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ABSTRACT

A model for clustering of galaxies through relativistic gravitational thermodynamics is laid on. Unlike the theories presented which consist of point 
mass system in expanding universe, we presented the methodology, in which partial differential equation and thermodynamic equations with the 
equation of state in accord with gravitational interaction between particles to study extended structures of universe.
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INTRODUCTION

Galaxies cluster on very large scales under the influence of their mutual 
gravitation and the characterization of this clustering is a problem 
of current interest. Observations indicate that while the large-scale 
distribution of galaxies appears to be essentially uniform, however, 
small-scale distribution is appreciably influenced by the well-known 
tenancy toward clustering. The universe is homogeneous and isotropic 
on scales ≥100-200 Mpc, whereas on smaller scales, its fundamental 
units  -  galaxies cluster together to form groups, clusters, and even 
superclusters.

It is ascertained that copious fraction of cosmological theories of many 
body problems has been developed mainly from a thermodynamic 
point of view. Herein, we have abided the same approach and employed 
the equations of the state along with the correlation functions for the 
development of a theoretical model. Our universe emerged from a 
singularity at a very high temperature about 2×1010 years ago. At such 
temperatures, all matter behaves like photons; hence, the initial state 
was a chaotic gaseous inferno of high-energy elementary particles and 
photons. As the universe expanded, the temperature dropped and the 
heavier particles annihilated and decayed into the less massive stable 
particles (protons, neutrons, and neutrinos). Hence, in the same pursuit, 
we derive the entropy differential equation from relativistic kinematics 
of inertial and gravitational mass where the application of gravitational 
thermodynamics in the clustering of galaxies has been discussed on the 
basis of N-body computation techniques.

We derived the relation the value of b which is the ratio of gravitational 
correlation energy to twice kinetic energy measures two-point 
correlation function ξ2 and depends on the average number density - n, 
temperature – T, and the interparticle distance - r. Thus, it is valuable 
to understand the functional form of ξ2 which depends on the value 
of b(n, T). The two partial differential equations developed for the 
galaxy clusters (with point mass and extended mass structures) in an 
expanding universe provide a new approach for understanding the 
phenomena. Simulation is performed using methods mentioned in 
Matsubara and Rai [10-15].

RELATIVISTIC THERMODYNAMICS

In classical mechanics as well as in special theory of relativity, the mass 
at coordinates in space has a direct physical meaning. To say that, a 
mass at a point P in a space means the projection of the event by m at 
P on the axis of the dimensions. Furthermore, there is a standard clock 

time t associated with the event at P where m is the cause of the event. 
The action for a free particle is given by:

S= ds

a

− ∫α
0

Where a is the quantity which characterizes the particle.

Applying relativistic mechanics, the action can be written in the form:
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Where, L is the Lagrange’s function and represented as 
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. From the remnant of preconceived notion of 

classical mechanics, the determined Lagrange’s function for a free 
particle is L=av2. v is the speed of the particle and a is a hypothetical 
quantity which is given as a= m

2
. Here, m is the mass of the particle. The 

results of our measuring of m are verifications of the indistinguishable 
about the kind of mass (whether it is gravitational mass mg or inertial 
mass mi).

If the limit c→∞, the correlation between a and α can be expressed 
below. Where relativistic expression L is reduced to the classical 
expression.

L=a v²(classical expression),

L a v
c

²
2

 (relativistic expression)

Now, if α=2ac=mc, we get,

L=a v². Following the first axiom given, we will have m=mg. Therefore, 
a=mg/2.

The generalized expression for the action for a free particle is of the form:

S m c dsg
a

b

= − ∫ � (1)
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sign as it cannot have a minimum. Thus, the integrand of Equation (2) 
must always be positive. Therefore, if mg>0 then t>0.
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The inertial force F
dp

dti =
� ��

 which acts on the particle in two ways:

1.	 Fi is perpendicular to speed
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2.	 Fi is in direction of speed
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The energy of the particle is given by:
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 or Eg = mg.c2� (6)

The introduction of Eg serves no other purpose than to facilitate the 
description of the totality.

At rest, the particle’s gravitational potential energy is Ego= mg.c²� (7)

Equation (7) can be represented in the manipulated form as:
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In analogy with the gravitational energy at rest, the inertial energy at 
rest Eio=mic². Thus, the total inertial energy is Ei=Eio+Eki (Eki=Kinetic 
inertial energy).

From Equations (6 and 8),

E
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For v<<c, Ei=mic²+½miv2� (10)

Comparing Equations (6 and 8)

E
m

m
Ekg ki

g

i

= � (11)

Gravitational field produced by a particle of gravitational mass mg depends 
on the particle’s gravitational energy Eg. For this, we can write as:

g
GE

r c

Gm c

r c

Gm

r

g g g= − = − = −
² ²

²
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� (12)

Where, mg is the relativistic gravitational mass.

