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ABSTRACT

Objective: DNA hypermethylation is an abnormal epigenetic process catalyzed by DNA methyltransferase 1 (DNMT1). It is also one of the factors that 
cause non-communicable diseases such as cancer, diabetes, and other metabolic diseases. DNA hypermethylation can be reversed by suppressing 
DNMT1 activity using a DNMT inhibitor. This study was conducted to seek out inhibitor candidates among natural products.

Methods: The search for potential inhibitors was conducted through a virtual screening of the Indonesian Herbal Database using AutoDockVina as 
docking software. Twenty-five compounds known for their inhibitory activity against DNMT1 were used as actives and as a reference for generating 
decoys, which was done using the Directory of Useful Decoys, Enhanced.

Results: The 12 compounds with binding energies below the cutoff value were cassiamin C (A1), procyanidin B2 (B2), ent-epicatechin-
(4alpha->8)-ent-epicatechin (C3), epicatechin-(4beta->8)-epicatechin-3-O-gallate (D4), neorhusflavanone (E5), 3-O-galloylepicatechin-
(4beta->6)-epicatechin-3-O-gallate (F6), withanolide (G7), 3-O-galloylepigallocatechin-(4beta->6)-epigallocatechin-3-O-gallate (H8), cyanidin 
3-(6’’-caffeylsophoroside)-5-glucoside (I9), epifriedelanol (J10), gallocatechin-(4alpha->8)-epicatechin (K11), and scutellarein 7-glucosyl-(1->4)-
rhamnoside (L12). A1 had the lowest binding energy of −12.7 kcal/mol, whereas K11 had the highest of −11.5 kcal/mol.

Conclusions: The virtual screening yielded five potential DNMT1 inhibitors: Procyanidin B2, ent-epicatechin-(4alpha->8)-ent-epicatechin, 
epicatechin-(4beta->8)-epicatechin-3-O-gallate, neorhusflavanone, and cyanidin 3-(6’’-caffeylsophoroside)-5-glucoside.

Keywords: Epigenetic, DNA methyltransferase inhibitor, Indonesian Herbal Database, Virtual screening, AutoDockVina.

INTRODUCTION

Epigenetic modification is one of the factors that cause non-
communicable diseases. Living environment, lifestyle, exposure to 
toxic chemicals, and nutrition may influence an individual’s epigenetic 
profile. Epigenetic modification can alter gene expression [1]. One 
type of epigenetic modification is DNA methylation. DNA methylation, 
catalyzed by DNA methyltransferases (DNMTs), is the addition of a 
methyl (CH3) group to the DNA strand, specifically to the fifth carbon 
atom of a cytosine ring. Methylated cytosine, called 5-methylcytosine, 
usually occurs to a cytosine base that lies adjacent to a guanine base, 
at what is called a CpG site. The reason for this name is that cytosine 
is bonded to guanine through a phosphate bond. These sites normally 
occur in clusters; an area rich in CpG sites is called a CpG island. CpG 
islands are usually located near a gene regulator such as a promoter. 
DNA methylation that affects a gene promoter may repress the 
transcription of said gene and ultimately its expression. This process 
of turning a gene on and off through methylation is part of normal 
eukaryotic cell function [2,3].

There are several types of DNMTs. Based on their functions, they can 
be grouped into two categories: De novo DNMTs, which form new 
methylated cytosine, and maintenance DNMTs, which maintain existing 
epigenetic patterns from one generation of cells to its offspring. In 
mammalian cells, there are three active DNMTs: DNMT1, DNMT3L, and 
DNMT3A/3B. DNMT1 is a maintenance DNMT, whereas DNMT3A/3B 
and DNMT3L are de novo DNMTs [4]. DNMT uses S-adenosyl-
L-methionine as a methyl donor and produces S-adenosyl-L-
homocysteine (SAH) [5]. SAH is a strong endogenous inhibitor of DNMT. 
Hypermethylation is an aberrant methylation that occurs to normally 
unmethylated areas of the genetic sequence. Hypermethylation of 

CpG islands in the promoter region of a gene may cause inappropriate 
gene silencing and may affect such genes as those responsible for 
tumor suppression. It is, therefore, associated with non-communicable 
diseases such as cancer and diabetes [6]. One approach to recovering 
the function of a silenced gene is inhibiting the enzyme that catalyzes 
the methylation process, that is, DNMT. DNMT inhibitors (DNMTi’s) 
exist as nucleoside analogs and non-nucleoside analogs [7].

