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ABSTRACT

Objective: A convenient numerical model has been developed to predict release profile of different types of agents from bulk biodegrading polymer 
microspheres, including magnitude methods are less accurate than analytical methods. Usually, this study used analytical solutions for the model and 
compared the analytical results with numerical solution and experimental data.

Methods: The objective drug controlled release profiles were modeled based on a four-phase pattern. Then, a specific formulation was considered 
based on Fick’s second law. After calculating various parameters, the equations were solved using an analytical method.

Results: Comparison results showed that analytical solution can reproduce experimental behavior of controlled release systems with a higher 
accuracy.

Conclusion: Although in previous work, drug release profile from a polymer matrix composed of poly lactic-co-glycolic acid was predicted using 
readily attainable parameters and representing tunable matrix properties by a numerical method, the proposed analytical method can give more 
accurate results compared to the numerical method.
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INTRODUCTION

Nowadays, drug controlled release technology has expanded, noticeably 
and, polymer matrices have become the most commonly applicable 
controlled release delivery system [1]. In controlled treatments, 
a polymer matrix, containing a drug or a pharmaceutical agent, is 
placed in the body and the embedded drug releases and distributes 
through a diffusional process. After complete removal of the drug, the 
polymer matrix can be removed by surgery. Due to limitations and 
difficulties of surgery, a wide variety of biodegradable polymers with 
various geometries have been employed in the field of pharmaceutical 
sciences  [2-4]. In this type of matrix system, the polymeric materials 
consist of monomers linked to each other through functional groups 
with instable functionality. The degradation of polymeric materials into 
oligomers and monomers occurs through either biological enzymes 
produced by surrounding tissues or non-enzymatic processes [1]. In the 
context of controlled release technology, wide applicability of polymer 
matrices causes the development of numerous unique therapeutics 
to improve patients’ quality of life and satisfaction [5]. Since in vitro 
experiments need spending long time and high costs, it is attempted 
to predict controlled release of drugs from biodegradable polymer 
matrices using modeling techniques which satisfy the three following 
requirements [6]:
1.	 The model should be described according to available parameters;
2.	 The model must include all functions of the release process; and
3.	 The model must be applicable to a wide range of drugs.

In this respect, many studies have attempted to model biodegradation 
and controlled drug release profiles based on physical properties of 
the matrix, the embedded drug, and the employed polymer [7-10]. In 
one of the first models describing drug release from a biodegradable 
polymer matrix, Thombre et al. [11] used finite element mathematics 
to calculate drug release based on Fick’s second law, and, thus, effective 
diffusivity proportional to the extent of polymer degradation was 
incorporated into the model. In 1989, Saltzman et al. [12] described 

agent diffusion through non-biodegradable, porous polymer matrices, 
accurately, using percolation theory, and in vitro studies. In their 
proposed model, Fick’s second law containing an effective diffusivity 
factor was used. The effective diffusivity factor could vary with the type 
of their polymer matrix. Gopferich et al. [13] studied stochastic methods 
to describe time evolution of increased porosity of biodegradable 
systems and calculated release of water-soluble small molecules from 
polyanhydride disks, which were assumed to degrade through surface 
erosion. In a different approach, Batycky et al. [14] developed a model 
based on differential equations to describe burst–lag–burst type release 
from polyester microparticles. Later, Siepmann et al. [9] described the 
release of a low-molecular-weight agent from bulk eroding poly lactic-
co-glycolic acid (PLGA) microspheres. To improve the description of 
drug release, they added some equations governing porosity dependent 
diffusion of the agent and performed Monte Carlo simulations. 
Rothstein et al. [6] developed a simple mathematical model, which 
was solved using numerical method, to predict the release of different 
types of agents from bulk eroding polymer matrices without regression 
analysis. In their model, two correlations were developed by fitting the 
fundamental equations to the published controlled release data so that 
their predictions for several different biodegradable matrix systems 
used easily measurable or commonly known parameters. It was shown 
that the model predicts a wide range of therapeutically relevant release 
behaviors. They calculated a finite element solution for the given matrix 
geometry using some default solver settings. Due to high symmetry of 
spheres or high aspect ratio of thin films, the modeled matrix geometries 
were simplified to be one dimensional to decrease computation time. 
They validated their numerical solutions of the model by fitting to 
experimental data for varying molecular weight of release (MWr) and 
diffusivity of the agent through the porous matrix (D).

