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ABSTRACT

Objective: The objective of this study is to construct predictive unbiased structure-based virtual screening (SBVS) protocols to identify potent ligands 
for estrogen receptor alpha by combining molecular docking, protein-ligand interaction fingerprinting (PLIF), and binary quantitative structure-
activity relationship (QSAR) analysis using recursive partition and regression tree method.

Methods: Employing the enhanced version of a directory of useful decoys, SBVS protocols using molecular docking simulations, and PLIF were 
constructed and retrospectively validated. To avoid bias, SMILES format of the compounds was used. The predictive abilities of the SBVS protocols 
were then compared based on the enrichment factor (EF) and the F-measure values.

Results: The SBVS protocols resulted in this research were SBVS_1 (employing docking scores of the best pose on every compound to rank the results 
and selecting compounds within 1% false positives as positive), SBVS_2 (employing decision tree resulted from the binary QSAR analysis using 
docking scores and PLIF bitstrings of the best pose of every compound as descriptors), and SBVS_3 (employing decision tree resulted from the binary 
QSAR analysis using ensemble PLIF of the selected poses from optimized docking score as the cutoff). The EF values of SBVS_1, SBVS_2, and SBVS_3 
are 28.315, 576.084, and 713.472, respectively, while their F-measure values are 0.310, 0.573, and 0.769, respectively.

Conclusion: Highly predictive unbiased SBVS protocols to identify potent estrogen receptor alpha ligands were constructed. Further application in 
prospective screening is therefore highly suggested.

Keywords: Estrogen receptor alpha, Structure-based virtual screening, Recursive partition and regression tree, Molecular docking, Protein-ligand 
interaction fingerprinting.

INTRODUCTION

Molecular interaction fingerprints (IFP) resulted from converting 
protein-ligand complexes into IFP bitstring were introduced in 2007 by 
Marcou and Rognan [1]. The IFP which is also known as the protein-
ligand IFP (PLIF) has been successfully employed mainly in fragment-
based drug discovery projects [1-6]. Inspired from IFP of Marcou and 
Rognan, an open-source Python implementation of the molecular IFP 
named PyPLIF was developed [7,8]. Different with the molecular IFP 
of Marcou and Rognan, PyPLIF uses non-proprietary Open Babel [9] 
library. Therefore, anyone can freely use, modify, and even develop 
PyPLIF depending on their purposes [7,10,11]. Since the original host 
of PyPLIF https://code.google.com/  [7] was shut down by Google, 
PyPLIF was relocated to GitHub (https://github.com/radifar/pyplif).

The distance between the PLIF of the predicted pose and the PLIF of the 
reference pose calculated using Tanimoto metric results in Tc-IFP [1] 
or Tc-PLIF [7], which could be used as alternative scoring functions 
in structure-based virtual screening (SBVS) campaigns  [3,4,12-15]. 
Notably, this scoring function is a reference-dependent function, and 
the selection of the reference determines the predictive quality of the 
SBVS protocol [3,16]. Inspired by the lock-and-key theory [17,18] and 
the fact that some ligands could interact with their protein targets in 
more than one pose [19,20], the idea of ensemble PLIF (ensPLIF) which 
is reference independent and considering more than one plausible 
docking poses emerged (Fig.  1). After molecular docking simulations 

using PLANTS1.2 [21] followed by PLIF identification using PyPLIF [7], 
ensPLIF could be calculated in the following two subsequent steps: 
(i)  Docking score-based pose selection for selecting the plausible 
docking poses, and (ii) counting the “on” interaction in selected poses 
followed by dividing it with all resulted docking poses for every 
interaction bitstring. Thus, ensPLIF for every interaction bitstring will 
be ranged from 0.000 to 1.000.

Aimed to provide highly predictive unbiased SBVS protocols to 
identify potent ERα ligands to present and to evaluate the application 
of ensPLIF in computer-aided drug discovery, retrospective SBVS 
campaigns targeting ERα by employing the dataset of ERα ligands, 
and their decoys provided by the enhanced version of database of 
useful decoys (DUD-E) [23] were performed. Previous attempts with 
the mol2 formats from DUD-E [23] showed that employing decision 
tree resulted from binary quantitative structure-activity relationship 
(QSAR) analysis using recursive partition and regression tree method 
(RPART) [24], and ChemPLP score as the docking score and PLIF 
bitstring as the descriptors had significantly better predictive ability 
to identify potent ERα ligands compared to the protocol that using 
only ChemPLP score [14]. Notably, instead of using the readily to be 
docked three-dimensional (3D) formats of compounds provided by 
DUD-E [23], in the research presented in this article, SMILES format was 
selected to avoid bias in ligand preparation steps [22,25]. Appended 
with ensPLIF, these retrospective campaigns resulted in three SBVS 
protocols: (i) Using ChemPLP score of the best pose of every screened 
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compound as the objective function to rank the compounds and select 
compounds within 1% false positives (FP) as positive (SBVS_1) [14], 
(ii) using decision tree resulted from the binary QSAR analysis using 
ChemPLP score and PLIF bitstrings of the best pose of every compound 
as descriptors (SBVS_2) [26], and (iii) using decision tree resulted 
from the binary QSAR analysis using ensPLIF of the selected poses 
from optimized ChemPLP score as the cutoff (SBVS_3). Although the 
predictive ability of SBVS_1 has already outperformed the original SBVS 
campaigns accompanying DUD-E [23] and our previous retrospective 
SBVS campaigns using PLANTS1.2 [14], the predictive abilities of 
SBVS_2 and SBVS_3 are considerably better than SBVS_1.

