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ABSTRACT

Objective: This review article deals with the effect that various cell disruption techniques have on the efficiency of lipid extraction. We have reviewed 
existing algal cell disruption techniques that aid the biodiesel production process.

Methods: Current rise in demand for energy has led the researcher to focus on the production of sustainable fuels, among which biodiesel has 
received greater attention. This is due to its larger lipid content, higher growth rate, larger biomass production, and lower land use. Extraction of 
lipid from algae (micro and macro) for the production of biodiesel involves numerous downstream processing steps, of which cell wall disruption is 
a crucial step. Bead milling, high-pressure homogenization, ultra-sonication, freeze-drying, acid treatment, and enzymatic lysis are some methods of 
cell disruption. The cell disruption technique needs to be optimized based on the structure and biochemical composition of algae.

Result: The lipid extraction efficiency varies depending on the algal species and the cell disruption technique used.

Conclusion: In-depth research and development of new techniques are required to further enhance the cell disruption of the algal cell wall for the 
enhanced recovery of lipids. In addition, the operating costs and energy consumption should also be optimized for the cost-effective recovery.
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INTRODUCTION

Dependence on fossil fuels for energy production is now diminishing 
due to its rapid depletion and emission of environmentally toxic gases. 
For economic and environmental sustainability, it is necessary to 
explore alternative carbon neutral and renewable fuel [1]. Biodiesel is 
one among such sustainable source and carbon neutral fuel substitute 
for fossil fuels. Conventional sources for biodiesel production such 
as oil reserve crops, animal fat, and other sources cannot satisfy the 
increasing demand for fuels [2]. According to many reports, waste 
cooking oil and algae could be the promising feasible sources for the 
production of biodiesel to meet the worldwide energy demand [3].

Algae are capable of producing high quantity of lipid which can be 
used for biodiesel production [4]. Culturing of algae near to saline 
or brackish water region can minimize the use of land and water [5]. 
Algae help in reduction of carbon dioxide emissions by converting them 
into glucose. This glucose is converted to fatty acids for the synthesis 
of membrane [6]. Under stress conditions, this fatty acid is converted 
into lipids which can be used for production of biodiesel. Several algal 
species produce different types of lipids, hydrocarbons, and other 
complex oils. The total oil productivity, i.e., the total mass of oil that is 
produced per unit volume per day depends on the oil content in the 
biomass and growth rate of algae [7]. The growth rate of microalgae and 
macroalgae differs from each other. Extensive research is being carried 
out on macroalgae as they contain novel lipids and fatty acids. Jeong 
et al. have studied the efficiency of different pretreatment technique 
for the extraction of lipids from macroalgae. Effect of pH on disruption 
efficiency was studied on various macroalgae such as Ulva rigida, 
Polysiphonia strictissima, Enteromorpha intestinalis, and Porphyra 
species [8]. In general, the cell wall of algae is thick and composed of 
fibrillar matrix and crystalline polymers which cause hindrance in the 
extraction process of lipids. Its composition differs from each other, and 
hence, different disruption methods need to be developed. For example, 

the cell wall of Chlorella vulgaris predominantly consists of saccharides 
and hemicellulose for which grinding using liquid nitrogen has shown 
significant results [9]. The choice of the cell disruption technique 
depends on the type of algae, its cell wall structure, and composition. 
Hence, in this review, we have discussed about the algal cell wall 
structure, summarized on biodiesel production technique, and detailed 
on cell wall disruption methods.

ALGAL CELL WALL STRUCTURE

Algal cell wall is similar to that of plant cell wall and is generally 
trilaminar. An organized microfibrillar structure is embedded in a 
continuous matrix [10]. It consists of high protein content compared to 
plant cell wall, with major portion constituted of glycoprotein. 45% of 
the cell wall is made of cellulose, also containing other carbohydrates 
such as hemicellulose, and limited quantities of fructose, rhamnose, and 
glucose. It also has algaenan, which is a resistant biopolymer. Figs. 1 and 2 
represent algal spore cell wall and algal gelatinous cell wall composition, 
respectively. Based upon the composition of the cell wall, disruption 
technique is experimented. Algae produce a large quantity of oil, 
especially under stress and store it in between cell wall and membrane of 
the cell. The oil yield of algal cells varies from species to species.

