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ABSTRACT

In living cells, the production of free radicals that comprise both reactive oxygen species (ROS) and reactive nitrogen species is highly regulated that 
help the cells to sustain redox homeostasis. Overproduction of ROS from mitochondrial electron transport chain leakage or excessive stimulation 
of xanthine oxidase and other oxidative enzymes leads to the uncontrolled production of free radicals leading to oxidative stress that can mediate 
damage to cell structures. This damage can be repaired by the antioxidant defense system. Antioxidants are capable of stabilizing, or deactivating, free 
radicals before they attack cellular components such as DNA, proteins, and lipids. The use of antioxidants in cancer prevention is a rapidly evolving 
research area where antioxidants scavenge free radicals and thus, indirectly help in the prevention of cancer. Awide range of antioxidants such as 
glutathione, N-acetylcysteine, coenzyme Q10, lycopene, flavonoids, and isoflavones when used in combination with chemotherapy and radiotherapy, 
result in the reduction of drug toxicity and enhanced efficacy of anticancer agents. This review aims at the use of these exogenous antioxidants as 
disease-oriented therapy and elucidating the relation of antioxidant enzymes with different types of cancers to overcome the harmful effects of cancer 
treatment.
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INTRODUCTION

Free radicals are unstable molecules that are formed as natural by-
products in the body during biological processes and lead to oxidative 
stress. This imbalance is repaired by the body’s endogenous antioxidant 
defense system and by ingesting exogenous antioxidants [1]. In living 
cells, free radicals that comprise both reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) are produced in a regulatory 
manner that helps to sustain redox homeostasis at the cellular level 
in the normal healthy tissues [2]. ROS and RNS, which are together 
referred as ROS and RNS have an important role in gene regulation 
through signaling mechanisms [3,4].

Most cells can produce superoxide (O2
•-), hydrogen peroxide (H2O2), 

and nitric oxide (NO) on demand and these free radicals play a key role 
in cellular processes as in the generation of adenosine triphosphate 
(ATP) during oxidative phosphorylation [5]; detoxification of 
xenobiotics by cytochrome P450 [6]; apoptosis of defective cells, 
killing microorganisms, and cancer cells by macrophages and cytotoxic 
lymphocytes [7,8]. Overproduction of ROS from mitochondrial electron 
transport chain leakage or excessive stimulation of xanthine oxidase 
and other oxidative enzymes leads to uncontrolled production of 
free radicals leading to oxidative stress that can mediate damage 
to cell structures, including lipids and membranes, proteins, and 
nucleic acids and form harmful products such as lipid peroxides and 
other lipid adducts. The consequent protein damage results in loss 
of enzyme activity, while DNA damage can result in mutagenesis and 
carcinogenesis [9-11]. These consequences, thus, make free radicals 
responsible for causing several human diseases [12,13]. Excess of free 
radicals are scavenged endogenously by enzymatic antioxidants such 
as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 
(GPx), thioredoxin reductase [14-16], and non-enzymatic antioxidants 
such as uric acid, Vitamin A (retinoids), carotenoids, alpha-tocopherol 
(Vitamin-E), flavonoids, and other related polyphenols such as 
quercetin, catechins, isoflavones, lignans, flavanones, and ellagic acid 
[17,18].

Antioxidants act as a radical scavenger, hydrogen donor, electron 
donor, peroxide decomposer, singlet oxygen quencher, enzyme 
inhibitor, synergist, and metal-chelating agents. Both enzymatic and 
non-enzymatic antioxidants exist in the intracellular and extracellular 
environment to detoxify ROS [19]. Supplementation of antioxidants in 
cancer treatment is a rapidly evolving area as they have been widely 
studied for their ability to prevent cancer in humans and decreasing 
side effects of existing cancer treatments including chemotherapy and 
radiotherapy [20,21].

