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ABSTRACT

Objective: Despite the wide adoption of distributed computing with several webs standards and cloud technologies; the building of city-wide health 
management system for smart city platform is a daunting task. 

Methods: Owing to the limitations in sparse learning of disease outbreak and its dynamic nature. As it would require the development of a scalable, 
distributed and evolving architecture on the web; where a sparse machine learning based algorithm will enable authorities collaborate in preventing, 
controlling, and responding to a specific disease outbreak and its time factor analysis. In this work, a mathematical system model is presented for 
sparse learning in geographic information system based architecture to support continuity of microservices in health management setting. 

Results and Conclusion: The model can continually cope with the transformation in architecture to match with the system goals of microservices and 
anticipate the evolutionary aspects of the architecture configuration.

Keywords: Microservices, Geographic information system, Health management, Smart city.

INTRODUCTION

The main problem in establishing a scalable coordination between 
distributed microservices is to solve the issue of the high dimensional 
semantic decision [1,5]. All autonomous industrial services working 
collaboratively through distributed microservice platform (DMP) will 
require a close loop iteration; which is divided into three essential 
steps:
i.	 Distributed sensing from the environment [3].
ii.	 Performing local computation of the sensed data.
iii.	 Fusion the computed data from several distributed settings to 

perform global actions and communicating with other end to end 
devices [4].

Industry 4.0 supports the integration of manufacturing system 
on a global scale with several advances to achieve simultaneous 
communication, computation and microservice in manufacturing 
domain [1]. From a system level point of view, DMP is crucial to 
achieve a scalable holonic system; wherein small subsystems 
will be programmed in such a way that it will not only sustain the 
manufacturing on itself but additionally will be able to collaborate 
with other subsystem to achieve a global scale industrial application. 
Such subsystem microservice should avail overall coordination 
between industrial services.This requires enhancing machine level 
decision-making process, adaptive sharing of resources, developing 
a matrix of specificity of actions as per the varying context [4-7]. 
This would reduce the cost of product manufacturing, manufacturing 
life cycle, resource utilization [2,8]. Since the efficiency of the 
scalable services is heavily dependent on the collaborative process 
of disseminating data and its contextual analysis. Thus, weaving 
such a cyber-physical system is computationally expensive in high 
dimensional relationship between sensed data and its associated 
microservice actions [9,10]. Furthermore, the rising trend of on-
demand dispatch of microservice is a predicament owing to its 
complexity in modeling. A good solution is to integrate the problem 
of modeling scalable system and its distributed microservice features 
within the same framework.

METHODS

In this section, we present an algorithmic framework to achieve scalable 
distributed learning and decision-making to model global coordination 
between industrial services. This self-modeling approach will enable 
high learning rate for high-dimensional on demand microservice. The 
system is tested and validated in a virtual manufacturing setting.

The first step is to define the synchronous machine model of distributed 
systems with its weighted sensed data xij and microservice action sets yki. 
Here, we are using membrane computing-based model of neural system 
to define the correlation between the sensed data and the microservice 
action such that the final sets derivable would be optimized and 
weighted to achieve optimization for high dimensional decision space, 
then in the next step, it shall be forwarded to semantically filter out 
optimal policy (i.e.,  correlated state action pair) with higher reward 
through the help of distributed reinforcement learning.

Now, for the first step, let us supposed that we have a total of excitatory 
neurons (EN) and inhibitory neurons (IN) where they are in the ratio 
of IN=0.2×EN. Now, that we need to find an evolutionary Hodgkin-
Huxley equation for self-managing neurons. Therefore, to model the 
phenomenon of building the learning model for biological neurons, 
we require to merge the properties of artificial neural network with 
the biological neurons. Where the sequence of inputs of the firing 
neurons is affects the other subsequent sequence and consequently 
synapse formation before giving a unitary idea of stimuli. Thus, 
Wij be the weightage for the connection strength from neuron i to 
neuron j, similarly WIE, WEE, and WEI represents weightage for inhibitory 
to excitatory connections, excitatory to excitatory, and excitatory to 
inhibitory connections, respectively. The WEE and WEI are initialized 
as sparse random matrices with the range of connection probabilities 
between the value of 0.1 and 0.2. Initially, the WIE connections are 
meant to freeze at their random initial values which are depicted 
from uniform distribution, latter followed by normalization [13,14]. 
Altogether, the sum of connections entering a neuron is in a sequence 
of 1 and 0; thereby the binary vectors is given by x(EN) ∈ {0, 1} and 
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y(IN) ∈ {0, 1} for the excitatory and inhibitory neural activity at time 
step t, respectively. Hence, the sequencization of the network states at 
time step t+1 is equivalent to:

x t W t x t W t y t T tij

j

E

ij
EE

ji

k

I

ik
EI

ki ij
E

N N

+( ) = ( ) ( ) − ( ) ( ) − (
= =
∑ ∑1

1 1

θ )) + ( )














ξE ti

y t W x t T t I tki

j

N

ij
IE

j i
I

i

E

+( ) = ( ) − ( ) + ( )














