
Special Issue (April)
Online - 2455-3891

Print - 0974-2441

Advances in Smart Computing and Bioinformatics

A SURVEY PAPER ON ELASTIC SEARCH SIMILARITY ALGORITHM

NILANJANA DEV NATH1*, SHREEKANT JHA2, JANKI MEENA M1, SYEDIBRAHIM SP1

1School of Computing Science and Engineering, VIT University, Chennai Campus, Tamil Nadu, India. 2Intel Technologies Pvt. Ltd.,
Bengaluru, Karnataka, India. Email: nilanjana.dvnath@gmail.com

Elastic search is a web search tool in view of Lucene. Apache Lucene is a free and open-source data retrieval programming library. Versatile search
gives a conveyed, multitenant-fit, full-content web search tool with a HTTP web interface, and pattern free JSON archives. It is created in Java and
has been released as open source under the terms of the Apache License. Elastic search can be utilized to pursuit a wide range of records. It gives
adaptable hunt, has close continuous pursuit, and backings multitenancy. It is appropriated, which implies that records can be partitioned into shards
and every shard can have zero or more duplicates. Every hub has one or more shards and goes about as a facilitator to delegate operations to the right
shard(s). Elastic search is like a wrapper on the top of Lucene. In this paper, a detailed description of how Lucene’s scoring algorithm works and how
elastic search uses it as “similarity algorithm.”

Keywords: Elastic search, Lucene, Big data, Ranking algorithm, Indexing, Mapping, Scoring.

INTRODUCTION

The vital of elastic search’s savvy web crawler is fundamentally another
product extend called Lucene. It is perhaps most straightforward to
comprehend elastic search as a part of base constructed adjacent
Lucene’s Java libraries. In elastic search, everything is identified with
the genuine calculations for coordinating content and putting away
advanced files of question terms is executed by Lucene. Elastic search
itself gives a more practical and conservative API, versatility, and
operational apparatuses overhead Lucene’s search usage.

Lucene is antiquated in web years, seeing back to 1999. It is additionally
to a great degree across the board and built up. Lucene is utilized by
unspeakable quantities of organizations, running the degree from
enormous partnerships, for example, Twitter, to little new business.
Lucene is illustrated, tried, and is broadly considered best of breed
in open-source seek programming. The greater part of the balanced
exertion clients of elastic search allot to the assignment of inquiry will
be identified with utilizing the Lucene APIs elastic search uncovered.

FEW CONCEPTS OF ELASTIC SEARCH

Index
Elastic search stores its information in at least one record. Utilizing
likenesses from the SQL world, ordering is like a database. It is utilized
to store the records and read them from it. Elastic search utilizes
Apache Lucene library to compose also, read the information from
the record. Elastic search list might be worked of more than a solitary
Apache Lucene index by utilizing “Shards.”

Document
Record is the principle element in the elastic search world. At the end, all
utilization instances of utilizing elastic search can be conveyed at a point
where it is about looking for archives and dissecting them. The record
comprises fields, and every field distinguished by its name and can contain
one or various values. Every archive may have diverse arrangement of
fields; there is no mapping or any structure that is imposed on.

Type
Every archive in elastic search has its sort characterized. This permits
us to store different archive sorts in one record, and distinctive mapping
for various archives sorts.

Mapping
All reports are dissected before being filed. The information content
is separated into tokens, which tokens ought to be sifted out, or what
extra handling, for example, evacuating HTML labels, is required. This is
the place mapping becomes an integral factor; it holds all the data about
the examination chain.

Node
The single example of the elastic search server is known as a NODE.
A solitary node in elastic search [3] organization can be adequate for
some basic utilize cases. Elastic search is intended to file and hunt
our information, so the primary kind of node is the information node.
Such nodes hold the information and inquiry on them. The second
sort of node is the primary node that functions as chief of the cluster
controlling other nodes’ work such as indexing. The third node sort is
the tribe node, which is new and was presented in elastic search [1].
The tribe node can join numerous clusters and along these lines go
about as an extension between them, permitting us to execute all elastic
search functionalities on different groups. Much the same as a group,
a node is distinguished by a name which as a matter of course is a
random universally unique identifier that is doled out to the node at
startup. The user can characterize any node name that he needs on the
off chance that he has no need for the default. This name is essential
for admin purposes where you need to distinguish which nodes in the
system compare to which node in elastic search cluster.

