ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

NNOVARE ACADEMIC SCIENCES Knowledge to Innovation

Vol 11, Issue 2, 2018

Online - 2455-3891 Print - 0974-2441 Research Article

DYSLIPIDEMIA AMONG THE ELDERLY IN SLUMS OF WEST DELHI

ZAOZIANLUNGLIU GONMEI^{1,2}, SUPRIYA DWIVEDI^{1,3}, GURUDAYAL SINGH TOTEJA^{1,4*}, KARUNA SINGH², NAVAL KISHORE VIKRAM⁵, PRIYANKA GUPTA BANSAL¹, SUMAN RATHORE³

¹Division of Nutrition, Centre for Promotion of Nutrition Research & Training with special focus on North East, Tribal & Inaccessible population (Indian Council of Medical Research), New Delhi, India. ²Department of Food & Nutrition, Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India. ³Department of Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India. ⁴Desert Medicine Research Centre (Indian Council of Medical Research), Jodhpur, Rajasthan, India. ⁵Department of Medicine, All India Institute of Medical Sciences, New Delhi, India. Email: gstoteja@gmail.com

Received: 30 September 2017, Revised and Accepted: 15 January 2018

ABSTRACT

Objective: The objective of this study is to assess the prevalence of dyslipidemia among the elderly in slums of West Delhi.

Methods: A cross-sectional study was carried out in slums of West Delhi covering a total of 234 elderly aged 60 and above. 5 ml blood was collected from 103 elderly and was analyzed for serum total cholesterol, triglyceride, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol by enzymatic method using fully automatic analyzer (Roche Hitachi-902). Dyslipidemia was defined using the National Cholesterol Education Program, ATP-III guidelines.

Results: The overall prevalence of high cholesterol (≥200 mg/dl), high triglyceride (≥150 mg/dl), low HDL cholesterol (male - <40 mg/dl; female - <50 mg/dl), and high LDL cholesterol (≥130 mg/dl) was 20.39%, 45.63%, 64.08%, and 17.31%, respectively.

Conclusion: Low HDL cholesterol and high triglyceride were the most form of dyslipidemia among the elderly. Awareness on dietary and lifestyle modification for management of dyslipidemia needs to be imparted.

Keywords: Elderly, Dyslipidemia

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i2.24034

INTRODUCTION

Cardiovascular disease (CVD) is one of the five global leading causes of total years of life lost in 2016 [1]. Dyslipidemia is a well-established risk factor of CVD amounting to more than half of the global cases of coronary artery disease [2,3]. Its prevalence has increased over a period of 20 years among the urban population in India [4]. Rapid urbanization, rural-to-urban migration, poor dietary habits, physical inactivity, sociocultural factors, and genetic predisposition all contribute to dyslipidemia [5]. The WHO Study on Global Aging and Adult Health carried out among 39,436 adults during 2007–2010 revealed that rural–urban migrants had a similar risk factor profile for non-communicable disease to the urban group, suggesting that exposure to urban environments may promote assimilation of health behavior regardless of previous life experiences [6]. This study was carried out to assess the prevalence of dyslipidemia among the elderly in slums of West Delhi.

METHODS

A cross-sectional study was carried out in slums of West Delhi. A total of 234 elderly aged 60 and above were enrolled in the study with the help of local community leaders and paramedicals working in the area. 5 ml blood was drawn from 103 elderly and was analyzed for serum total cholesterol, triglyceride, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol by enzymatic method using fully automatic analyzer (Roche Hitachi-902). The biochemical analysis was done at the National Accreditation Board for Testing and Calibration Laboratories Accredited Laboratory, Centre for Promotion of Nutrition Research and Training, with a special focus on North-East, Tribal and Inaccessible Population (Indian Council of Medical Research), New Delhi. Internal and external quality control of analysis was maintained. The institutional ethical clearance was obtained. A written informed consent was taken from all the study volunteers.

Dyslipidemia was defined using the National Cholesterol Education Program, ATP-III guidelines [7].

RESULTS

The overall mean of serum total cholesterol, triglyceride, HDL cholesterol, and LDL cholesterol is $68.86 \, \text{mg/dl}$, $162.5 \, \text{mg/dl}$, $43.89 \, \text{mg/dl}$, and $105.6 \, \text{mg/dl}$, respectively (Table 1). The mean level of all parameters was higher in female as compared to males.