ROS AND RNS

ROS is a broader term; it includes many reactive species, e.g.,superoxide 
(O2

•), hydroxyl (OH•), peroxyl (ROO•), alkyl radical, alkoxyl (RO•) 
radicals, singlet oxygen (O) and semiquinone radical (HQ•), and ozone 
(O3) [22]. There are two types of ROS, (a) which contain one or more 
unpaired electron(s) in their outer molecular orbitals, for example, 
superoxide, nitric oxide and hydroxyl radicals, and (b) non-radical 
ROS, which include hydrogen peroxide, ozone, peroxynitrate and 
hydroxide that do not have unpaired electron(s) but are chemically 
reactive and can be converted to radical ROS [23]. Hydroxyl radicals 
are formed in the presence of metals and hydrogen peroxide (Fenton 
reaction); peroxynitrite might play a small role in hydroxyl radical 
formation. In this process, certain non-radicals are also produced that 
are either oxidizing agents or easily converted into radicals, such as 
HOCl (hypochlorous acid), ozone, H2O2, and lipid peroxides with no 
unpaired electrons. H2O2 and lipid peroxides also serve as a source of 
highly reactive•OH, ROO•, and RO• radicals. The O2

•-reacts quickly with 
very few molecules, whereas hydroxyl radical OH• has an extremely 
high rate of reactivity [22]. Superoxide anion can be generated both 
enzymatically, e.g., during the NADPH phagocytes oxidase reaction in 
neutrophils, and non-enzymatically in the mitochondrial respiratory 
chain. The superoxide anion plays an important role in the formation 
of other ROS such as hydrogen peroxide, hydroxyl radical, or singlet 
oxygen in living systems [24].
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RNS is a collective term that includes nitric oxide radical (NO•), 
peroxynitrite (ONOO-), nitrogen dioxide radical (NO2

•), and other 
oxides of nitrogen and products arising when NO• reacts with O2

•-, RO•, 
H•NO• (HNO, Reduced form of nitric oxide; HNO2−, nitrous acid) [25]. 
The superoxide anion can react with nitric oxide (NO•) and form 
peroxynitrite (ONOO-), which can generate toxic compounds such 
as hydroxyl radical and nitric dioxide [26]. NO• plays a major role in 
cellular signaling, vasodilation, insulin secretion, peristalsis, neural 
development, and immune response [27]. It is a highly reactive small 
uncharged molecule containing one unpaired electron, therefore, 
considered a free radical. Endogenous NO• is formed in the biological 
tissues through the action of nitric oxide synthase where L-arginine 
and oxygen are converted into NO• and citrulline through a five-
electron oxidative process. The reaction requires the presence of many 
cofactors such as flavin adenine dinucleotide, flavin mononucleotide, 
nicotinamide adenine dinucleotide phosphate, tetrahydrobiopterin, 
and heme [28,29]. L-arginine gets converted into L-citrulline and nitric 
oxide by the action of NOS, but under uncoupling conditions, these 
enzymes also produce superoxide. Unregulated production of nitric 
oxide can be damaging to tissues due to its potential cytotoxicity [30].

Under steady state conditions, the ROS molecules are scavenged by 
various antioxidative defense mechanisms [31]. Enhanced generation 
of ROS can overcome cell’s intrinsic antioxidant defenses resulting in 
a condition known as “oxidative stress.” The equilibrium between the 
production and the scavenging of ROS may be agitated by various biotic 
and abiotic stress factors [32]. Excessive or sustained ROS production, 
when exceeding the available antioxidant defense systems, produces 
oxidative stress, (Fig.  1) that damages cell structure and disrupts 
function through lipid peroxidation of cell membranes and degrades 
nucleic acids [33].

Oxidative damage to cells and tissues also leads to aging and other 
chronic diseases such as atherosclerosis, heart failure, and cancer [34]. 
Humans are exposed to many anthropogenic factors like toxic metals 
(lead, cadmium, mercury, and arsenic) that are widely found in our 
environment including contaminated air, water, soil, and food. Exposure 
to arsenic increases free radical generation and cause damage to 
the biological membrane through increased lipid peroxidation and 
protein carbonyl content followed by decreased antioxidant defense 
system [35,36]. Glutathione (GSH) is an important biomolecule 
involved in the antioxidant defense system against toxicants and 
arsenic showed high affinity toward GSH leading to decreased levels of 
GSH [37]. Chronic arsenic exposure has been associated with apoptosis 
of lymphocytes and involved in immunotoxic responses [38]. It has 
been reported that arsenic exposure causes increased generation of 
free radicals coupled with enhanced oxidative stress leading to thymic 
atrophy in a mouse model [37,39].

