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ABSTRACT

Deep learning methods are a great machine learning technique which is mostly used in artificial neural networks for pattern recognition. This project 
is to identify the Whales from under water Bioacoustics network using an efficient algorithm and data model, so that location of the whales can be 
send to the Ships travelling in the same region in order to avoid collision with the whale or disturbing their natural habitat as much as possible. This 
paper shows application of unsupervised machine learning techniques with help of deep belief network and manual feature extraction model for 
better results.
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INTRODUCTION

Detection of underwater creatures is not an explored area of science 
until now. So looking back, we found only few people who have tried to 
apply machine learning for detection or classification of marine animals.

Cornell university whale detection program [1, 2, 3, 4, 5]  provides 
extensive information about whale detection a and its importance The 
data used here is taken from Kaggle competition[6] of whale detection, 
sponsored by Cornell university. Mellinger and Clark [1] looked at a few 
techniques for perceiving bowhead whale calls. They proposed a system 
utilizing spectrogram relationship and contrasted this with three other 
systems, which utilized a hidden Markov model (HMM), a coordinated 
channel and a neural system, individually. The HMM system is similar to 
the one utilized by Weisburn et al. The data layer of the neural system was 
a [11,22] exhibit processed from the spectrogram. The shrouded layer 
contained four units, what’s more, the yield layer contained a solitary unit. 
Each of the system gave back a score which were contrasted with an edge 
for figuring out if a call was distinguished. The main data set was utilized 
for contrasting the spectrogram connection system with the strategy 
utilizing a HMM and the strategy utilizing a coordinated channel while the 
second Data set was utilized for looking at the spectrogram relationship 
system to the strategy utilizing a neural system and the technique utilizing 
a coordinated channel. Mellinger and Clark found that, the spectrogram 
relationship system performed imperceptibly superior to the technique 
utilizing a HMM, and that the system utilizing a neural system performed 
far better. In any case they additionally found that the neural system 
requires a moderately expansive data set for learning. Further they found 
that the match channel performed inadequately, and they inferred that 
the coordinated channel strategy is not suitable in light of the fact that the 
problem in the recordings were not Gaussian [12] disseminated, and the 
bowhead whale calls were excessively disparate from each other.

RELATED WORK

The objective of perceiving marine creature sounds has been 
implemented by a few people in the past utilizing different techniques:
 Brown and Smaragdis [11] ordered calls from executioner whales 

into seven distinctive call sorts. They explored the utilization of 
Gaussian mixture models (GMMs) and HMMs [25] where the HMMs 
had a GMM for every state. Their data comprised of 75 recorded calls 
which each contained one and one and only of the seven call sorts. 
As highlight information the mel-frequency cepstral coefficients 
(MFCCs) [27] and their transient subsidiaries were utilized. These 

were ascertained utilizing the project MELCPST from the Matlab [8] 
perceiving marine creature sounds is an issue that has incredible 
closeness to discourse acknowledgment.

 Data and Sturtivant [13] utilized HMMs to distinguish three distinct 
gatherings of dolphin shrieks. Their HMMs spoke to the form of the 
state of the dolphin shriek when drawn as a spectrogram. For each of 
their sound recordings, the part that contained a dolphin shriek was 
recognized in the preprocessing, and a spectrogram representation 
of this was developed. At that point from taking after calculation was 
connected on the spectrogram to discover the state of shriek sound. 
A HMM was educated for every shriek class. These were then utilized 
for characterizing future shrieks by figuring the probability that a 
recorded shriek has a place with every class.

 Roch et al. [29] utilized GMMs to decide the types of recorded dolphin 
shrieks. The recorded sign was part up into time allotments from 
which the cepstral coefficients were computed. These were then 
utilized as highlight information for the GMMs. A GMM was gained 
from the shrieks for each species. At the point when the species for a 
recorded shriek was resolved, the probability for each GMM speaking 
to the component information was ascertained. The dolphin that 
made the shriek was then expected to have a place with the animal 
categories whose GMM had given back the most elevated probability. 
The number of segments of the GMMs was 64, 128, 256, and 512. 
The best results were discovered utilizing GMMs with 256 blends.