Since it is well known that gravitational force is conservative. Thus, the 
argument of the above condition can be expressed as:

Eg=−Ei� (13)

Thus,

Ei=Eio+Ei and Eg=Ego+Eg=Ego−Ei

Eg+Ei=Ego+Eio� (14)

Comparing between Equations (6 and 8) reveals that Ego=Eio as a 
consequence of which,

Eg+Ei=Ego+Eio=2Eio� (15)

However, Ei=Eio+Eki. Therefore, Equation (16) can be written as:

Eg=Eio−Eki� (16)

Substituting Eio=Ei–Eki gives:

Ei−Eg=2Eki� (17)

The correlation between gravitational energy and momentum can be 
derived by squaring and comparing Equations (3 and 6).

E

c

p m
g

g

2

2

2= +² � (18)

The Hamiltonian function can be expressed as:

H c p m cg= +2 2 2 � (19)

We may now look upon objective to distinguish gravitational 
Hamiltonian Hg from inertial Hamiltonian Hi.

H c p m ci i= −2 2 2 � (20)

As a direct consequence of it, Equation (17) can be written as:

Hi+Hg=Hi� (21)
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The momentum variation yields Hi variation.

H p p c m c p c m ci i i= + − −( ) ² ²
2 2 4 2 2 4 � (22)

Substituting Equations (19, 34, 36) into (35) and putting p=0.
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Thus, the generalized equation between gravitational and inertial mass 
is given as:
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Therefore, Equation (37) can be written in the form:
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From Equation (15), we obtain

Eg=2Eio−Ei=2Eio−(Eio+Ei)=Eio+Ei

But from Equation (13) –Ei=Eg

Therefore, Eg=Eio+Eg or mg=mi+mg. Replacing mg+mg by mi in above 
equation, we obtain:
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Substituting the value so obtained in Equation (37) mg=mi−2[−1]mi

� (25)

Put v=0, we get,

mg=mi

It follows that the same as been done previously that mg=n2mg(min) 
becomes mi=n2mi(min)� (26)

F m ai i=


 is the inertial force and F m gg g=


 is the gravitational forces. 
We already had proven mg=mi. From Equation (5) and (12),
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In particular, we can look on the momentum variation (p) as due to 
absorption or emission of electromagnetic energy by the particle (by 
means of radiation and/or by means of Lorentz’s force upon the charge 
of the particle). In the case of radiation (any type), (p) can be obtained 
as follows. It is known that the radiation pressure, dP, upon an area 
dA=dxdy of a volume dV=dxdydz of a particle (the incident radiation 
normal to the surface dA) is equal to the energy dU absorbed per unit 
volume dU/dV,

i.e.,  dP
dU

dV

dU
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Substitution of v dz/dt (v is the speed of radiation) into the equation 
above gives:
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µ=The index of refraction.
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Deducing the entropy differential equation starting from the 
Equation (35). Comparison of the Equations (35) and (27) shows that 
U μ=p c. For small velocities (V<<mc), p<<mi c so that U<<mi c2. Under 
these circumstances, the development of the Equation (35) in power of 
Uµ/mi c2, gives,



434

Special Issue (April)
	 Rai and Kannan	

m m
U

m c

mg i

i
2

2

i= −












µ � (36)

In the particular case of thermal radiation, it is usual to relate the energy 
of the photons to temperature, through the relationship hν≈kT where k 
is the Boltzmann’s constant. Thus, in that case, the energy absorbed 
by the particle will be U=η h ν≈ηkT, where η is a particle-dependent 
absorption/emission coefficient. Therefore, Equation (50) may be 
rewritten in the following form:
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For electrons at T=300 K, we have µ ηk
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The derivative of with Eki respect to temperature T is,
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Thus, substitution of Eki=EiEi0 into (39) gives 
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From Equation (17), therefore,
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Here, we can identify the energy Ei with the free energy of the system - F 
and Eg with the internal energy of the system - U, thus we can write the 
Equation (42) in the following form:

U F T
F

T
= −

∂
∂

� (43)

This is the well-known equation of thermodynamics. On the other hand, 
remembering:

∂ = ∂ + ∂Θ τ U (1st principle of thermodynamics) and,

F=U−TS� (44) (Helmholtz’s function),

We can easily obtain from (43), the following equation:

∂ = ∂ + ∂ ∑Θ τ T U � (44) 

for isolated systems, ∂τ=0, we thus have ∂Q=T∂S (45). Which is the well-
known entropy differential equation.

GRAVITATIONAL RELATIVISTIC THERMODYNAMIC

From the lead of Saslaw and Hamilton [6], we start with a general pair 
of equations of state for the internal energy U and the pressure P:

U NT b= −( )3

2
1 2 � (46)

P
NT

V
b= −( )1 � (47)

Thus, the above two equations represent the equations of state (e.g., Hill, 
1956) [2], Where, the b is dimensionless parameter.

b
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Here, n  = N/V is the average number density of the system of particles 
each of mass m. T is the temperature, V the volume, G is the universal 
constant of gravitation, ξ2(n, T, r) is the two-particle correlation 
function, and r the distance. These expressions assume a large volume 
V for their validity.