PROCESS OF BIODIESEL PRODUCTION

Conversion of wet algal biomass into combustible fuel is a challenging 
process. Once the algal biomass is harvested, the processing of biomass 
takes place in various steps. Figs. 3 and 4 represent lipid content in 
various macroalgae and microalgae species. For extraction of energy-
rich compounds (triglycerides), it is first dehydrated and then made to 
react with a solvent like hexane. The extracted triglyceride is reacted 
with methanol in the presence of catalyst in a reaction known as 
alcoholysis or transesterification to produce glycerol and biodiesel [11]. 
The following chemical reaction depicts transesterification reaction of 
lipids present in algae for biodiesel production [12,13].
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TRIGLYCERIDES+METHANOL+KOH=GLYCEROL+METHYL ESTERS 
(BIODIESEL)

The major steps involved in the generation of biodiesel using algae are 
the cultivation of algae, harvesting, lipid extraction by cell disruption, 
and lipid transesterification [14]. Fig. 5 represents the process of 
biodiesel production. Under optimal condition, green algae could double 
its biomass in a day with approximately 50% of lipid content [15,16]. 
The high-density biomass leads to an increase in the biodiesel 
production  [13]. Although each one of these steps are important, 
cell wall disruption is particularly imperative, as the constituents 
of the extracted lipids are determined with respect to the disruption 
technique. Moreover, the challenge is microalgae are small in size and 
its surface is covered with a thick cell wall. The interested products are 
in general situated in globules or bound to cell membranes, making 
extraction more difficult. Hence, the use of relevant cell disruption 
strategy and method plays a major role in increasing the lipid extraction 
efficiency.

ALGAL CELL WALL DISRUPTION METHODS

A wide range of disruption methods are available for the disruption 
of the cell wall. They are classified into two main categories based 
on working mechanism which are mechanical and non-mechanical 
methods.

MECHANICAL DISRUPTION METHODS

Non-specific cell wall disruption is achievable by mechanical forces such 
as liquid-shear forces (employment of high-pressure homogenization 
and microfluidization), solid-shear forces (use of bead mill and high-
speed homogenization), exchange of energy through waves (use of 
ultrasonication and microwave), electric current (application of pulsed 

electric field), or heat treatment/thermolysis [17]. Table 1 summarizes 
the effect of different techniques on lipid extraction from various algal 
species. Mechanical methods have higher efficiency compared to other 
methods as they do not depend on the species of algae to be processed 
and the chances of contamination of the lipid product extracted are 
low [18].

Bead milling
Bead mill method includes cell wall breakdown by agitated beads. 
This method leads to a direct damage that is induced by the highspeed 
spinning of fine beads along with the biomass slurry as represented 
in (Fig. 6) [19,20]. Disruption depends mainly on the residence time 
of the beads in the system  [21]. Other factors include bead size, cell 
size, and its strength  [22]. Study on disruption of Chlorella vulgaris, 
Neochloris oleoabundans, and Tetraselmis suecica revealed that rate 
of release of intracellular carbohydrates and protein was higher with 
minimum energy consumption for smaller sized beads [23]. The rate 
of cell disruption is also directly proportional to volume ratio of the 
beads to that of cell suspension [24]. As the beads settle due to gravity, 
the extract could be easily removed by pipetting [25]. This technique is 
generally performed under laboratory scale. For large scale purposes, a 
dyno-mill is used, which has been successfully used for microalgal cell 
disruption. It utilizes rapidly rotating and notched discs for exciting the 
beads [26,27]. When biomass concentrations between 100 and 200 g/L 
are used, the method is effective with energy utilization [10,11]. The 
disadvantages are up scaling the process as it requires an extensive 
cooling system for the prevention of thermal degradation of the product 
[28]. Bead milling proved to be the most efficient cell disruption 
technique for C. protothecoides with lipid recovery of 18.8% [29].