The overall prevalence of high cholesterol (\geq 200 mg/dl), high triglyceride (\geq 150 mg/dl), low HDL cholesterol (male - <40 mg/dl), female - <50 mg/dl), and high LDL cholesterol (\geq 130 mg/dl), respectively, was 20.39%, 45.63%, 64.08%, and 17.31% (Table 2). Prevalence of dyslipidemia was higher in females compared to male elderly.

DISCUSSION

Our study indicated overall prevalence of high cholesterol (\$\geq 200\$ mg/dl), high triglyceride (\$\geq 150\$ mg/dl), low HDL cholesterol (male - <40 mg/dl; female - <50 mg/dl), and high LDL cholesterol (\$\geq 130\$ mg/dl), respectively, as 20.39%, 45.63%, 64.08%, and 17.31%. A study carried out in Changsha, China, among 3500 persons aged 65 and over also reported high serum cholesterol, triglyceride, and LDL as 25.31%, 26.54%, and 16.65%, respectively [8]. Another study carried out among rural elderly in China reported the similar prevalence of high cholesterol (18.13%), while prevalence of high triglyceride (12.21%), low HDL cholesterol (32.76%), and high LDL cholesterol (13.23%) was lower compared to our findings [9]. Asian Indians have an abnormal fat distribution which makes it more prone to dyslipidemia [10].

Low HDL cholesterol was the most common among the elderly in our study. The Indian Council of Medical Research-India Diabetes

Table 1: Mean±SD and median serum levels of total cholesterol, triglyceride, HDL cholesterol, and LDL cholesterol of elderly

Parameters	N	All		N	Male		N	Female	
		Mean	Median		Mean	Median		Mean	Median
Total cholesterol (mg/dl)	103	68.86	171	56	162.11	163.74	47	176.89	179.29
Triglyceride (mg/dl)	103	162.5	143.0	56	144.81	116.15	47	183.70	171.20
HDL (mg/dl)	103	43.89	39.51	56	41.9	41.1	47	46.23	38.15
LDL (mg/dl)	52	105.60	109.00	21	96.05	98.00	31	112.06	113.00

HDL: High-density lipoprotein, LDL: Low-density lipoprotein

Table 2: Prevalence of dyslipidemia in the elderly

Parameters	N	All	N	Male	N	Female
		N (%)		N (%)		N (%)
Total cholesterol (≥200 mg/dl)	103	21 (20.39)	56	9 (16.07)	47	12 (25.53)
Triglycerides (≥150 mg/dl)	103	47 (45.63)	56	19 (33.93)	47	28 (59.57)
HDL-cholesterol (M - <40 mg/dl; F - <50 mg/dl)	103	66 (64.08)	56	27 (48.21)	47	39 (82.98)
LDL-cholesterol (≥130 mg/dl)	52	9 (17.31)	21	2 (9.52)	31	7 (22.58)

HDL: High-density lipoprotein, LDL: Low-density lipoprotein

study carried out among adults in Tamil Nadu, Maharashtra, Jharkhand, and Chandigarh also reported the prevalence of low HDL cholesterol (72.3%) as the most common dyslipidemia compared to hypercholesterolemia (13.9%), hypertriglyceridemia (29.5%), and high LDL cholesterol (11.8%) [11]. A recent survey of the National Nutrition Monitoring Bureau Survey carried out by the Indian Council of Medical Research in urban areas indicated that more than 20% of adults had total cholesterol \geq 200 mg/dl and LDL cholesterol \geq 130 mg/dl, while around 40% of men and 28% of women had triglycerides \geq 150 mg/dl and about 74% of men and 82% of women had low HDL cholesterol <40/50 mg/dl [12].

The concentration of cholesterol increases until 45–55 years of age in men, while for women, it continues increasing and only declines in the last decade of life [13]. A cross-sectional study carried out among 5375 adults in China also revealed peak prevalence of dyslipidemia in men between 30 and 39 years with a gradual decline as age increases, while in women, the prevalence of dyslipidemia increased with age and peak prevalence occurs after the age of 60 [14]. Menopause leads to changes in hormonal status and lipid profile in women by resulting in increased total and LDL cholesterol and reduced HDL cholesterol [15]. Our study also revealed a higher prevalence of dyslipidemia among elderly female compared to male. A study carried out among in rural Thailand also reported that women had significantly higher cholesterol and LDL cholesterol levels than men [16].