Cluster
Cluster is an arrangement of elastic search node that cooperates. The
conveyed way of elastic search enables users to effortlessly handle
information that is too substantial for a solitary node to handle [5].
A cluster is recognized by a one-of-a-kind name which as a matter of
course is “elastic search.” This name is critical on the grounds that a
node must be a part of a group if the node is setup to join the bunch
by its name. Furthermore, it is substantial and superbly fine to have
a group with just a single node in it. Besides, user may likewise have
numerous independent clusters each with its own special cluster name.

Shards
Clustering permits putting away data volumes that surpass capacities
of a single server. To accomplish this necessity, elastic search spreads
information to a few physical Lucene lists, these lists are called shards,

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19757

Full Proceeding Paper

Received: 19 January 2017, Revised and Accepted: 20 February 2017

ABSTRACT

362

Special Issue (April)
	 Nath et al.	

and every one of the parts of the record is called sharding [1]. Elastic
search can do this naturally, and every one of the parts of the record
(shards) is unmistakable to the client as one major record.

Sharding is imperative for two essential reasons:
1.	 It permits user to a level plane split/scale your content volume.
2.	 It permits user to disperse and parallelize operations crosswise

over shards (possibly on different hubs) in this manner expanding
execution/throughput.

The mechanics of how a shard is dispersed, furthermore, how its
reports are totaled again into hunt solicitations are totally overseen by
elastic search and is straightforward to user as the client.

Replica
Sharding permits pushing more information into elastic search that is
workable for a single node to handle. The thought is straightforward to
make an extra duplicate of shard, which can be utilized for questions
pretty much as unique, essential shard.

Replication is essential for two essential reasons:
1.	 It gives high accessibility on the off chance that a shard/hub comes

up short. Hence, take note of that a copy shard is never dispensed on
an indistinguishable hub from the first/essential shard that it was
duplicated from.

2.	 It permits you to scale out your inquiry volume/throughput since
hunts can be executed on all copies in parallel.

As a matter of course, every list in elastic search is dispensed 5 essential
shards and 1 replica which implies that on the off chance that user has
no less than two nodes in his group, his list will have 5 essential shards
and another 5 replica shards (1 complete replica) for a sum of 10 shards
for each index.

KEY FEATURES OF ELASTIC SEARCH

Elastic search was worked in view of a couple of ideas. The improvement
group needed to make it simple to utilize and exceedingly adaptable.
These center components are unmistakable in each edge of elastic
search. The primary components are as per the following:
1.	 Reasonable default values that permit clients to begin utilizing

elastic search soon after introducing it. This incorporates worked
in revelation and auto-design [3].

2.	 Working in circulated mode as a matter of course. Node accepts that
they are or will be a part of the group.

3.	 Peer to companion engineering without single purpose of
disappointment. Nodes naturally associate with different machines
in the bunch for the information trade and common checking. This
spreads programmed replication of shards.

4.	 Easily versatile both as far as limit and the sum of information by
adding new nodes to the bunch.

5.	 Elastic pursuit dosage not force limitations on the information
association in the record. This permits client to change in accordance
with the current information model. Near real time in elasticsearch
indicates per-segment search, hence delay between indexing and
making it live has reduced drastically. As a result of the circulated
way of flexible pursuit, it is difficult to keep away from postponement
and brief contrasts between information situated on the diverse
hubs. Versatile pursuit tries to diminish these issues, furthermore,
give extra components as forming.

BACKGROUND

While elastic search and conventional RDBMSs vary in numerous
courses; at the larger amount, a significant number of the center
ideas of elastic search have analogs in the RDBMS world (Table 1).
All information in elastic search is put away in lists. A list in elastic
search resembles a database in a RDBMS: It stores distinctive sorts
of records, overhaul them, and look for them. Every report in elastic
search is a JSON type, similar to a line in a table in a RDBMS. A record

comprises at least zero fields, where every field is either a primitive sort
or a more intricate structure. A record has a document sort connected
with it; nonetheless, all records in elastic search are without diagram,
which implies that two archives of similar sort can have distinctive
arrangements of fields. Record sort here is like the RDBMS idea of a
table: It characterizes the arrangement of fields that can be determined
for a specific document.

Searching in elastic search
Elastic search has its own querying using JSON called Query DSL. This
search can be performed in elastic search in two ways: Using a query
or using a find of filter. The fundamental distinction between them
is that a query ascertains and allots each returned report with the
significance score while a filter does not do so. For this reason, seeking
by means of filter is speedier than by means of query. The elastic
search documentation suggests utilizing questions just as a part of two
circumstances: For full-content ventures or when the significance of
every outcome in the pursuit is imperative. For straightforwardness, we
will utilize term inquiry to depict both filters and queries; be that as it
may, our involvement with elastic search is constrained to working as
it were with filters; subsequently, we do not report about utilization of
queries.