The development of non-communicable disease therapies that target 
the underlying epigenetic factors is paramount. Most of the existing 
therapies do not, and the limited number that do usually have severe 
side effects. These side effects arise because the existing epigenetic 
therapies use nucleoside analogs, which have similar structures 
to nucleosides and therefore interfere with normal cell function. 
The recent studies have focused on the finding non-nucleoside 
analog inhibitor candidates from natural sources [8,9]. Natural 
products are promising non-nucleoside DNMTi candidates because 
of their relatively low toxicity and high structural diversity [10,11]. 
The potential of several natural products has been studied; these 
products have included curcumin [12], epigallocatechin (EGCG) [13], 
genistein [14], caffeic acid  [15], psammaplin A [16], mahanine [17], 
and laccaic acid [16]. However, the inhibitory effects of these natural 
compounds are relatively low [11]. Therefore, a search for more 
effective DNMTi’s from natural compounds is necessary. Indonesia is 
recognized for its biodiversity, with at least 9600 species known to 
possess pharmacological activity [18,19], so a search for a DNMTi is 
promising. A previous study conducted by Yanuar et al. [20] collected 
three-dimensional data on several Indonesian herbal compounds and 
compiled a database, published as the Indonesian Herbal Database 
(HerbalDB). In this study, virtual screening was employed as an in silico 
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method of structure-based drug design. The virtual screening was 
done on the HerbalDB using AutoDock and AutoDockVina in the PyRx 
software [21-23]. The software was validated using decoys generated 
by the Directory of Useful Decoys, Enhanced (DUD-E) [24].

METHODS

This study was conducted using literature and virtual screening by 
molecular docking (structure-based virtual screening). The materials 
and methods described in this study were modified from the studies 
by Yanuar et al., Syahdi et al., and Maldonado-Rojas et al. [11,25,26]. A 
three-dimensional structure of DNMT1, positive and negative control 
compounds, and active herbal compounds contained in the HerbalDB 
were used in this study.

Preparing the target protein structure
The structure of the docking target, DNMT1, was obtained from the 
Research Collaboratory for Structural Bioinformatics Protein Data 
Bank website at www.rcsb.org/pdb/home [27]. Several inclusion and 
exclusion criteria were used to select the DNMT structure. The selected 
structure was required to be present in humans (homo sapiens), include 
a complete amino acid sequence at the active site, and be in complex 
with a ligand. The structure could not be a mutant protein or have a 
resolution of more than 2.5 Å. UniProt, InterPro, and protein model 
portal were used to compare the sequences and lengths of the amino 
acid chains [28-30]. The selected structure was then downloaded and 
optimized. The optimization process included cleaning the structure 
of solutes and all chemical compounds other than the co-crystal ligand 
and the target protein, separating the protein from the co-crystal ligand, 
adding missing hydrogens and charges, and minimizing energy. The 
partial charge of the atoms was calculated using the Gasteiger-Marsili 
charge algorithm while the force field calculation and minimization 
were done using the MMFF 94 method [31,32]. The entire optimization 
process was done using the Python molecular viewer embedded into 
AutoDock Tools. The coordinates of the center of the search space were 
then determined based on the binding space occupied by the co-crystal 
ligand.

Preparing the ligand structure
This study used three groups of ligands: Actives, decoys, and HerbalDB. 
The actives were positive controls or compounds that showed inhibitory 
activity against DNMT1 through in vitro or in vivo tests. Based on the 
previous research, 25 compounds were chosen as actives [11-17]. 
Their structures were obtained in SMILES format from the PubChem 
website at pubchem.ncbi.nlm.nih.gov [33]. These compounds are listed 
in Table 1. The second ligand group consisted of negative controls, 
chemical structures generated by the DUD-E at http://dude.docking.
org based on the chemical structures of the 25 active compounds. For 
the virtual screening parameter optimization process, the libraries of 
actives and decoys were combined. The third ligand library contained 

1550 compounds, and all active metabolites found in the HerbalDB. 
The structures in all three groups were then converted to the mol2 file 
format using Open Babel [34].