High-pressure homogenization
In this method, cell suspension is pumped with a high pressure. In 
an accelerated cellular jet, suspension is impinged on the stationary 
valve surface causing shear stress due to the pressure drop [15]. The 

Fig. 1: Pie chart representing chemical composition of algal spore 
cell wall

Fig. 2: Pie chart representing chemical composition of algal 
gelatinous cell wall

Fig. 3: Bar graph representing lipid content in various macroalgae 
species

Fig. 4: Bar graph representing lipid content in various microalgae 
species
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components of a high-pressure homogenization include one or more 
positive displacement pumps. This pump forces the suspension to an 
orifice and makes it collide against the valve seat. The pump works 
under a high pressure that ranges from 150MPa to 400MPa. After the 
collision with the valve seat, the cells spread across its surface, followed 
by the collision with the impact ring. The cell disruption is caused due 
to the high energy densities, i.e.,  amount of energy released per unit 
volume [30]. It has been shown that high working pressure along with 
the number of cycles positively affects the cell disintegration [31]. The 
extent to which the disruption takes place depends on the pressure 
applied and the strength of cell wall [22]. The cell disruption can be 
maximized as there is a large availability of the designs of valve seat. 
Specific care has to be taken to minimize the damage that might be 

caused by the effects of cavitation [32]. This technique offers various 
advantages which includes lower cooling cost, lower heat formation, 
no dead volume in reactor, easy scale up, and low risk of thermal 
degradation. Although the homogenizers have many advantages, it 
makes the use of a large amount of energy [28]. This technique can 
rupture even the most hard-surfaced algae like Nannochloropsis [33] 
and can be utilized to process pretreated concentrated paste [34] but for 
application in large-scale processing, the energy consumption should 
be considerably low. The scale-up reduces processing capacity due to 
the increase in homogenizing pressure [35]. Successful disruption was 
achieved after the Chlorococcum cells were homogenized at a pressure 
of 850 bar [36]. Similarly, 8.5 times more oil was extracted using this 
technique from Nannochloropsis oculata [37].

High-speed homogenization
A stirring device in this instrument works at a higher revolution per 
minute (rpm) and comprises a stator and a rotor assembly made of 
stainless steel. This technique incorporates hydrodynamic cavitation 
that is caused due to mixing at a higher rpm and shear stress formed 
at the solid–liquid interphase. At the point when the critical rpm 
(8500) value is reached by the impeller tip, hydrodynamic cavitation 
is caused, which diminishes the surrounding pressure to the level of 
vapor pressure of the fluid. This causes the fluid to move away from 
the impeller. The fluid pressure is then reestablished which bring the 
fluid toward the impeller and that collapses the cavities. It is an easy, 
effective, but an aggressive technique. This method incorporates the 
possibility to process the suspensions with a relatively higher dry cell 
weight concentration (2–6% w/w) with the short contact time, thereby 
lessening the water footprint and the cost of downstream processing. 
Wang et al. and Balasubramanian et al. reported lipid extraction from 
Nannochloropsis sp. up to 76 % and 38 ± 2%, respectively, using high-
speed homogenization method [38,39].

Ultrasonication
Ultrasonication is an alternative method to overcome the problems 
faced in the conventional methods. It has simple working setup 
conditions which gives significant purity to the product. This technique 
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Fig. 5: Flowchart representing the process of biodiesel production

Table 1: Effect of different cell disruption techniques on lipid extraction

Algal species Techniques Conditions Result Reference
Scenedesmus dimorphus Bead milling

Ultrasonication
1 mm glass beads, 
processed for 2 min
100 watt ultrasonic 
processor, runtime−2 min

20.5% of dry weight lipid content 
recovered
21% of dry weight lipid recovery

[29]
[29]

Chlorella sp. Bead milling
Microwave
Ultrasonication
Enzymatic lysis ‑ lysozyme
Enzymatic lysis ‑ cellulase

3500 rpm
2450 MHz
50 Hz, 15 min
5 mg/l, 55°, 10 h
5 mg/l, 55°, 10 h

0.15 g lipid content per 0.5 g/l dry weight
0.18 g lipid content per 0.5g/l dry weight
0.2 g lipid content per 0.5 g/l dry weight
Lipid concentration was 22% of dry weight
Lipid concentration was 24% of dry weight

[55]
[55]
[55]
[9]
[9]

Nannochloropsis Microwave
Sonication

60°C
20 kHz

40% biodiesel yield
20% biodiesel yield

[72]

Botryococcus sp. MCC31 Microwave More than 100°C, 6 min
2450 MHz

48.33% of dry weight recovered [73]

Ankistrodesmus falcatus Pulsed electric field 
treatment

45 kV, 360 ns 1/e pulse 
duration

Doubles the extraction efficiency of lipids [74]

Algal Cell

Beads Grinding

Algal oil

Lysed cell

Fig. 6: Diagrammatic representation of cell disruption by bead 
milling
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requires lesser time to run with higher reproducibility, operational at 
lower temperature, and requires overall less energy input [40].