Recent studies indicate that transition metals act as catalysts in the 
oxidative reactions of biological macromolecules; therefore, the 
toxicities associated with these metals might be due to oxidative tissue 
damage [40]. Redox-active metals, such as iron, copper, and chromium, 
undergo redox cycling whereas redox-inactive metals, such as lead, 
cadmium, mercury, and other metals deplete the major antioxidants, 
particularly thiol-containing antioxidants and enzymes of the cell [36].

ANTIOXIDANT DEFENSES

Antioxidants act as a radical scavenger, hydrogen donor, electron 
donor, peroxide decomposer, singlet oxygen quencher, enzyme 
inhibitor, synergist, and metal-chelating agents. Both enzymatic and 
non-enzymatic antioxidants exist in the intracellular and extracellular 
environment to detoxify ROS. Endogenous antioxidants play a crucial 
role in maintaining optimal cellular functions and thus, systemic 
health and well-being. However, under conditions, which promote 
oxidative stress, endogenous antioxidants may not be sufficient and 
dietary antioxidants may be required to maintain optimal cellular 
functions [19].

Two principal mechanisms of action have been proposed for 
antioxidants [41]. The first is a chain breaking mechanism by which 
the primary antioxidant donates an electron to the free radical present 
in the system. The second mechanism involves removal of ROS/RNS 
initiators (secondary antioxidants) by quenching chain initiating 
catalyst. Antioxidants may exert their effect on biological systems by 
different mechanisms, including electron donation, metal ion chelation, 
or by gene expression regulation [42].

Many antioxidants have aromatic ring structures and are able to 
delocalize the unpaired electrons. Antioxidant mechanisms of 
polyphenolic compounds are based on hydrogen donation abilities and 
chelating metal ions [33]. After donating a hydrogen atom, phenolic 
compounds become resonance-stabilized radicals, which do not easily 
participate in other radical reactions.

Endogenous protein antioxidants with enzymatic activity such as 
GPx, SOD, and CAT also play a critical role in reduction of oxidative 
stress [43]. GPx exist in two forms: Selenium-dependent and selenium 
independent, each with different subunits and different active 
sites [44,45]. GPx catalyzes the reduction of H2O2 or organic peroxide 
(ROOH) to water or alcohol [46,47]; this process occurs in the presence 
of GSH, which is converted into GSSG (oxidized glutathione) during 
this reaction. The reaction has special significance in the protection 
of the polyunsaturated fatty acids located within the cell membranes 
where the enzyme functions as a part of a multi-component antioxidant 
defense system within the cell [48]. There are four isoforms in humans, 
cytosolic and mitochondrial (GPx1), cytosolic (GPx2), extracellular 
(GPx3), and the phospholipid peroxide (GPx4) [49,50]. The kidney 
and liver have the highest amount of GPx [51]. GPx enzyme plays an 
important role as a first line of defense against oxidative stress as it is 
the first enzyme that is activated under high levels of ROS in various 
body parts and tissues including dorsal root ganglion [52,53]. Recent 
studies have shown the involvement of GPx4 in an endogenous tumor 
suppressive mechanism known as ferroptosis which can be triggered 
by small molecules or conditions inhibiting the biosynthesis of 
glutathione or GPx4 [54,55]. Cells tend to be indefatigably exposed to 
the threat of ROS-mediated destruction, as inhibition of GPx4 activity 
leads to the rapid accumulation of L-ROS and cell death in cell culture, 
and deletion of Gpx4 in mice is embryonic lethal [56,57]. RSL3 (RAS-
selective lethal 3, Type II) mediated inactivation of GPx4 is essential to 
induce ferroptosis and overexpression of GP×4 blocks RSL3-induced 
cell death [56].