 Weisburn et al. [34] researched two distinct routines for recognizing 
bowhead whale brings in sound recordings which were recorded 
in the arctic. Other than bowhead calls they contained commotion, 
and, potentially impedances made by different creatures, or by ice 
that was breaking. The two distinct routines, that they utilized, were 
a HMM and a coordinated channel. The component information for 
the HMM was the three biggest crests in the recurrence range for 
every time period. The Gee had 18 states, and for each of these it 
had a Gaussian conveyance [28] over the component information. 
The coordinated channel was resolved from 40 recordings that 
contained just whale calls and no impedances. These recordings were 
likewise used to take in the HMM. Keeping in mind the end goal to 
recognize whale calls in the recorded signs, they figured a score and 
contrasted it with an edge. For the HMM the score was the probability 
found by the Viterbi calculation, and for the coordinated channel it 
was the connection between the sign and the channel. Weisburn 
et al. found that their HMM technique performed superior to the 
technique utilizing a coordinated channel, however both strategies 
distinguished a high partition wrongly.
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For both issues we are attempting to characterize sound signs by 
the source which produced them. Therefore it is the specific source, 
that we are attempting to perceive, which recognizes the issues. For 
discourse acknowledgment we realize that the source is a human 
vocal tract, and we are attempting to perceive the setting of this vocal 
tract. For the issue tended to by this venture, the source could have 
been a right whale which radiated an up-call. Else it could likewise 
some other source e.g., other marine creatures. For both issues we 
must concentrate highlight information which convey data about the 
procedure that produced the sign, and from this learn models which 
catch the procedure that produced the sign. Discourse acknowledgment 
is an issue that has been widely examined in the past [24,26,30], 
and due to its comparability to our issue it is sensible to research 
how techniques for discourse acknowledgment can be connected to 
perceiving up calls. Roch et al. [29] and Brown and Smaragdis [11] 
utilized a methodology exceptionally like the one that was proposed for 
discourse acknowledgment by Rabiner in 1989 [26]. They too utilized 
the Cepstral coefficients which are utilized frequently as a part of 
discourse acknowledgment on the grounds that it conveys much data 
about the vocal tract [23] tool kit Voicebox [7]. Testing was performed 
utilizing the forget one technique where each recording from the data 
set thusly was grouped while the remaining were utilized for learning 
the models. To quantify execution the rate understanding was utilized. 
The GMMs [9,10] were learned with 1-6 segments and 8-30 highlights. 
The best result was 92% understanding which was acquired utilizing 
GMMs with two segments and 30 highlights. The HMMs was scholarly 
with 5-17 states, 1-4 parts, and 8-42 highlights. The best results 
were 95% ascension, which was acquired utilizing HMMs with 24-30 
highlights, 13-17 states, and one segment.

APPROACH

All the methods mentioned above follows a feature extraction by a 
manual process. However, after invention of deep learning techniques 
in machine learning it is possible to ask the machine to identify patterns 
and feature with proper training. Neural systems are effective example 
classifiers which have been utilized as a part of various order and 
capacity guess undertakings. They are exceedingly nonlinear classifiers 
not just since they have nonlinear actuation units additionally in light of 
the fact that of the layer-wise structure stacked in a steady progression. 
Such a structure empowers the neural networks (NNs) to take in the 
mind boggling info yield connections of numerous grouping issues, for 
example, acoustic occasion grouping.

Our main focus here is to extract as many features as possible. The 
major disadvantage of analyzing audio files is that they contain lots of 
noise. Therefore a more prudent approach is to convert the audio files 
to Fig. files i.e., fast Fourier transformation, then use sliding window 
method to extract multiple features. Manufactured neural systems are 
prepared in a regulated way with the back propagation calculation in 
which the arbitrarily instated system weights are balanced concurring 
to the inclination plunge standard to take in the info yield relations 
from marked information. Back propagation calculation performs 
viably for shallow systems, i.e. those that have 1 or 2 concealed layers, 
yet its execution decays when the number of layers increments. Various 
investigations appear that the calculation gets stuck in neighborhood 
optima effortlessly and falls flat to sum up legitimately for profound 
systems [13,14] (with a conceivable exemption of convolutional 
neural systems, which were observed to be less demanding to prepare 
notwithstanding for more profound architectures [15,16]). All in all, it is 
demonstrated that, when NN weights are arbitrarily instated, profound 
neural systems perform more regrettable than the shallow ones [13,17].