Validating the docking method
The validation of AutoDock 4.2 and AutoDockVina in PyRx was done 
by redocking the co-crystal ligand of the selected target protein. The 
varied parameters were grid center, grid spacing, and number of grid 
points, which in turn affected the binding energy, inhibition constant, 
and root-mean-square deviation (RMSD) of the docking results. The 
best pose was selected by evaluating the lowest binding energy and 
the lowest RMSD value. The protein-ligand interaction of the resulting 
pose was then compared to that of the co-crystals original pose and 
analyzed. Validation of both docking programs was also done on the 
actives library through docking to the target protein. The resulting 
binding energies were then used as references to determine the binding 
energy cutoff in the virtual screening process.

Optimizing the virtual screening parameters
The parameters for virtual screening were optimized by docking the 
active and decoy libraries to the target protein. The results were then 
calculated and analyzed through a receiver operating characteristic 
(ROC) curve and enrichment factors (EF) to determine the optimum 
parameters for each program, that is, the parameters that accurately 
discriminated actives from decoys without compromising too much 
accuracy or sensitivity.

Virtual screening of the HerbalDB
The virtual screening was performed on all active compounds in the 
HerbalDB using AutoDockVina in PyRx. The optimum parameters 
obtained from the previous step were applied to the docking software. 
The screening results were ranked by their binding affinity values, and 
the actives’ lowest binding energy from the docking validation step was 
used as the cutoff value to determine the hit compounds. Compounds 
with binding affinities lower than this cutoff value were considered hits. 
12 compounds met this criterion and were analyzed further.

Analyzing target-ligand interaction
The ligand poses, resulting from the virtual screening, were then 
visualized using PyMOL and LigPlot+ and compared with the pose of the 
co-crystal ligand [35]. In the interaction between specific amino acids, 
the ligands, and the respective binding space, each ligand occupied was 
then analyzed and compared to that of the co-crystal ligand.

RESULTS AND DISCUSSION

The DNMT1 structure that met all the inclusion and exclusion criteria 
was therefore selected as the target protein was 3SWR. This structure 
is in complex with sinefungin (SFG). The ligand binding site was 
determined by the position of this co-crystal ligand. The coordinates 
were −5.235, −0.522, and −32.228 for the x-, y-, and z-axis, respectively. 
Analysis of the target-ligand interaction between SFG and 3SWR before 
the structure was optimized showed that the amino acids that interacted 
with DNMT1 were Phe1145, Leu1151, Glu1168, Met1169, Cys1191, 
Glu1266, and Val1580. SAH, which has one chemical group different 
from SFG, occupied the same hydrophobic pocket and showed the same 
amino acid interactions. Other research into inhibiting DNMT1 with 
SFG has shown similar interactions with these amino acids. The best 
redocking run of SFG to 3SWR with AutoDock yielded an RMSD value of 
2.704 and a ∆G of −8.92 kcal/mol. The parameters used for this run were 
60 × 60 × 60 grid points with a 0.375 Å space between points (Fig. 1).

The docking of the actives library to the target protein showed that 
there were natural, non-nucleoside analog compounds with lower 
binding energies than SAH, which was also included in this library. Some 
of these compounds were laccaic acid A, EGCG, mahanine, genistein, 
parthenolide, curcumin, and chlorogenic acid. From this result, it can be 
surmised that a virtual screening process would detect non-nucleoside 
analog compounds with better binding affinities than the endogenous 
compound (SAH). The compounds that produced the lowest binding 