SODs are a group of key enzymes functioning as the first line of 
antioxidant defense with the ability to convert highly reactive 
superoxide radicals into hydrogen peroxide and molecular oxygen [58]. 
There are four isozymes of SOD: (1) SOD1 (associated with Cu/Zn) 
requires Cu and Zn for its biological activity; the loss of Cu results 
in its complete inactivation and is the cause of multiple diseases in 
human and animals [59]. (2) SOD2, it has been shown to be involved 
in inflammatory response [60-62]. The SOD3 enzyme has many 
physiological effects; studies have reported reduced cardiovascular 
damage by administration of recombinant SOD3 [63,64]. The SOD4 
associated with Ni was discovered in Streptomyces [65] but has also 
been found in some genera of actinobacteria and cyanobacteria [66].

Catalase is a tetrameric porphyrin containing an enzyme that is located 
mainly in peroxisomes. It catalyzes the conversion of H2O2 to water 
and molecular oxygen [47]. Catalase along with other enzymes such as 
GPx and SOD have been considered as biomarkers of oxidative stress 
in various organs; for example, in streptozotocin-induced diabetic rats, 
hepatic levels of these enzymes are dramatically reduced, although 
treatment with red palm oil (Elaeis guineensis) and Rooibos tea extract 
(Aspalathus linearis) can improve this effect [67-69].

Another major thiol antioxidant is the tripeptide GSH, a multifunctional 
intracellular antioxidant which is considered as the major thiol-
disulfide redox buffer of the cell [70]. Free form of this antioxidant 
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is present mainly in reduced form (GSH), which is converted into its 
oxidized form (GSSG) by enzyme glutathione reductase [71,72]. The 
main protective roles of glutathione against oxidative stress are that 
it can act as a cofactor for several detoxifying enzymes, participate in 
amino acid transport across the plasma membrane, scavenge hydroxyl 
radical and singlet oxygen directly, and regenerate Vitamins C and E 
back to their active forms [70].

FREE RADICALS AND CANCER

The major targeting site of free radicals is genetic material carried by 
the cells. The types of damages include strand breaks (single or double 
strand breaks), various forms of base damage yielding products such 
as 8-hydroxyguanosine, thymine glycol or abasic sites, damage to 
deoxyribose sugar as well as DNA protein cross-linkages [73]. These 
damages can result in inheritable mutations that can yield a cancer in 
somatic cells or fetal malformations in the germ cells. The involvement 
of free radicals with tumor suppressor genes and proto-oncogenes 
recommend their role in the development of different human 
cancers [74]. Constant activation of transcription factors such as NF-
κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) and 
activator protein-1 appears to be one functional role of elevated ROS 
levels during tumor progression [75].

Compared with normal cells, malignant cells seem to function 
with higher levels of endogenous oxidative stress in culture and 
in vivo [76,77]. For example, leukemia cells freshly isolated from blood 
samples from patients with chronic lymphocytic leukemia or hairy-cell 
leukemia showed increased ROS production compared with normal 
lymphocytes. It has been shown that ROS have toxic effects to both 
normal and abnormal cells (infected by intracellular pathogens and 
malignant cells). It has been shown that increased oxidative stress could 
enhance prevalence of malignancies by direct cellular damage, [78-80] 
however, oxidative stress when applied as immune system arms could 
protect organisms from invading pathogens and malignant cells [81].

Although the precise pathways leading to ROS stress in cancer cells 
remain unclear, several intrinsic and extrinsic mechanisms are 
thought to cause oxidative stress during cancer development and 
disease progression. Activation of oncogenes, anomalous metabolism, 
mitochondrial dysfunction and loss of functional p53 are some of the 
intrinsic factors known to cause increased ROS production in cancer 
cells [82-85]. Mitochondrial DNA (mt-DNA) mutations have also been 
shown to be correlated with increased ROS levels in certain types of 
cancer cells, including those in solid tumors and leukemia [15,16]. 
Several protein components of the electron transport chain are encoded 
by mt-DNA. Thus, mutations of mt-DNA are likely to cause impairments 
in electron transfer, leading to leakage of electrons and the generation 
of superoxide, which can subsequently be converted to other types of 
ROS [84].