ELASTIC SEARCH WORKFLOW

Elastic search is for some plans and purposes schema-less, which
implies that documents can be listed without unequivocally giving a
schema. The pattern is a mapping that depicts the fields in the JSON
reports alongside their date type and how they ought to be ordered in
the Lucene indexes that lie in the engine.

The workflow of how elastic search functions is shown in Fig. 1.

The user uploads files, which are converted to JSON document format.
Then, the tokening of words happens and finally the documents are
indexed.

Whenever user enters a query text, the first purpose would be to parse
the query. Now based on the query passed, the documents are scored.
Elastic search similarity algorithm is used to rank the documents based

Table 1: Elastic search versus SQL

Elastic search element SQL element
Index Database
Mapping Schema
Document type Table
Document Row

Fig. 1: Workflow of elastic search

363

Special Issue (April)
	 Nath et al.	

on the score. The one having the highest score is passed as the result. If
the required document is found, it is successful.

In an elastic search cluster when a request is made, it first passes
through a coordinating node. The cluster state has to be known to
every node in the cluster. This state contains information about which
node consist of which indices and shards. If it is a search request, if can
be read either from a primary shard or a replica. The distinct shards
present, must contain the search request that has been sent. Following
the request, the shards will reflect back the top results obtained and
send the consolidated bundle to the coordinator. It is the job of the
coordinator to merge the results obtained so that the top global results
are obtained and then it is send back to the user.

DIFFERENT INFORMATION RETRIEVAL MODELS USED IN LUCENE

Lucene has proficient and exact search calculations. It recovers the
reports questioned in view of their positioning. It gives diverse sorts
of questions such as Fuzzy Query, Phrase Query, Boolean Query,
Wildcard Query, and Range Query. Lucene uses a combination of the
vector space model (VSM) of information retrieval and the Boolean
model to determine how relevant a given document is to a user’s
query [4].

Boolean model
The Boolean model takes into consideration the utilization of operators
of Boolean polynomial math, AND, OR, and NOT, for question definition,
however, has one noteworthy disadvantage: A Boolean framework is
not ready to rank the returned rundown of documents. In the Boolean
model, an archive is connected with a set of keywords. Inquiries are
likewise articulations of keywords isolated by AND, OR, or NOT/BUT.
The retrieval work in this model regards a document as either relevant
or not relevant [2].

Vector model
The VSM can best be portrayed by its endeavor to rank records by the
similarity between the query and among the documents present. In
the VSM, queries and documents present are represented like a vector,
and the edge between the two vectors is processed utilizing the cosine
similarity. Cosine similarity capacity can be characterized as:

Sim(d ,q)=
d ·q

||d ||||q||

W Wi,q

W W

j
j

j

i=1

N

i,j

i,j
2

i,q
2

i=1

N

i=1

N

=
∑

∑∑∑
Where the queries and documents are represented in the form of
vectors.

dj = (W1,j,W2,j,…, Wt,j)
q = (W1,q,W2,q,…, Wt,q)

This model uses the term frequency-inverse document frequency
TF-IDF weighting also known as “TF-IDF [2].” These weights will have
a TF calculate measuring the recurrence of event of the terms in the
archive or query writings and an IDF consider calculating the inverse
of the quantity of documents that might contain a document or a query.

SIMILARITY ALGORITHM IN ELASTIC SEARCH

Elastic search uses relevance of a document for determining its search
result. Results are generally obtained in decreasing order of relevance
of the documents. The relevance is measured using a floating point
number called the “score” of the document. This “score” is actually
Lucene’s practical scoring function. The higher is the score of the
document, the more relevance factor it possess.

In general, whenever a query is passed, it will generate a score for
each document. It will be different for different types of query clause.

The similarity algorithm used in elastic search takes into account the
following factors into account:

TF
It determines how often the term appears in the field. The more often it
occurs the more relevant it is [3].

IDF
It determines how often the terms appear in the document or in the
index. It is “inverse” because the more the terms appear in the index
the less relevant it becomes. Hence, the terms whose a number of
occurrences are more in a document have lower weight than the terms
that occurs less [3].

Field-length norm
It is used to show the length of the field. The longer the length of the
field the lesser are the chances of words being more relevant. The term
that will appear in a short “title” will carry more weight than the term
that occurs in a longer content field.

Query norm
Elastic search uses measures for comparing the combination of
query types that is being passed. The factor for measure such
combination of query types is called “query normalization factor”
or “query norm.”