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. 
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Each of the mentioned models follow successful steps toward enabling 
rational  design  of  biodegradable  controlled  release  polymer 
matrices by solving the related equations through numerical methods. 
However, numerical methods are less accurate than analytical
 methods. In 
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fact, the biggest advantage of analytical method is building a degree 
of confidence for both the developer and the user. Although the 
analytical method may appear time consuming, it results inexpensive, 
eliminates frustrating repetitions, and causes better time management 
in the end  [15]. Therefore, the main objective of the present work is 
the prediction of drug controlled release from biodegrading polymer 
matrices using analytical methods and comparing the results with 
numerical solutions and experimental data. In this work, a new method 
has been used to describe the release of several water-soluble agents 
such as gentamicin, insulin, leuprorelin, melittin, betamethasone, 
metoclopramide, and ethacrynic acid, discretely encapsulated in bulk 
biodegrading polymer matrices that dissolve rapidly, relative to the 
time scale of release. In this model, PLGA polymer has been used due 
to the fact that lactic acid and glycolic acid monomers, that would be 
produced during PLGA decomposition, are not harmful to body and 
are quite biocompatible. Moreover, PLGA is a time-dependent water-
soluble polymer. In addition to the fundamental equations required for 
modeling agent release, the adopted model of this study includes two 
correlation functions that enable predictions with knowledge of five 
commonly known or easily measurable parameters. These parameters 
are microsphere radius Rp, occlusion radius Rocc, polymer degradation 
rate constant kCw, initial molecular weight of the polymer MWo, and 
molecular weight of the releasing agent MWA.

METHODS

Modeling
Based on former studies on bulk biodegrading polymer matrices, drug 
controlled release profile can follow a four-phase pattern consisted 
of an initial burst phase, a lag phase, a secondary burst phase, and a 
final release phase. To model this pattern, first, an initially uniform 
matrix composed of a biodegradable polymer, i.e., PLGA, with randomly 
distributed and entrapped releasing agent with initial concentration 
of the agent in the polymer matrix (CAo), which is loaded below its 
percolation threshold was considered [6].

To prepare drug containing polymer matrices, the agents, i.e.  the 
embedded drugs, are usually encapsulated as a solution in occlusions 
so that they are dissolved in a solvent and then encapsulated in small 
spherical occlusions with radius Rocc. Then, the spherical occlusions 
are encapsulated within a polymer matrix, uniformly  [3]. When 
the polymer matrix is implanted in body, at time zero, an aqueous 
reservoir begins to hydrate the matrix and an eroding reaction 
happens, quickly  [10,16]. As the matrix hydrates, the encapsulated 
agent molecules adjacent to the matrix surface, with a direct pathway 
to egress, diffuse into the reservoir, rapidly, due to lack of any 
polymer on their pathways)the initial burst, phase 1 of the release 
pattern in Fig. 1). Relative size of the occlusion (Rocc) occupied by the 
encapsulated agent is proportional to the magnitude of the initial 
burst phase, as illustrated in Fig.  2 [6]. As the initial burst release 
commences, polymer biodegradation begins and increases chain 
mobility, and it effectively leads to the formation of pores in the 
polymer matrix [17] (phase 2 of Fig. 1). In this model, a pore is defined 
as a region of polymer matrix with an average molecular weight 
low enough to allow release of the encapsulated agent. Further, the 
molecular weight of each encapsulated agent type associated with 
release may vary, and it might lead to a size-dependent restriction 
for agent egression. When pores form, the embedded agent diffuses 
gradually and its diffusion continues while enhancing number and 
diameter of the pores (the secondary burst; phase 3 of Fig. 1). Finally, 
cumulative growth and coalescence of the pores lead agents to diffuse 
toward the surface of the polymer matrix (phase 4 of Fig. 1) [18].