With a specific end goal to facilitate the preparation of profound systems, 
an unsupervised pre-preparing is directed layer by layer, to instate the 
system weights [18]. This insatiable, layer-wise unsupervised pre-
training depends on confined boltzmann machine (RBM) generative 
model. A calculation called contrastive dissimilarity (album) is 
connected to prepare a RBM. Compact disc calculation prepares the 

first layer in an unsupervised way, delivering a starting arrangement of 
coefficients for the first layer of a NN. At that point, the yield of the main 
layer is bolstered as information to the following, again introducing the 
relating layer in an unsupervised way. The scientific points of interest 
of the CD calculation, can be found in [19] and won’t be introduced in 
this work. In the wake of pre-training, neural systems are prepared in 
a directed way with group back propagation calculation in which the 
weight overhauls happen after various preparing tests is exhibited to 
the system (group size). This stride serves as an adjusting procedure of 
the neural system coefficients [20] that have gone with pre-training. In 
this work, the topology of the neural system (5 covered up layers each 
containing 70 neural units with sigmoid actuation capacities) is picked 
by approval set and the impact of varieties in system topology on the 
characterization exactness is not displayed. Preparing parameters for 
the neural systems, for example, learning rate, energy, bunch size and 
so forth as well as their topology are kept the same for the majority 
of the investigations. The bunch size for both unsupervised and 
directed parts is decided to be 100. The learning rate and force of back 
propagation [21] are chosen to be 0.5 and 1 individually. The number 
of ages for the unsupervised pre-training is altered to two. The basis for 
ceasing the directed preparing was in light of the approval set mistake. 
The preparation was ended at the point when the acceptance mistake 
began to build which is a sign of over fitting [35].

MODULES

There are three different modules:
A. The features extraction module, which will read the dataset and 

extract features based on deep NN. The extraction is done in two 
parts first using deep learning techniques and second extracting few 
features with help of Numpy and Sklearn python library functions.

B. Data analyzing and modeling module.
C. Re-evaluation and back propagation module (Fig. 1).

FEATURES USED

High frequency template
Apply horizontal contrast enhancement and look for strong vertical 
features in the Fig. cut out the lower frequencies.

Fig. 1: Complete architecture of the proposed model

a

b

Fig.  2:  (a  and  b)  Spectrogram  of  sound 

containing whale voice 490
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High frequency metrics
Calculate statistics of features at higher frequencies [31] This is 
designed to capture false alarms that occur at frequencies higher than 
typical whale calls.

Also sum across the frequencies to get an average temporal profile. Then 
return statistics of this profile. The false alarms have a sharper peak.

Time metrics
Calculate statistics for a range of frequency [32] slices.

Calculate centroid, width, skew, and total variation [33].

 let x=P[i,:], and t=time bins

 centroid=sum(x*t)/sum(x)
 width=sqrt(sum(x*(t-centroid)^2)/sum(x))
 skew=scipy.stats.skew
 total variation=sum(abs(x_i+1-x_i)).

All these three types of features are at first filtered against Sliding 
Window and various frequency or X, Y coordinate.

IDENTIFIED TOOLS

MatlabR2014, Python 3.4 both of these required for Reading the audio 
files and extracting the features. The data model can be built in any of 
these two. We have also used Sklearn and Numpy libraries for statistical 
calculations.

b

a

Fig. 3: Three dimensional spectrogram of a audio containing 
whale sound

Fig. 4: Spectrogram of sound without whale voice

Fig. 5: (a and b) Fast Fourier transform of a sound containing whale voice
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Fig. 6: Fast Fourier transform of a sound which does not contain 
whale voice

Fig. 7: Sample with whale call (cropped)

Fig. 9: Frequency distribution without a whale call

Fig. 10: Receiver operating characteristic curve

Rank Extracted feature Importance
1 maxH_0005501 0.0373
2 maxH_0001315 0.033032
3 maxH_0000151 0.021753
4 maxH_0003507 0.020955
5 max_0000151 0.019671
6 maxH_0006245 0.018837
7 max_0004355 0.017471
8 max_0001315 0.016203
9 maxH_0001347 0.015726
10 skewTime_0027 0.01521
11 bwTime_0001 0.014406
12 maxH_0006722 0.013614
13 maxH_0002307 0.012322
14 bwTime_0006 0.011176
15 max_0001347 0.011116
16 max_0005501 0.010813
17 yLocH_0004631 0.010806
18 max_0003507 0.010696
19 max_0006340 0.0106
20 maxH_0005360 0.010428
21 skewTime_0050 0.010049
22 centOops_0002 0.009445
23 max_0006245 0.009411
24 centOops_0006 0.00888
25 bwTime_0002 0.00886
26 bwTime_0034 0.008708