MATERIALS AND METHODS

Materials
All computational simulations and calculations were performed on a 
Linux (Ubuntu 12.04 LTS Precise Pangolin) machine with Intel® Xeon® 
CPU E31220 (@3.10 GHz) as the processors and 8.00 GB of RAM. The 
ERα ligands (actives_final.ism) and their decoys (decoys_final.ism) in 
the SMILES format were downloaded from http://dude.docking.org/
targets/esr1/[23]. In total, there were 383 ligands and 20,685 decoys. 
Computational medicinal chemistry applications utilized in this 
research were OpenBabel [9], SPORES1.3 [22], PLANTS1.2 [21,27], and 
PyPLIF [7,8]. The packages “rpart” [24,28] and “caret” [28,29] were 
employed in the statistical analysis using the R computational statistics 
software version 3.3.0 (R-3.3.0) [28].

Methods
Using gen3d module from Open Babel [9], the compounds in SMILES 
format were transformed into their 3D forms in the mol2 format. 
These 3D compounds were then readily prepared as the inputs for 
docking simulations in PLANTS1.2 [21] using reprot module from 
SPORES1.3  [22]. All compounds identified as “bad” by SPORES1.3 
in this step were removed and tagged as in actives or negatives (N). 
Virtual target (protein.mol2 and water.mol2) and docking configuration 
file (plants.config) were obtained from Anita et al. [30]. Each compound 
was docked independently using PLANTS1.2 [21] five times, followed 
by PLIF identification using PyPLIF [7,8]. The docking simulations 
for each compound resulted in 250 docking poses. Similar to “bad” 
identified compounds by SPORES1.3, screened compounds that could 
not result in docking pose in this step were tagged as in actives or 
negatives (N). The enrichment factor (EF) [26,31] and F-measure [2,31] 

value calculations were adjusted by considering the “bad” identified 
compounds by SPORES1.3 and the failed screened compounds as in 
actives or negatives (N). Ligands predicted as actives or positives (P) 
were encoded as true positives (TP), while ligands predicted as N were 
then encoded as false negatives (FN). On the contrary, decoys predicted 
as P were encoded as FP, whereas decoys predicted as N were then 
encoded as true negatives (TN).

The EF [26,31] and F-measure [2,31] values SBVS_1 [14] were 
then calculated. Following the procedure previously published by 
Istyastono  [26], SBVS_2 was constructed and evaluated based on 
its EF and F-measure values. For SBVS_3, ensPLIF for all interaction 
bitstrings was then calculated (Fig. 1) by considering all docking poses 
followed by decision trees construction using RPART [24] method 
in R-3.3.0  [29]. Based on the resulted decision trees, the F-measure 
value was calculated  [2]. Systematic selection of the docking scores 
(i.e., ChemPLP score) as the cutoffs for plausible docking poses selection 
was subsequently performed to optimize the F-measure value. The 
decision tree after poses selection using ChemPLP score with the best 
F-measure value was subsequently refined to obtain decision tree with 
no evidence of over fitting, cross-correlation between descriptors, and 
chance correlation. This procedure is presented schematically in Fig. 2. 
The EF and F-measure values of previously published SBVS protocol 
to identify potent ERα ligands [14,23,26] are also presented here for a 
comparison of the predictive abilities (Table 1).

RESULTS

Three unbiased SBVS protocols to identify potent ERα ligands, 
i.e.,  SBVS_1, SBVS_2, and SBVS_3 resulted in the research presented in 
this article. The protocols were retrospectively validated by employing 
the dataset of ERα ligands and their decoys from DUD-E [23]. SBVS_1 
used ChemPLP score of the best pose of each screened compound to rank 
both ligands and decoys in the retrospective virtual screening, and then, 
the ChemPLP score of 1% FP was used as the cutoff value in the ranked 
results to predict compounds as P [14,23]. SBVS_2 was similar to protocol 
proposed by Istyastono [26], but instead of using the readily 3D format 
of compounds as the inputs or the starting points, SBVS_2 here using 
SMILES format of the compounds as the starting points to avoid bias. In 
the retrospective virtual screening, SBVS_2 resulted in the best decision 
tree using ChemPLP score and PLIF bistrings as the descriptors (Fig. 3). 
In this article, novel descriptor called ensPLIF (Fig.  1) is introduced. 