Formulations
Concentration of the agent in the polymer matrix (CA) within a matrix 
can be calculated from Fick’s second law (Eq. 1) at any instant of time 
(t) or any point of space (r). When this equation is used, the agent is not 
generated or consumed in any reactions during its diffusion through 
the polymer matrix [8,9].

Fig. 1: Schematic depiction of the four-phase release pattern considered in the model. (a) Cross-section diagrams depicting the four 
phases of release for a double emulsion microparticle with an agent encapsulated in its occlusions, heterogeneously. (b) Release profile 
for a macromolecular drug encapsulated in a biodegradable polymer matrix with four phases of release. The numbers associated with 
each cross-section diagram indicate which phase of the release profile is illustrated. These phases are (1) the initial burst, (2) the lag 

phase, (3) the secondary burst, and (4) the final release [6]
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In Eq. 1, Deff is an effective diffusivity term and a boundary exists at 
a depth of Rocc from the matrix surface (r=Rp−Rocc) where continuity 
conditions are defined. In the subdomain of Rp to Rp−Rocc, the agent is 
subjected to the initial release phase so that Deff is simply a constant 
diffusivity (D) which reflects the movement of the agent through the 
hydrated occlusions abutting the matrix surface. In the subdomain of 
0 to Rp−Rocc, the agent is subjected to molecular weight consideration 
and pore-dependent release. Therefore, the effects of these parameters 
on Deff should be concerned since Deff is related to porosity and porosity 
is a function of time for systems such as microspheres or sections in 
a thin film degrading heterogeneously. In this way, Deff=Dε(t), where 
D is diffusivity of the agent through the porous matrix and ε is time-
dependent matrix porosity. At the central point, line, or plane of the 
matrix (r=0), symmetry conditions are defined (dCA/dr=0). At the 
matrix surface (r=Rp), perfect sink conditions are specified (CA=0).

Assuming that polymer’s degradation rate is normally distributed, 
induction time of pore formation can be concerned to follow a normal 
distribution [6]. Moreover, since pore formation is cumulative, time-
dependent matrix porosity (ε(t)) can be described with a cumulative 
normal distribution function (Eq. 2):
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In this equation, t is any insant of time, τ  is the mean time for pore 
formation, and σ2 is the variance of time required to form pores.

Implementation
Calculating kCw: Pseudo-first order degradation rate equations can be 
expressed as MW MW e

kc tw= −
0 . Consequently, polymer degradation 

rate constant (kCw) can be obtained from the slope of ln MW versus 
T curve, and MW0 can be found from the intercept while MW values 
measured at different time intervals can be obtained by averaging them 
from several valid sources [19-21].

Calculating τ : The mean time for the formation of pores ( τ ) can be 
calculated through Eqs. 3 and 4:

rA dMW
dt

kC MWr
w r= − =

� (3)

τ =
− 









1

0kC

MW

MWw

r
ln

� (4)

Where, kCw is the polymer degradation rate constant for the given 
polymer type, MWo is the initial molecular weight of the polymer, and 
MWr is the average polymer molecular weight in a differential volume 
of matrix allowing diffusion of the encapsulated agent. For blended 
polymer matrices, the value of τ  can be calculated by averaging the 
results obtained from Eq. 4 for each component. The matrix’s molecular 
weight on release (MWr) specifies how far degradation is required 
before releasing the agent and how far it would vary depending on 
size of the encapsulated agent. Macromolecules or larger agents can 
only diffuse through a section of matrix that is almost entirely free of 
insoluble polymer chains. Smaller agents can egress through more 
intact sections of the polymer matrix (higher MWr) and demand for less 
free space for passing.