Rank Extracted feature Importance
27 skewTime_0031 0.008067
28 yLoc_0001315 0.00794
29 maxH_0004355 0.007474
30 maxH_0001236 0.007401
31 tvTime_0005 0.007322
32 bwTime_0000 0.007204
33 bwTime_0048 0.006806
34 max_0001236 0.006698
35 skewTime_0023 0.005678
36 tvTime_0000 0.005587
37 skewTime_0042 0.005575
38 skewTime_0011 0.005341
39 bwTime_0012 0.005291
40 maxH_0001312 0.005287
41 skewTime_0044 0.005073
42 yLoc_0000151 0.004998
43 skewTime_0022 0.004918
44 tvTime_0009 0.004874
45 max_0006722 0.004849
46 skewTime_0032 0.004485
47 bwTime_0049 0.00443
48 skewTime_0012 0.004246
49 centTime_0004 0.004014
50 bwTime_0037 0.004001
51 centOops_0005 0.003918
52 tvTime_0052 0.003822

Table 1: Top features based on execution Table 1: (Continued)

(Contd...) (Contd...)

Fig. 8: (a and b) Whale component frequency filter

ba
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RESULTS AND SCREENSHOTS

The frequency based filter on whale component analysis shows us 
the major difference between a sample containing whale voice and a 
sample not containing whale voice (Figs. 6-9). These initial analyses 
using fast fourier transform (FFT) made us understand the attributes 
of whale voices. Therefore, we decided to work on manual feature 
extraction based on frequency. The extracted features of high frequency 
template, high frequency metrics and time metrics has been sorted in 
order of importance towards the result accuracy in Table 1.

The receiver operating characteristic (ROC) analysis shows that we 
have achieved (AUC) area under curve of 0.9857831  analysis for our 
approach (Fig. 10).

CONCLUSION

The current work shows an efficient feature based highly accurate 
method of detection of whale voices from underwater captured audio 
files with more than 97% accuracy.

Rank Extracted feature Importance
53 skewTime_0047 0.003645
54 bwTime_0026 0.003631
55 max_0002307 0.003616
56 centOops_0033 0.003573
57 maxH_0000970 0.003555
58 tvTime_0007 0.003413
59 tvTime_0010 0.00311
60 skewTime_0046 0.003089
61 skewTime_0007 0.003062
62 bwTime_0010 0.00304
63 bwTime_0011 0.002961
64 bwTime_0014 0.00293
65 centOops_0003 0.002922
66 yLoc_0000126 0.002877
67 maxH_0000118 0.002854
68 bwTime_0050 0.002833
69 tvTime_0002 0.002726
70 max_0005360 0.002686
71 maxH_0004881 0.002636
72 maxH_0008948 0.002549
73 yLoc_0004355 0.002511
74 tvTime_0004 0.002484
75 centTime_0013 0.002473
76 tvTime_0001 0.002392
77 skewTime_0056 0.002365
78 tvTime_0011 0.002359
79 centTime_0003 0.002353
80 bwTime_0051 0.002277
81 centOops_0043 0.002263
82 tvTime_0006 0.002196
83 skewTime_0034 0.002189
84 centOops_0014 0.002144
85 bwTime_0038 0.002124
86 max_0004881 0.002055
87 centOops_0044 0.002035
88 centTime_0038 0.002028
89 xLocH_0004631 0.002001
90 centOops_0010 0.00198
91 skewTime_0037 0.001964
92 centOops_0001 0.001955
93 skewTime_0035 0.001849
94 centOops_0046 0.001826
95 maxH_0006340 0.001777
96 skewTime_0010 0.001758
97 tvTime_0008 0.001721
98 bwTime_0044 0.001702
99 xLoc_0000970 0.001698
100 yLoc_0008948 0.001677

Table 1: (Continued) FUTURE WORK

In near future the similar approach can be used for other applications 
as well like, detection of audio from deep space observations for 
intelligent species search, even it can be used in other image or audio 
detection problems. The current model works very well with audio 
files with less noise. Another improvement can be done on detection of 
required signal on noisy files.
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