The mechanism of cell damage includes acoustic streaming and 
cavitation. Once the ultrasound is applied, there is the production 
of microbubbles known as cavitation, which generates pressure on 
the cells causing them to disintegrate [41]. The mixing of the sample 
is facilitated by acoustic streaming [42]. The energy that is released 
by the high frequency waves initiates the cavitation process, and 
propagation of shock waves. This causes the cell disruption. Sonicators 
are mainly of two types, as described by Lee et al. which include the 
bath type and horn type. The latter makes the use of the piezoelectric 
generator while the former has transducers that create ultrasonic 
waves [43]. During the course of the treatment, there is a generation 
of rapid compression/decompression cycles leading to stable and 
transient cavitation. The transient cavitation caused by the unsteady 
oscillations implodes producing heat shock waves. This causes the 
disruption of microalgal cells, leading the cavitation to crack the 
membrane and the cell wall  [44-46]. The collapse of bubble leads to 
increased mass transfer and microstreaming, aiding the increase of 
lipid extraction efficiency [47]. However, free radicals are produced 
when ultrasonication process is prolonged, decreasing the oil quality 
to be extracted [48]. The capability of bubble activity in cells disruption 
relies on ultrasound intensity, characteristics of the air bubble, and 
the relative nearness of the cells to the bubble [49]. Sheng et al. have 
reported 30% increase in yield of lipid after treatment of synechocystis 
PCC 6803 by ultrasonication method [50].

Microwave treatment
Microwave irradiation technique is one of the promising technologies 
being used in the extraction process of biodiesel production. This 
technique consumes less energy with high disruption efficiency and 
short processing time. The factors that affect the microwave-assisted 
extraction are dielectric properties of process mixture, process time, 
solid–liquid ratio, temperature, and type of solvent [51,52]. Efficient 
heating systems like microwave processing in combination with 
solvents such as hexane and ethanol can reduce the energy consumption 
in addition to the minimal use of solvent and is also economical. 
Continuous microwave systems for oil extraction from Scenedesmus 
obliquus were significantly affected by time and temperature. However, 
quality of the oil was reported high [53].

The cost of heating using a microwave is two-thirds in comparison to 
the conventional methods of heating. In addition, biodiesel production 
could also be increased using this technique. Radio frequency microwave 
energy provides various advantages like improvement in rate of reaction 
thereby leading to better separation. The use of non-contact heat source 
offers various advantages such as increase in energy transfer, selective 
heating, equipment size reduction, and quick startup. Evidently, 
microwave treatment could prove to be a promising technology to 
obtain maximum yield compared to conventional techniques [54]. It can 
be observed from experiments performed on Chlorella sp., Tolypothrix 
sp., and Nostoc sp. that microwave treatment is one of the most efficient 
cell disruption methods and unlike other methods, gives same efficiency 
of lipid extraction for different species of algae [55].

Pulsed electric field treatment
In pulsed electric field method, an external electric field is applied that 
initiates critical electrical potential charge along cell wall or membrane. 
Electromechanical compression and electroporation induces tension 
that leads to the formation of pores in the wall or membrane [56]. 
The number and size of pores are proportional to pulses and the 
electric field strength. The electroporation can be either reversible 
or irreversible [57]. In general, increase in conductivity leads to 
metabolites/compounds release from the disintegrated cells which in 
turn increases the temperature. This leads to decreases in the efficiency 
of cell disruption, and hence, this method is less preferable than other 
methods for extraction of lipid [43]. Eing et al. have demonstrated 
that the lipid yield increased 9  times when the algae Auxenochlorella 

protothecoides was pretreated by pulse electric field method before 
solvent extraction [58].

Non-mechanical disruption methods
Non-mechanical cell disruption techniques consume less energy 
when compared to mechanical methods [59]. The methods are more 
gentle and specific but are difficult to scale up to industrial levels. Non-
mechanical methods include physical methods such as freeze-drying 
and osmotic shock, and chemical methods like enzymatic cell lysis and 
treatment with chemical agents which involve the permeabilization of 
cell wall by binding with specific cell wall components. Vogels et al. have 
demonstrated that combining non-mechanical pretreatment methods 
like enzyme lysis or heat treatment with other mechanical techniques 
increased the cell wall disruption efficiency [60].