Calculating σ: Variance of time required to form pores (σ) can be 
obtained according to Eq. 5 using mean time of pore formation ( τ ) and 
time for pore formation (τ). τ  can be calculated using kCw(n) values 
and a distribution of induction times (t(n)) based on Eq. 4:
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Calculating MWr and D: Due to difficulty of measuring the values of agent 
diffusivity through the porous matrix (D) and MWr, these parameters 
should be calculated by linking them to several easily measurable 
variables. To calculate MWr, the experimental values for a wide range 
of agents with different molecular weights have been presented by 
Rothstein et al. [6].

Several tests have been performed to show the influence of diameter 
on agent diffusion. Siepmann et al. [17] studied about the importance 
of autocatalysis in PLGA-based microparticles used as controlled drug 
delivery systems and confirmed that PLGA degrades into shorter chain 
alcohols and acids on contact with biological fluids. Accumulation of 
acids can lead to a significant drop in pH of PLGA microenvironment 
and accelerates subsequent polymer degradation. In other hand, the 
produced acid tends to leave the polymer by diffusion. However, as 
the mechanism of acid production is much faster than its diffusion 
toward outside of the polymer, pH is lower inside the polymer [8,17]. 
Therefore, the larger size of polymer creates a longer direction path for 
the produced acid; pH elevation occurs later, accumulation of acid in 
the polymer increases and as aforementioned, increased acidity leads 
to an increase in polymer decomposition rate and ultimately diffusivity 
of the agent. Since calculating diffusivity for each sample is difficult, 
fitting diffusivity versus diameter for the previous samples presents 
the relationship between them. Therefore, diffusivity was calculated 
through a regression analysis based on the power expression of y=aXb 
(X=Rp and y=D). According to experimental data [6] a=2.071×10−19 and 
b=2.275, which accurately corresponds to PLGA and can be extended to 
other polymers.

Solutions
Part A: Initial burst
Fick’s second law and boundary conditions for the initial burst phase 
are:
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Fig. 2: Schematic presentation of the initial burst phase related 
to occlusion size. The double emulsion particle contains large 

occlusions filled with the drug solution
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Where, CA, D, r, t, and Rp are, respectively, agent’s concentration, 
diffusivity of the agent through the porous matrix, any point of space, 
any instant of time, and microsphere radius, respectively. In 1975, 
Crank [22] solved this equation and found the final result as:
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Where, mt1 is the magnitude of the available agent at any instant of time 
during the initial burst and m∞1 is the magnitude of the available agent 
during the initial burst phase. It should be noted that total magnitude of 
the agent (m∞), which can be removed, is equal to m∞1 in Rp-Rocc distance, 
during the initial burst phase. The ratio (φ) of this magnitude (m∞1) to 
total magnitude of the agent (m∞), which represents the ratio of the first 
layer of matrix volume to total volume of the matrix, can be calculated 
as follows:
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Where, Rp and Rocc are microsphere radius and occlusion radius, 
respectively.

Part B: Lag phase (no mass transfer)

The pores are forming and the agent has been removed from the surface.

Part C: Secondary burst

In this phase, drug molecules pass out through the created pores and 
the pores become bigger gradually and, thus, diffusion increases. The 
relationship between effective diffusivity (Deff) and matrix porosity (ε) 
is defined to be:

Deff=Dε(t)� (9)

Where, D is diffusivity of the agent through the porous matrix.

Fick’s second law and boundary conditions for the secondary burst 
phase are (diffusivity is time-dependent):
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Where, CA, Deff, r, t, and Rp are agent concentration, effective diffusivity, 
any point of space, any instant of time, and microsphere radius, 
respectively. To solve this equation, the variable should be changed:

T D (t)dteff= ∫ � (11)

The equation can then be solved by variable separation and the final 
result would be:
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Where, mt2 is the magnitude of the available agent at any instant of 
time during the secondary burst phase and m∞2 is the magnitude of the 
available agent during the secondary burst phase. Integral T was solved 
by Mathematica software (Mathematica 8.0.0 GNU/Linux frontend), 
and the following expression was achieved:
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b = 2 2σ

Where, D, t, τ, and σ are diffusivity of the agent through the porous 
matrix, any instant of time, time for pore formation, and variance in 
time required to form pores, respectively. Total diffusion was obtained 
to be:
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Where, mt1 and mt2 are magnitudes of the available agent at any instant 
of time during the initial and secondary burst phases, respectively, m∞1 
and m∞2 are magnitudes of the available agent during the initial and 
secondary burst phases, respectively, mt is total magnitude of the agent 
at any instant of time, m∞ is total magnitude of the agent, and φ is the 
ratio of the first layer of matrix volume to total volume of the matrix.