Coord
This gives the measure of matching multiple search terms. If the value of
coord is higher, it will in turn increase the overall score of the document.

Boost index and boost query

Elastic search scoring algorithm is actually a combination of a Boolean
model, VSM, and information retrieval model. The documents first pass
through the Boolean model and then scoring happens in the VSM.

The scoring formula can be written as:

Score (q,d) = query norm(q) * coord(q,d)*Σ(tf(t in d)*idf(t))2*

t.getBoost()*norm(t,d)) (t in q)

Where,
q: Query passed
d: Document
Score(q,d): Score of the document with respect to the query
queryNorm(q): Query normalization factor
coord(q,d): Matching terms with respect to the query
tf: Term frequency
idf: Inverse document frequency
get.Boost: Boosting with respect to a particular field.

We actually use boosting for prioritizing our clauses that we pass.
Boosting is done by specific factor.

COMPARISON WITH OKAPI BM25

Lucene’s practical scoring function internally works as elastic search
similarity algorithm. Although it uses scoring function as its standard
similarity algorithm, it even has the capability to support other
algorithms that are used for scoring. One of such is Okapi BM25.

Okapi BM25 is one the best-known ranking functions which is at par
with Lucene’s scoring function. It can be compared with Lucene’s

These boost factors can be used during indexing time and
querying time, respectively, to boost up the score.
Furthermore, applying a boost on a specific field can have
a significant change in score calculation.

364

Special Issue (April)
	 Nath et al.	

scoring function on the basis of the informational retrieval model that it
uses. While Lucene makes the use of the VSM, BM25, on the other hand,
uses probabilistic relevance model [6].

The standard analyzer of elastic search does not remove the stop
words and hence this creates an artificial boost in their weights which
is irrelevant. However, using BM25, a certain upper limit is set which
makes the distinction of stop words and the terms that occur lesser
number of times in document to have the same impact. This is known
as non-linear TF saturation.

Fig. 2 shows that terms that show up 20 times in an archive have
practically an indistinguishable effect from terms that show up a
thousand times or more.

Another striking difference between the standard Lucene score in
elastic search is that the longer fields have practically lesser weight
than the shorter ones which usually have more weight. In other words,
the recurrence of a term in a field is counterbalanced by the length of
the field. BM25 takes shorter fields to have more weight than the loner
ones, but it takes into account the average length of each field separately.
It can easily compare a title field that is short and a title field that is long.

Apart from all these factors, BM25 also has some tuning factors which
are placed in such a manner that it is suitable for the collection of
documents present.

CONCLUSION AND FUTURE WORK

Elastic search is actually powered by Lucene. It is analogous to a car
and its engine. We see that the concept of inverted indexing in elastic
search makes searching easier and less complicated. Its schema-free
architecture helps in detecting the data structure easily and thus
becomes more searchable.

Elastic search can also be integrated with BM25, which is similar to the
default similarity except some of the differences such as the shorter
documents are more heavily weighted. The TF saturation makes more
accurate in ranking the documents based on the score. Elastic search can
been integrated with any of the big data platforms such as Hadoop [7]
and large data can undergo heavy indexing operations. Lucene offers
phenomenal genuine usefulness such as hit highlighting, spell checking,
tokenizing, and breaking down; however, one of the intense and oft-
utilized components is boosting. Now-a-days the websites provide
some level of search usefulness to them which go from seeking plain
content substance inside the site to particular substance covered up
inside documents.

REFERENCES

1. Kononenko O. Mining Modern Repositories with Elasticsearch.
Hyderabad, India: MSR; 2014.

2. Sematext. Elasticsearch Refresh Interval vs. Indexing Performance.
Available from: http://www.bit.ly/1iZoPGc.

3. Divya MS, Goyal SK. Elastic search: An advanced and quick search
technique to handle voluminous data. COMPUSOFT Int J Adv Comput
Technol 2013;2(6):171-5.

4. Long B, Chapelle JB, Zhang Y. Ranking through expected loss
optimization. IEEE Trans Knowl Data Eng 2015;27(5):267-74.

5. Lin J, Ryaboy D, Weil K. Full-text indexing for optimizing selection
operations in large-scale data analytics. San Jose, California, New York,
USA: ACM; 2011.Available from: http://www.acm.org/publications.

6. Unpluggable Similarity. Available from: https://www.elastic.co/guide/en/
elasticsearch/guide/current/pluggablesimilarites.htm.

Fig. 2: Term-frequency saturation for BM25

7. Butler MH, Rutherford J. Distributed Lucene: A Distributed Free
Text Index for Hadoop. HP Laboratories, HPL; 2008.