=

∑1

1

θ ξ

As the network equation continues to evolve xij and yki, the synaptic 
weights is given as:
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Ѳ is the Heaviside step function; TE and TI are the threshold values 
for excitatory and IN, where it is initially drawn from the uniform 
distribution within the interval [ , ]0 Tmax

E  and [ , ]0 Tmax
1 . ξEi (t) and ξIi (t) 

are white Gaussian noise processes with μξ∈ [0.01, 0.05]. Here, one-
time step corresponds roughly to the duration of window of the spike 
time dependent plasticity. η is the learning rate. Now, that the threshold 
value of the EN in response for a sequence of activated neurons is 
made a pass through the previously generated targeted sequence code 
blocks of firing neuron states Sij

code block
; which is determined by the 

adaptation rate ηAD as:
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The inhibitory spike-timing dependent plasticity ji rule regulates the 
weights backward from inhibitory to EN which stabilizes the amount 
of excitatory and inhibitory to drive sensory information through the 
excitatory microservice neurons. Therefore, the evolutionary dynamics 
of the neuronal membrane potential that mediates the excitatory and 
inhibitory sequences through the network of membranes is governed 
by the above-deduced equation.

Following the above step, the generated data need be forwarded to 
semantically filter out optimal policy (i.e.,  correlated state action 
pair) with higher reward through the help of following distributed 
reinforcement learning. A  policy P is memory-less technique, i.e.,  it 
primarily depends only on the current state and not onto its history. Thus, 
a deterministic strategy P assigns each state a unique action. While taking 
after a strategy P, we perform at time t action at at state st and observe 
a reward rt (distributed according to RMDP [s,a]). and the next state st+1 
(dispersed according to P (a )

S ,S
MDP

t
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). We consolidate the sequences of 
rewards to a single value called the return, and our goal is to maximize it. 
Hence, we concentrate our work to focus on discounted return, which has 
a parameter γ∈(0,1), and the discounted return of policy P is:
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Where rt is the reward observed at time t. Since all the rewards are 
bounded by Rmax the discounted return is limited by:
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For a sequence of pairs for state and action, let the covering time, 
denoted by C’, be an upper limit on the number of state-action pairs 
beginning from any pair, until all state-action appears in the sequential 
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s (I t I t 1i xy xy
2= ( ) − −( )∑ )

Now, we need to derive the symmetry of the semantic action table 
and its multi-scale decision space to optimize the classification 
process. A  data point from the previous steps can be represented 
as an element with r items for which there is a sequence of m 
number of frames given by X X ,X ,&,X }x
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the set of possible values of a frame. A frame could be a sequence of 
state-action pairs with a reward value. Content frames may overlap 
spatially, temporally, or both. Here, overlapping time windows is 
2 seconds long and starts every 185 ms; with overlap of 15/16 are 
used as frames. Let us suppose that C, B, and Y be matrix of filtered 
output, Y be the matrix of filters for stimulant variable and response 
variable for each X, such that C=XBY. Then, C is a super frame of B. 
The length of a frame S is equivalent to the total number of frames in 
it and is denoted by |S|.
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Where Xx0  is the covariance map from X which asserts to the 
association formed between the frames S(t) with that of stimulant and 
response variable. Xi is the position of the input record. Cl is the cluster 
value which contains various values from 1 to l.

Now, at each step we calculate:
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Where Cli is the ith information symbol at the lth subcarrier (when 
output of one iteration is propagated to the input of the other), Ts 
is the symbol period, Sl is the waveform for the lth subcarrier, NSC is 
the number of subcarriers (number of matching iterations), fl is the 
frequency of the subcarrier, and π(t) is the pulse shaping function. 
Following this process to complete the dataset in all records. Thus, the 



404

Special Issue (April)
	 Rai and Kannan	

dynamics of the equation for a computational job using is computed 
as shown below: At time t, standard deviation is requested by every 
robotic device. For synchrony between industrial robots, we first 
give the outcomes for the synchronous Q-learning algorithm, where 
we overhaul every one of the sections of the Q capacity at every time 
step, i.e.,  the redesigns are synchronous. Let QT be the value of the 
synchronous Q-learning algorithm using polynomial learning rate at 
time T. Then with probability at least 1−δ, we have that ‖QT−Q*‖≤ε, 
given that
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The above bound is somewhat complicated. To simplify, assume 
that ω is a constant and consider first only its dependence on Tij

E.