Table 1: 25 positive control compounds included in the actives 
library

Actives

5,6‑dihydro‑5‑azacytidine Laccaic acid A
5‑azacytidine Mahanine
5‑fluoro‑2′‑deoxycytidine Nanaomycin A
Aza‑AdoMet Parthenolide
Caffeic acid Procainamide
Chlorogenic acid Procaine
Curcumin Psammaplin A
∆2‑isoxazoline RG 108
Decitabine SAH
Deoxycytidine SGI‑110
EGCG SGI‑1027
Genistein SFG
Hydralazine
EGCG: Epigallocatechin, SFG: Sinefungin, SAH: S‑adenosyl‑L‑homocysteine
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in AutoDock was 55 × 55 × 55, while in AutoDockVina, the grid box size 
varied from 70 × 70 × 70 through 35 × 35 × 35 with a 10-point reduction. 
As can be observed in Fig.  2, the validation parameter optimization in 
AutoDock failed to produce ROC values above 50%, indicating that the 
system discriminated actives from decoys randomly. Therefore, the 
virtual screening was not done in AutoDock. In AutoDockVina, the best 
ROC AUC and EF1% values were obtained from 60 × 60 × 60 grid points 
with 0.375 Å spacing (equivalent to 22.5 × 22.5 × 22.5 Å).

The results of the virtual screening of the HerbalDB using AutoDockVina 
are listed in Table 2. The 12 compounds with binding energies lower 
than the cutoff value were cassiamin C (A1), procyanidin B2 (B2), 
ent-epicatechin-(4alpha->8)-ent-epicatechin (C3), epicatechin-
(4beta->8)-epicatechin-3-O-gallate (D4), neorhusflavanone 
(E5), 3-O-galloylepicatechin-(4beta->6)-epicatechin-3-O-gallate 
(F6), withanolide (G7), 3-O-galloylepigallocatechin-(4beta->6)-
epigallocatechin-3-O-gallate (H8), cyanidin 3-(6’’-caffeylsophorosid
e)-5-glucoside (I9), epifriedelanol (J10), gallocatechin-(4alpha->8)-
epicatechin (K11), and scutellarein 7-glucosyl-(1->4)-rhamnoside 
(L12). The lowest binding energy was that of A1 at −12.7 kcal/mol, 
whereas the highest was that of K11 at −11.5 kcal/mol.

Table 2: Top 12 compounds from virtual screening with AutoDockVina in PyRx

1 A M00002800 Cassiamin C −12.7
2 B M00009077 Procyanidin B2 −12.3
3 C M00009080 Ent‑epicatechin‑(4alpha‑>8)‑ent‑epicatechin −12
4 D M00002917 Epicatechin‑(4beta‑>8)‑epicatechin‑3‑O‑gallate (D4) −11.9
5 E M00006467 Neorhusflavanone −11.9
6 F M00009207 3‑O‑galloylepicatechin‑(4beta‑>6)‑epicatechin‑3‑O‑gallate −11.7
7 G M00032512 Withanolide −11.6
8 H M00009235 3‑O‑galloylepigallocatechin‑(4beta‑>6)‑epigallocatechin‑3‑O‑gallate −11.5
9 I M00006843 Cyanidin 3‑(6’’‑caffeylsophoroside)‑5‑glucoside −11.5
10 J M00030190 Epifriedelanol −11.5
11 K M00009112 Gallocatechin‑(4alpha‑>8)‑epicatechin −11.5
12 L M00004223 Scutellarein 7‑glucosyl‑(1‑>4)‑rhamnoside −11.5
HerbalDB: Herbal Database

Fig. 1: Left: Superposition of re-docked sinefungin (SFG) (green) 
and SFG (brown). Right: Binding space of re-docked SFG and SFG

energies were SGI-1027 and laccaic acid A, with ∆G values of −9.04 and 
−11.1 kcal/mol for AutoDock and AutoDockVina, respectively. These 
values were then used as the cutoff to determine hits.