PHYSICAL DISRUPTION METHODS

Freeze-drying method
Freeze-drying makes lipid extraction from algal biomass easier [27]. 
It ensures that there is no loss of lipids, as they are volatile due to 
evaporation [61]. In this method, the wet biomass is frozen at −84°C under 
vacuum to crystalize the intracellular water [62]. After freeze-drying, cell 
can be directly lysed by allowing the ice crystals to expand by thawing. 
It can be combined with other methods like grinding ultrasonication or 
microwave to increase the yield efficiency [63]. If the cells are freeze-dried 
before bead milling, lipid recovery is more due to enhanced specific area and 
reduced diffusion gradient [64]. Although this method helps in increasing 
the efficiency, it is very expensive and has high energy consumption.

Manual grinding
Manual grinding could be performed in different methods. The first 
method includes harvesting of microalgae sample into a ceramic 
mortar, followed by the addition of liquid nitrogen and allowing the 
sample to thaw and then grounded by a pestle. The second method 
includes addition of Quartz sand to the sample and grounded directly. 
The third method includes drying the sample at 60°C for 7–8 h and 
grounded with Quartz sand [9].

CHEMICAL METHOD

Sulfuric acid treatment
Pretreatment of algal biomass for lipid extraction can be performed by 
sulfuric acid treatment. It is carried out by mixing the concentrated sulfuric 
acid (3-8%) with the algal culture and autoclaving at high temperature 
(120°C–160°C) for 15–45  min. This type of acid treatment helps in the 
hydrolysis of polysaccharide carrageenan layer by chain depolymerization 
and hydrolysis of sulfate moiety [65]. Experiments conducted by Halim 
et al. suggests that the relative concentration of lysed cell is more when 
treated with high volume of concentrated sulfuric acid followed by thermal 
treatment at high temperature [66]. Although this technique has good 
efficiency and low energy requirement, it is not widely used as there are 
high chances of product degradation due to the harsh conditions.

Enzymatic method
One of the most commonly used alternatives for mechanical 
disruption method is enzymatic lysis. This technique is specific 
for each microorganism to be lysed and helps in release of specific 
product [67]. Algal cell walls are strong and stable due to the presence 
of polysaccharides such as cellulose and hemicellulose. Lysing these 
cells with mechanical methods is energy intensive and use of enzymes 
lowers energy requirement [68]. Membranes of the lipid sac are also 
made of phospholipids. Thus, the common enzymes used for algal cell 
wall disruption are cellulase and lipase [69].

Cellulose Cellulase Glucose

Phospholipid  Lipase   Glycerol

Treatment of C. vulgaris with lysozyme and cellulase resulted in lipid 
concentration of 22% and 24%, respectively, and had the highest 
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efficiency among all enzymatic treatment (Zheng et al.) [9]. Algal cell 
wall is made of many complex layers and lysis of all these layers with 
just cellulase and lipase is not possible. Thus, a mixture of crude enzymes 
from sources like fungi is required for better efficiency. Like other non-
mechanical method, this method can be used either independently or as a 
pretreatment step for mechanical methods to increase the efficiency and 
decrease the energy requirements. The major drawback of this method is 
the unavailability of the large quantity of enzymes required for industrial 
scale. Chong et al. reported that employment of alkaline pretreatment 
followed by enzymatic treatment resulted in 90% lipid extraction from 
Nannochloropsis sp. [70]. Lipid recovery of 92.6% was obtained when 
the enzymatic disruption technique was carried out in combination with 
mechanical methods (high-pressure homogenization) [71].

CONCLUSION

Different cell wall disruption techniques were found to be efficient 
for microalgae and macroalgae. Cell disruption efficiency toward 
extraction of lipid varies according to the method employed and species. 
Microwave method and pulsed electronic field method were found 
to be the most suitable techniques. For the techniques to be feasible, 
the operating costs and energy consumption should be optimized to 
ultimately fulfill the major goal of superior quality products and their 
easy recovery. In-depth research and development of new techniques 
are required to further improve the cell disruption of the algal cell wall 
for the enhanced recovery of lipids.
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