This gives us linear time complexity for the synchronous learning 
rate. Where symmetry breakdown allows us to ease the problem of 
extracting semantic rule by looking for the inter-correlation between 
symmetry of the state pairs and the symmetry. Hence, the relationship 
between  it can be learned in one shot for rule generation, which is 
given as:
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Here, x(i, p) is an indicator to the event that the solution is in state i 
during the pth phase of feature instance and ni be the number of 
phases of state i. Thus, forming a dynamic sequence. The nodal 
degree distribution was fat-tailed with high-degree hub nodes to be 
located in the above-mentioned excitatory neural network using a 
sequence of information to excite the necessary regions and assess 
the information in an associative form. This enables several services 
all at once to not only learn but also it enables it to embark the cross 
relationship between various data for prediction or simulation based 
logical conclusion; herein, the processing is done over neural net-based 
shell environment. Computationally, this topology was embedded 
parsimoniously, in terms of the connection distance between co-
activated nodes. Most connections or edges were separated by 
short sequence of excitatory data, significantly shorter than random 
networks; the parallel reinforcement learning equation is given as 
based on Instance of Window’s Workspace W (b), Instance of machine’s 
end U and the filtered action sets is given by ASi with matrix model of 
tree of actions Mx. Compute the pointing correlation state P as:
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Where, LN are the universal set of level for the microservice actions, 
pi and p2 are the adjoint sequence pairs with the levels LW and LU 

respectively, Sp ,p1 2  and S'p ,p1 2  are the sets of sequence density 
constraint layout for the action sets positioning with its patterning 
saved in levels and between its intersection of adjoint pairs and the 
superpositioned pair density layout of differing state at the service’s 
instance of the frame U. Furthermore, ti is the collection of patterns 
for the weighted superposed state Pc (initially its value is set to 0), 
f1,f2 are the two delay frames with a minimal time delays ti [11-13]. 
Thus, we calculate the tree of action based on continuous feedback 
loop:
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Where ASi is the automated classified action sets. Again, to optimize 
the above-derived sequence of blocks we use membrane computing to 
carter distributed services with parallel Q-learning from several agents 
as mentioned below:

Here, Ctar is the desired target output and Cout is the actual network 
output. The value of Cout is determined as: C = Q Q Q....out 2
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reinforcement learning. The individual network outputs can be 
computed as:
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Where w2rl is the weight of the connection from the 2rth input element 
to the 1th  hidden unit. The above equation is a distributed function 
of several intermittent output layer and hidden layer, respectively. 
Adjusting the weights of all neurons by w = w+∆w, where ∆w is the 
change in weight estimated as: ∆w = γ.Y2.BPerr, where γ is the learning 
rate. In general, the value of learning rate is between 0.2 and 0.5.

RESULTS AND DISCUSSION

Our methodology depends on distributed machine learning, sharing 
for networks and backings a wide range of operations in the middle 
of independence and collaboration with least suppositions on system 
availability. In particular, we added to a distributed derivation 
framework in view digital predicates that can catch the association 
with the physical world. In the fundamental distributed computing 
model, realities and objectives are spoken to as learning that can 
be shared craftily and aide the distributed thinking procedure. The 
response of chain growth in training was remained stochastic, but in 
our mathematical model of internetworked neurons, we have found 
that repeated simulations for training neurons changes the weights of 
the synaptic distribution and consequently forms a stable and strong 
connectivity within synaptic chain. Thus, the selection of postsynaptic 
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targets is crucial for the formation of loop of chains that stops its 
growth for the similar stimulation but keep on adjusting weights with 
chain growth emanating from the training neurons. Due to the spike 
time dependency plasticity rule the targeted neurons spontaneously 
spike shortly after the training neurons. It is observed that the training 
neurons spike synchronously and make convergent connections to the 
same sequential set of neurons and strengthens these connections. In 
this case, the duality in the middle of realities and objectives stretches 
out to the confirmation framework, which treats forward and in reverse 
thinking on an equivalent balance. Vital properties of our intelligent 
structure, for example, robustness, fulfillment, and end conditions have 
been set up under exceptionally broad conditions (Fig. 1).

A key component of the presented system is its dynamic and intelligent 
nature, implying that certainties speak to perceptions, and objectives 
can prompt changes in the environment that will show themselves 
as new actualities streaming into the framework. Once strengthened 
connections are developed the prominent sets of neuron spikes is 
readily evoked in these targets on every run of the stimulation. For 
the targets to overcome membrane noises, it is important that the 
synapses are cooperated through the convergent synapses. The next 
step follows for the closed loop of synfire chain is to propagate the 
firing chin to other neurons to recruit the new group in association with 
the previously recruited neurons. This iterative process yields stable 
topologies of synfire chains which are actively efficient in producing 
long stereotypical sequences of spikes for mediating training sets to 
other neurons; such that this chains consists of introductory sequence 
generated by training neurons in the first step and feeds this loop of 
strong synaptic connectivity to other pools of neurons, as network size 
is increased. Thereby, forming an interconnected network. Whether a 
unique neighborhood objective can be fathomed is frequently optional, 
in light of the fact that the consolidated impact of an arrangement 
of nearby objectives on the digital physical framework and its 
nondeterministic progress can prompt arrangements of larger amount 
objectives even without requiring arrangements of every lower level.

CONCLUSSION

In this study, the presented scalable technique for online distributed 
learning to facilitate coordinated decision making in scalable smart cities. 
The presented approach proved its efficacy in coordinated decision-
making for a distributed microservice in geographic information 
system-based health management system. The experimental results 

showed that the method can be effectively implemented for a minimum 
of 473 services. The technique can be extended to more complex 
domains of distributed sensing and medical IoT.
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