The optimization of the virtual screening parameters in PyRx showed that 
only AutoDockVina produced an acceptable validity. The grid box size used 

Table 3: Target‑ligand interactions of reference and virtual screening results

Amino 
acids

Reference VS result

SFG co‑crystal SFG re‑docked SAH B2 C3 D4 E5 I9
Glu698 ‑ ‑ ‑ D ‑ ‑ D D
Ala699 ‑ ‑ ‑ ‑ ‑ ‑  A
Asp700 ‑ ‑ ‑ ‑ A ‑ ‑ ‑
Phe1145        D
Ser1146 ‑ ‑ O‑H ‑ D ‑ ‑ ‑
Cys1148 ‑ ‑ ‑ ‑ ‑ A ‑ ‑
Gly1149 ‑ ‑ ‑ ‑ ‑ A ‑ ‑
Gly1150 ‑ ‑ ‑ ‑ ‑ A ‑
Leu1151 H‑O H‑O H‑O ‑ ‑ A ‑ ‑
Ile1167 ‑ ‑ ‑ ‑ ‑ ‑ ‑ D
Glu1168 O‑H O‑H O‑H D ‑ ‑ D ‑
Met1169 H‑N    A   
Trp1170 ‑ ‑ ‑ ‑ ‑  ‑ 
Ala1173 ‑ ‑ ‑ ‑ ‑  ‑ ‑
Glu1189 ‑ ‑ ‑ D ‑ ‑ D ‑
Cys1191 H‑N H‑N H‑N  A A ‑ ‑
Gly1223 ‑ ‑ ‑  ‑ ‑ ‑ ‑
Pro1224 ‑ ‑ ‑ ‑ ‑ D ‑ ‑
Cys1226 ‑ ‑ ‑ ‑ ‑ ‑ ‑ A
Phe1247 ‑ ‑ ‑ ‑    ‑
Glu1266 O‑H  ‑ D D ‑ D ‑
Asn1267 ‑ ‑ ‑ ‑ ‑ D D D
Ala1579 ‑ ‑ ‑ ‑  ‑ ‑ ‑
Val1580 H‑O  H‑O ‑ ‑ ‑ ‑ ‑
Asn1587 ‑ ‑ ‑ D ‑ ‑ ‑ ‑
Val1768 ‑ ‑ ‑ ‑ ‑ ‑ D ‑
A=H acceptor, D=H donor, : Unspecific bond or hydrophobic interaction, SFG: Sinefungin, SAH: S‑adenosyl‑L‑homocysteine

Rank Code HerbalDB code Ligand ∆G (kcal/mol)
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Analysis of all target-ligand interactions showed that out of the 
12 compounds, B, C, D, E, and I interacted with 4 out of the 7 amino 
acids that SFG and SAH interacted with Phe1145, Met1169, Cys1191, 
and Glu1266. The other compounds interacted with adjacent amino 
acids and occupied a different binding space. Phe1145 and Met1169 
interacted hydrophobically, either with SFG and SAH or with the VS 
compounds. In either SFG or SAH, Cys1191 interacted with N1 on the 
adenine ring, while in the VS compounds, Cys1191 interacted with the 
hydroxyl group on the B ring of catechin or epicatechin. Therefore, 
it can be concluded that these five compounds are possible DNMT1 
inhibitors. Further, in vitro study is needed to confirm this premise. The 
results of all target-ligand analysis can be observed in Table 3.

CONCLUSION

AutoDockVina in PyRx yields the best virtual screening result with the 
following parameters: A grid box center at −5.325, −0.522, and −32.228 
and a grid box size at 22.5 × 22.5 × 22.5 Å (equivalent to grid point 
numbers of 60, 60, and 60 for the x-, y-, and z-axes, respectively, with 
0.375 Å between points). A virtual screening conducted with these 
parameters produced 12 compounds with binding energy values 
lower than −11.1 kcal/mol. An analysis of protein-ligand interactions 
showed that five of these compounds interacted with many of the same 
amino acids as the reference compounds did. These five compounds 
were procyanidin B2, ent-epicatechin-(4alpha->8)-ent-epicatechin, 
epicatechin-(4beta->8)-epicatechin-3-O-gallate, neorhusflavanone, and 
cyanidin 3-(6’’-caffeylsophoroside)-5-glucoside. An in vitro study must 
be conducted to explore the DNMT1 inhibitory potential of these five 
compounds.
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