RESULTS AND DISCUSSION

The results of analytical solutions are illustrated in Figs. 3 and 4. For 
validation of the analytical results of the model, they are fitted to 
experimental and numerical data using Matlab software (MATLAB 
R2013a) for varying MWr and D values (Figs. 3 and 4). As illustrated in 
Figs. 3 and 4, analytical data are close to the experimental data, while 
the numerical solution of Rothstein et al. [6] has given results which are 
not close enough to the experimental data.

To prompt development of biodegrading matrices for controlled release 
therapeutics, many models have been developed. In general, these 
models describe the release of specific types of agents, such as small 
molecules or proteins [7,9,10], and require parameters that can be 
only obtained by fitting controlled release data or observing controlled 
release experiments [9]. To eliminate the need of exploratory in 
vitro experiments and investigate drug dosing schedules supplied 
by potential controlled release therapeutics, a model must be able to 
predict a broad range of release behaviors from tunable matrices for a 
wide array of agents, without regression analysis. Hence, in the present 
work, we developed a new method to calculate the magnitude of the 
initial burst release and duration of the subsequent lag phase to permit 
these features to be predicted with commonly known parameters 
regardless of the encapsulated agent type. We solved this model using 
the parameters obtained by Rothstein et al. [6] to compare the results 
of both numerical and analytical methods.

To solve the fundamental equations using the developed analytical 
method, accurate values for D and MWr, Rocc, τ , kCw, and that have been 
obtained and used by Rothstein et al. [6] are required. Two partial 
differentiation equations with different diffusivities were solved to find 
accurate data close to the related experimental data. First, the equations 
were solved in terms of diffusivity given by Rothstein et al. [6], which 
resulted in analytical data that are different from the experimental values. 
To solve this problem, drug release profiles were obtained with different 
diffusivities by optimization of the diffusivity values. So that, the analytical 
data were modified to match the experimental data and magnitude of 
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appropriate diffusivity was obtained. Although the optimum diffusivity 
value is slightly different from the diffusivity value given by Rothstein 
et al. [6], it affects curve fitting, noticeably. In fact, in analytical solution, 
various diffusivity values were assumed in modeling the initial and 
secondary burst phases since diffusivity in the secondary burst phase is 
more than that in the initial burst phase. This difference in diffusivities of 
the two burst phases is due to a sudden release caused by direct pathways 
of regression. However, Rothstein et al. [6] have assumed the same 
magnitude for both diffusivities. Since the diffusivity equation in terms of 
radius (in the work of Rothstein et al. [6]) has been obtained using data 
extracted from different references, i.e., the data might be obtained using 
different techniques, it is not quite accurate to relate these data in the 
same graph and fit them based on the same equation. Overall, according 
to the obtained analytical results, the model proposed by Rothstein et al., 
is an appropriate model for prediction of release profile of different types 
of agents from bulk biodegrading polymer microsphere. However, as the 
numerical method of Rothstein et al. [6] can only provide approximate 
solutions, the analytical method is revealed to be more useful.

CONCLUSION

In this study, a simple model that can predict controlled drug release 
successfully is demonstrated for an extremely wide array of agents 
encapsulated in bulk biodegrading polymer matrices. Although 
Rothstein et al. [6] have predicted drug release profile from a polymer 
matrix composed of PLGA using readily attainable parameters and 
representing tunable matrix properties by numerical method, this 
study solves the model by an analytical method than can give more 
accurate results compared to their numerical method.
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