Fig. 1: Procedure to calculate ensPLIF starting from ligand preparation. aOpen Babel [9], bSPORES1.3 [22], cPLANTS1.2 [21], and dPyPLIF [7]
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Table 1: Predictive abilities of some retrospective SBVS 
campaigns to identify potent ligands for ERα using ligands and 

decoys from DUD‑E

SBVS protocol Confusion matrix F‑measure EF

TP FN FP TN
SBVS_oria 59b 324b 207b 20478b 0.182 15.393
SBVS_chemplpc 71 312 207 20478 0.215 18.524
SBVS_rpartd 202 181 44 20641 0.642 247.945
SBVS_1 108 275 207 20478 0.309 28.178
SBVS_2 160 223 15 20670 0.573 576.084
SBVS_3 251 132 19 20666 0.769 713.472
aRefer to the SBVS protocol targeting ERα reported by [23], bcalculated from 
SBVS data targeting ERα obtained from [23], crefer to the best SBVS protocol 
reported by [14], drefer to the best SBVS protocol reported by [26]

Fig. 2: Schematic procedure of retrospective SBVS campaigns 
targeting ERα. Note: aRPART [24] and bR-3.3.0 [28]

Fig. 3: The decision tree adopted from the best one resulted from the RPART method resulted in retrospective screening campaigns using 
SBVS_2. If the answer of the question in the box is “Yes,” then the path goes to the left arrow, otherwise it goes to the right arrow [24]

ChemPLP score optimized ensPLIF values (Fig. 2) was used to develop 
decision trees in the retrospective virtual screening. By employing 
systematic optimization in every 1 ChemPLP score from ChemPLP score 
of −125 to 0, it was found that the ChemPLP score of −60 as the cutoff 
resulted in the highest F-measure value (Fig.  2). SBVS_3 used the best 
decision tree using ensPLIF values as the descriptors (Fig. 4).

Both decision trees (Figs. 3 and 4) as results from binary QSAR analysis 
using RPART [24] were evaluated for chance correlation [32,33], cross-
correlation between descriptors [33], and over fitting [34]. Since no 
evidence of those parameters was found in both decision trees resulted 
from the binary QSAR analysis using RPART [24], SBVS_2 and SBVS_3 
were statistically valid to be used further in virtual screening campaigns. 
Notably, the predictive abilities of SBVS_2 and SBVS_3, which employed 

binary QSAR analysis, were substantially better compared to the 
predictive ability of SBVS_1 (Table 1).

DISCUSSION

As can be seen in Table 1, the predictive abilities of the SBVS protocols 
using the decision tree suggested by RPART method (i.e., SBVS_rpart; 
SBVS_2; andn SBVS_3) were considerably better compared to the 
predictive abilities of the SBVS protocols using the docking score to rank 
the compounds (i.e., SBVS_ori, SBVS_chemplp, and SBVS_1). Previously 
reported, using the best decision tree resulted from RPART method, 
SBVS_rpart [26] could increase significantly the predictive ability 
of SBVS_chemplp [14], which represents commonly used docking 
score to rank the results in SBVS campaigns [23,35]. Since the project 
aimed to construct unbiased SBVS protocol from the beginning in the 
ligand preparation step, SBVS_1 and SBVS_2 have been performed to 
represent SBVS_chemplp [14] and SBVS_rpart [26], respectively. Similar 
with the previous reports [14,26], SBVS_2 outperformed SBVS_1 in 
the identification of potent ERα ligands among their decoys. Notably, 
although the difference between SBVS_1 and SBVS_chemplp [14] is only 
in the ligand preparation step, SBVS_1 showed better predictive ability 
compared to SBVS_chemplp. SBVS_1 used SMILES format to avoid bias. 
On the other hand, SBVS_chemplp [14] used the 3D forms provided in 
mol2 files by DUD-E [23].
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In this research, ensPLIF (Fig.  1) was introduced as another form of 
employing PLIF bitstrings resulted from PyPLIF [7,8] to be used as 
descriptors in binary QSAR analysis using RPART method [24,26,36]. 
The main difference of SBVS_3 and SBVS_2 is that ensPLIF in SBVS_3 is 
using multiple poses that have ChemPLP score similar or better than a 
certain cutoff ChemPLP score (Figs. 2 and 3), whereas SBVS_2 is using 
ChemPLP score and PLIF bitstring from a single pose that has the best 
ChemPLP score. Although SBVS_3 is slightly better than SBVS_2 (Table 1), 
employing multiple poses in SBVS_3 increases degree of freedom and 
could complicate the subsequent de novo design attempts compared 
to SBVS_2 [36]. Nevertheless, this success story offers possibilities to 
employ other supervised machine learning methods in post retrospective 
SBVS campaigns to optimize the predictive abilities [32,37].