CONCLUSION

Low HDL cholesterol and high triglyceride were the most form of dyslipidemia among the elderly. Awareness on dietary and lifestyle modification for management of dyslipidemia needs to be imparted.

ACKNOWLEDGMENT

The authors acknowledge the support of Indian Council of Medical Research and University Grants Commission.

AUTHORS CONTRIBUTIONS

- *Zaozianlungliu Gonmei: Data collection, data analysis, interpretation of data, and paper writing
- *Supriya Dwivedi: Data collection, data analysis, interpretation of data, and paper writing
- Dr. Gurudayal Singh Toteja: Conceptualization of study, interpretation of data, and finalization of manuscript
- Dr. Karuna Singh: Conceptualization of study and interpretation of data

- Dr. Naval Kishore Vikram: Conceptualization of study and interpretation of data
- Dr. Priyanka Gupta Bansal: Conceptualization of study and interpretation of data
- Suman Rathore: Interpretation of data.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

REFERENCES

- GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: A systematic analysis for the global burden of disease study 2016. Lancet 2017;390:1151-210.
- Shanmugasundaram M, Rough SJ, Alpert JS. Dyslipidemia in the elderly: Should it be treated? Clin Cardiol 2010;33:4-9.
- Shelke S, Khairnar A, Rathod V, Kalawane Y, Jagtap A. Review on antihyperlipedemia lipophilic drugs and their novel formulation approaches. Int J Pharm Pharm Sci 2017;9:1-8.
- Gupta R, Rao RS, Misra A, Sharma SK. Recent trends in epidemiology of dyslipidemias in India. Indian Heart J 2017;69:382-92.
- Misra A, Shrivastava U. Obesity and dyslipidemia in south Asians. Nutrients 2013;5:2708-33
- Oyebode O, Pape UJ, Laverty AA, Lee JT, Bhan N, Millett C. Rural, urban and migrant differences in non-communicable disease riskfactors in middle income countries: A cross-sectional study of WHO-SAGE data. PLoS One 2015;10:e0122747.
- National Cholesterol Education Program. ATP III Guidelines At-A-Glance Quick Desk Reference. USA: National Institutes of Health National Heart, Lung, and Blood Institute; 2001.
- Liu J, Chen Z, Yang F, Chen W, Hu J, Li D. Prevalence and influencing factors of dyslipidemia among the elderly in Changsha: A communitybased study. J Cent South Univ Med Sci 2014;39:797-801.
- Su L, Gao S, Unverzagt FW, Cheng Y, Hake AM, Xin P, et al. Selenium level and dyslipidemia in rural elderly Chinese. PLoS One 2015;10:e0136706.
- Nayak BS, Bhaktha G. Inconsistent lipid profiles exhibited among the diabetic Asian Indians of India and Trinidad

 –a comparative study. Int J Pharm Pharm Sci 2016;8:60-3.
- Joshi SR, Anjana RM, Deepa M, Pradeepa R, Bhansali A, Dhandania VK, et al. Prevalence of dyslipidemia in urban and rural India: The ICMR-INDIAB study. PLoS One 2014;9:e96808.
- 12. NNMB Technical Report 27. Diet and Nutritional Status of Urban Population in India and Prevalence of Obesity, Hypertension, Diabetes and Hyperlipidemia in Urban men And Women; 2017.
- 13. Félix-Redondo FJ, Grau M, Fernández-Bergé D. Cholesterol and cardiovascular disease in the elderly. Facts and gaps. Aging Dis

^{*}Equal contribution

- 2013;4:154-69.
 14. Qi L, Ding X, Tang W, Li Q, Mao D, Wang Y. Prevalence and risk factors associated with dyslipidemia in Chongqing, China. Int J Environ Res Public Health 2015;12:13455-65.
 15. Saha KR, Rahman MM, Paul AR, Das S, Haque S, Jafrin W, Mia AR.

- Changes in lipid profile of postmenopausal women. Mymensingh Med J 2013;22:706-11.

 16. Yamwong P, Assantachai P, Amornrat A. Prevalence of dyslipidemia in the elderly in rural areas of Thailand. Southeast Asian J Trop Med Public Health 2000;31:158-62.