At an advanced disease stage, cancer cells usually exhibit genetic 
instability and show a significant increase in ROS generation, that results 
in gene mutations induced by ROS (especially in the mitochondrial 
genome) leading to further metabolic malfunctions and abnormal 
ROS generation. Increased ROS stress in cancer cells correlates with 
the aggressiveness of tumors and poor prognosis. Normal ROS levels 
are necessary for the progression of several basic biological processes 
including cellular proliferation and differentiation [86]. Cancer cells 
have an intrinsic elevated ROS level compared to normal body cells. 
Therefore, elevated oxidative signaling may be implicated in the 
promotion and progression of a number of different cancers. ROS can 
affect cellular proteins, lipids, and DNA, leading to genomic instability 
and activation of various signaling cascades related to tumorigenesis 
(Fig.  2). The formation of new blood vessels out of pre-existing 
capillaries, referred to as angiogenesis, is an essential component 
of tumor growth, survival, and metastasis [87,88]. Proliferation, 
migration, and tube formation in endothelial cells are some of the 
key events in tumor angiogenesis which are mediated by ROS [88]. As 
cancer cells exhibit a greater ROS levels than normal cells, so these ROS 

levels are counteracted by an increased activity of antioxidant enzymes 
in cancer cells which leads to activation of different cell death pathways, 
therefore, limiting the cancer progression [86].

ANTIOXIDANTS AGAINST CANCER

Cancer is a growing health problem in both developing and developed 
countries. At present, the on-going treatments for cancer are 
chemotherapy, radiotherapy, and surgery. Some of the most used 
chemotherapy drugs include antimetabolites (e.g.,  methotrexate), 
DNA interactive agents (e.g.,  cisplatin and doxorubicin), anti-tubulin 
agents (taxanes), hormones, and molecular targeting agents [89,90]. 
However, clinical uses of these drugs are accompanied with several 
side effects such as hair loss, suppression of bone marrow, drug 
resistance, gastrointestinal lesions, neurologic dysfunction, and 
cardiac toxicity [91,92]. Therefore, there is a need for new anticancer 
agents with better effectiveness and lesser side effects.

Endogenous antioxidant enzymes like SOD that provide the first line 
of defense in human cancers have been studied in human cancers. 
In human patient samples, Cu-Zn SOD activity is decreased in breast 
carcinoma [93]. In human esophageal cancers, studies have shown 
that decreased Mn-SOD levels are associated with increased incidences 
of esophageal adenocarcinoma [94]. In human oral cancers, a high 
expression level of Mn-SOD was associated with better disease-specific 
survival, especially for patients with moderate or poor differentiation 
of squamous cells of buccal cavity, and early stage buccal mucosal 
squamous cell carcinomas [95].

Catalase enzyme has also been studied for its role in cancer disease. 
Decreased catalase activity due to the inflammation in lung leads to 
increase hydrogen peroxide intracellularly and create an intracellular 

Fig. 1: Disturbance in the equilibrium between ROS and 
antioxidants leads to Oxidative stress

Fig. 2:  Elevated ROS levels have been linked to various tumorigenic 
processes which leads to biochemical and molecular changes.
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environment favorable to DNA damage and the promotion of 
cancer [96]. Another study showed higher oxygen-free radical 
production and decreased catalase activity, supporting the oxidative 
stress in breast cancer [97].

Loss of heterozygosity of cytosolic GPx1 gene was implicated in lung 
cancer patients by Moscow et al. [98]. Ratnasinghe et al. investigated 
the association between the proline to leucine polymorphism at codon 
198 of hGPx1 (human cellular GPx1) and lung cancer risk. They showed 
that due to the high prevalence of leucine residue, the hGPx1 variant 
contributes significantly to lung cancer risk among the Caucasians but 
not among the ethnic Chinese who do not exhibit this polymorphism [99].