The thermodynamic parameters P, V, and T are related by P=P(V, T) and 
U=U(V,T).

From the first law of thermodynamics, for any system we have,

dQ=dU+PdV� (49)

Where dQ is the amount of heat flowing into the system, dU is the gain 
in its internal energy, and PdV is the work done by the system as its 
volume increases by the infinitesimal amount dV under the internal 
pressure P.
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From equation (59),
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The combination of equation (52) with equation (51) leads to:
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Since it is already known that dS is a perfect differential, therefore we 
must have
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Which implies toward the following equation:
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The probability for finding a galaxy in volume dV1 and also one in 
volume dV2 is related to two-point correlation function ξ2 (r) by:

P n r dV dV1 212
2

21= + ( ) 
− ξ

� (56)

In general, ξ2 will depend on the absolute positions r1 and r2 of 
two volume elements. Now, averaging the overall positions and all 
directions, then ξ2 will become a function only of the separation 
r=|r1−r2|. For ξ2 (r) to provide a good description, the system must be 
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statistically homogeneous so that on an average overall, the galaxies in 

a given volume V= 4
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Using equations (60) to (62) in equation (69), we have:
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It is inferred from the Equation (75) which is a first-order partial 
differential equation for two-point correlation function that it 
is characterized by number density n , temperature T, and the 
interparticle distance r; therefore, two-point correlation function ξ2 
will depend on the values of n  and T for the ensemble as well as on 
the spatial coordinate r in a statistically homogeneous distribution of 
galaxies clustering gravitationally in an expanding universe.

The galaxies are the extended structures, therefore, in an expanding 
universe. Hence, swear in a softening parameter ∈. Hence, for extended 
mass distribution, the internal energy U and pressure P can be written 
as:
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Implementing the similar steps earlier followed we will derive the same 
equation with softening parameter as:
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Equation (78) is a first-order partial differential equation for a two-
point correlation function of galaxies with extended structures’ 
clustering gravitationally. For extended mass structures, the value 
of ∈ is taken between 0.01 and 0.05 (in the units of total radius). The 
thermodynamic description of a two-point correlation function for 
describing the gravitational interaction of galaxies can be defined by 
the physical behavior of equations (61) and (64), respectively.

Now, we pose the following set of conditions to portray its generic and 
operational form.
a.	 In a homogeneous universe, the limiting values of n , T, and r are 

avail by the positive value of ξ2.
b.	 Except for the number density n , the value of two-particle 

correlation function ξ2 will increase and decrease when n , T, and r 
are very small and very large, respectively.

c.	 Because of virial equilibrium increase of two-particle correlation 
function divulge that the clustering of galaxies becomes dominant, 

which in turn implies that at low temperatures and high densities’ 
more and more clusters are formed.

d.	 When n  T−3 is very large, the two-particle correlation function will 
increase, and the measuring correlation parameter b approaches to 
1 and vice versa.

Thus, we extend our numerical approach as:

Integrating Equation (75) along with its characteristics as:

dn

3n

dT

T

dr

r
= = − � (65)

Thus, the result leads to

b
nT

nT

=
+

−

−
β

β

3

3
1

� (66)

This is the equation to be used for the thermodynamic dependence of b. 
Thus, we showed that the solution a two-particle correlation function 
is self-solicit and b demonstrates its complete dependence on n T

−3 .

VALIDATING RELATIVISTIC GRAVITATIONAL THERMODYNAMICS

The two-point correlation function in a gravitational galaxy clustering 
obeys power law Peebles (1980), which has also been confirmed from 
N-body computer simulations (Itoh et al., 1993) and is written as:

ξ2=r−1.8� (70)

From equation (62), we can write
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The regular form of b by Saslaw and Hamilton [6] is described by 
equation (69)
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The substitution of equation (72) in (71) gives the modified form of 
equation (84) as:

ξ2=r−2.0

This shows that the power law for a two-point correlation function 
developed is in close agreement with Peebles law and hence confirms 
the applicability of relativistic gravitational thermodynamics used 
to study the two-point correlation function for understanding 
gravitational clustering of galaxies in an expanding universe. The 

Fig. 1: (a) Computational simulation of the gravitating clusters of 
galaxies, (b) thermodynamic viewpoint of the given model

ba
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computational view of the given model is shown below in Fig. 1 A 
and B.

CONCLUSION

We put-forth relativistic gravitational thermodynamic methodology 
wherein the dependence of ξ2 on n , T, and r highlighted. One of the 
most excel features of the results is its facility to extend ξ2 to higher 
order correlations. Unlike the point mass system in expanding universe 
with the insertion of softening parameter ∈, it’s appropriateness to 
extended structures will give an edge toward the study of extensive 
structure of universe.
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