out at a theoretical level.

•	 Without thorough analysis or DBN-based guidance for computational 
modeling, it is necessary to make a comparison by empirical 
validation, or with a high-fidelity single-scale model, if that is 
computationally tractable. In numerous multiscale systems, a 
sequential approach is adopted when building a hierarchy of 
models. These begin with a high-fidelity model at a single-scale well 
established with regard to the experiment or observation, which 
sequentially transfers information to a more coarse-grained level.

The provided solution for a multiscale model in energy setting is a 
hybrid method for bridging continuum of energy usage and other 
factors influencing it. Apart from mathematical complexity and 
software optimization at the conceptual level, another issue presented 
is how to implement multiscale models in practice at the computational 
level. For example, there is the issue of coupling different codes written 
for single-scale single physics simulation in a unified framework. It 
is necessary for the latter to be flexible enough to accommodate new 
codes written in an object-oriented environment in addition to legacy 
ones used in different communities for many years and based on more 
traditional data structures.
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