Another advantage of using decision trees resulted from RPART 
method in these retrospective SBVS campaigns is that the decision 
trees (Figs. 3 and 4) pinpoint several important protein-ligand 
interactions directly, which in turn could indicate the plausible 
molecular determinants in the ERα-ligands interactions [26,36]. Table 2 
presents the important interaction bitstring in Figs. 3 and 4 and their 
corresponding ERα-ligand interaction meanings. Residues ARG394 

and GLY420 were identified as pivotal molecular determinants in ERα-
ligand binding by both SBVS_2 and SBVS_3. The hydrogen bond network 
involving ARG394 as donors has identified in the crystal structure 
3ERT [38] employed in the first SBVS to identify potent ERα ligand using 
PLANTS docking software [30]. Since the side chain of GLY420 could 
not serve as hydrogen bond acceptor, the O carbonyl in the main chain 
is the one that serves as the acceptor. Interestingly, ASP351 as anion in 
bitstring #105 was only identified in SBVS_2 but not in SBVS_3 (Table 2), 
although this interaction point has served as the anchor point in the first 
SBVS employing PyPLIF [7]. Since the interaction point in GLY420 was 
in the main chain and the other interaction points presented in Table 2 
were only identified either in SBVS_2 or SBVS_3, the most plausible 
molecular determinant is ARG394. In fact, 4-hydroxytamoxifen, one 
of tamoxifen metabolites, could reach 100-fold more potent than 
tamoxifen [39]. The additional hydroxyl group in 4-hydroxytamoxifen 
serves as the hydrogen bond donor in the hydrogen bond interaction to 
ARG394 [38,40]. Site-directed mutagenesis studies could be performed 
to further verify this suggestion [19].

The availability of retrospectively validated SBVS protocols to 
identify potent ERα ligands (Table  1) could be further employed 

Fig. 4: The best decision tree employing ensPLIF as descriptors to identify ERα ligands (SBVS_3). Seven types of how ligands bind to ERα or 
“key” are identified
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prospectively to discover novel potent ERα ligands or fragments. For 
example, previous SBVS campaigns targeting histamine receptors 
have successfully discovered potent fragments for histamine H1  [5], 
H3 [4], and H4 receptors [3]. The fragments could be optimized 
further by taking into account other properties in the subsequent drug 
development process [41]. The non-commercial database ZINC [42-44] 
has served as the source of prospective ligands in several successful 
SBVS campaigns [3-5,45,46]. On the other hand, several natural product 
databases have emerged that can serve as the source of prospective 
natural products in SBVS campaigns employing validated SBVS 
protocols [47]. Recently, a database of ready-to-dock phytoestrogens 
has become publicly available [25]. On the other hand, review articles 
on anti-breast cancer from various natural sources have also been 
published and provided us information of natural compounds to be 
screened as novel potential phytoestrogens [48]. In the near future, 
the database could be used to prospectively validated the predictive 
abilities of the SBVS protocols presented in Table 1, especially SBVS_2 
and SBVS_3.

In fact, very recently, the same techniques used in SBVS_3 were employed 
to construct SBVS protocol to identify potent acetylcholinesterase 
inhibitors [49]. This SBVS protocol has F-measure value of 0.413 
and was successfully employed to identify 2 chalcone derivatives as 
lead compounds in the development of potent acetylcholinesterase 
inhibitors [49]. The SBVS protocols, therefore, could be employed 
to virtually screen novel chalcone thiosemicarbazide derivatives 
developed by Arora et  al. [50] to discover dual active ligands as 
anticancer and acetylcholinesterase inhibitor.

CONCLUSIONS

Binary QSAR analysis using values derived from PLIF bitstring could 
be performed after retrospective SBVS campaigns. The binary QSAR 
analysis presented in this article resulted in decision trees by employing 

RPART method. At least, two kinds of descriptors can be used and have 
proven here to be able to increase the predictive ability of the SBVS 
protocol. The descriptors are the ChemPLP score and the PLIF bitstring 
of the best docking pose of each screened compound (SBVS_2), and the 
ensPLIF values (SBVS_3). In addition, SBVS protocols resulted from 
the research presented in this article (SBVS_1, SBVS_2, and SBVS_3) 
employed compound in their SMILES format as the initial input to 
avoid bias. Therefore, the highly predictive SBVS protocols (SBVS_2 
and SBVS_3) could be seen as unbiased and could be used further 
in prospective virtual screening attempts. Another finding in this 
research was the high probability of ARG394 to serve as the molecular 
determinant in ERα-ligand binding.
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