There are other non-enzymatic antioxidants with beneficial effects in 
medical practice, especially in cancer [100]. One of them is quercetin, a 
plant-derived aglycone form of flavonoid glycosides, which has been used 
as a nutritional supplement and may be beneficial against a variety of 
diseases, including cancer [101]. It has been reported that quercetin has a 
higher reduction potential compared with curcumin, that it reduced LPS-
induced ROS/NO production to near normal levels [102]. It has also been 
reported that long-term exposure of cancer cells to quercetin may prevent 
cell proliferation and survival, and the interference of quercetin with cell-
cycle progression diminishes the efficacy of microtubule-targeting drugs 
such as taxol and nocodazole to arrest cells at G2/M [103].

It has also been revealed that some antioxidants (e.g.,  quercetin and 
naringenin) are able to inhibit cytochrome P450 enzymes (CYP1A1 
and CYP3A4, respectively) involved in the bioactivation of chemical 
carcinogens [28], constituting another proposed chemopreventive 
mechanism of polyphenols against cancer development including lung 
cancer [104,105].

Preclinical studies have shown that large doses of ascorbic acid 
(Vitamin C) show significant anticancer effects in animal models and 
tissue culture investigations [106-108]. These include direct cytotoxic 
effects in certain cancer cell lines at micromolar (µM) to millimolar 
(mM) concentrations [109]. Early clinical studies suggested that 
intravenous (i.v.) and oral ascorbic acid may diminish symptoms and 
possibly prolong survival in terminal cancer patients [110-112].

Other antioxidants such as isoflavones and indole-3-carbinol (I3C), 
and its in vivo dimeric product 3,3-diindolylmethane (DIM) exhibit a 
promising effect on the inhibition of ROS accumulation [113-116]. The 
main sources of isoflavones are soy and other plants in the Legume 
family and Brassica family. The isoflavones include genistein, daidzein, 
glycitein, formononetin, biochanin A, desmethylangolensin, and equol. 
The Brassica family is the main source of I3C and DIM. The isoflavones, 
I3C and DIM, have been shown to inhibit NF-κB activation stimulated 
by ROS [117,118] suggesting their potent ability as antioxidants. The 
inhibition of cancer growth by isoflavones could be mediated through 
induction of apoptosis and the modulation of expression of the genes 
related to the cell growth and apoptotic processes [119-123].

RELATION OF ANTIOXIDANT THERAPY WITH OTHER THERAPIES

A widespread research has been done in the area of cancer 
prevention and therapeutic and it has been shown that wide range 
of antioxidants such as glutathione, N-acetylcysteine, coenzyme Q10, 
lycopene flavonoids, and isoflavones when used in combination with 
chemotherapy and radiotherapy result in the reduction of drug toxicity 
and increase the survival time of patients by increasing the tumor 
response to these therapies [20]. The modulating effects of antioxidants 
in treatment depend on a wide range of factors, including the metabolic 
state of the patient, the stage and site of the disease, and the modality 
being used [124]. The cellular changes would ideally, enhance tumor 
cell killing, largely by apoptosis, and reduce the probability of normal 
cell death. Antioxidant enzymes and detoxifiers have the ability to 
inhibit tumor initiation and promotion in vivo and in vitro [125].

Combinations of antioxidants have been shown synergistic anti-
tumor effects in vivo. Dasari et al. reported that significant upsurge 

was observed in antioxidant levels between the patients treated 
with radiotherapy and chemotherapy than the patients treated with 
chemotherapy alone. Hence, the radiotherapy along with chemotherapy 
kills and decreases the size of cancer cells which facilitate the significant 
alterations (increased) in the development of the antioxidant system, 
which is not possible in case of chemotherapy alone [126]. The efficacy 
of anticancer drugs used in chemotherapy is limited by the fraction 
of actively dividing cells because these drugs do not kill resting cells 
unless those cells divide soon after exposure to the drug. Some of the 
anticancer drugs including bleomycin, doxorubicin (adriamycin), and 
cisplatin rely on ROS as they produce free radicals that play a role in 
treatment [127]. Even when the mechanism of the chemotherapeutic 
drug is independent of free radical action, antioxidants help to maintain 
the health of normal tissues and protect them from the toxic effects 
of free radical producing cytokines that circulate in cancer patients 
and increase with the severity of the disease [128]. Another therapy, 
i.e.,  radiotherapy uses ionizing radiations (x-  and γ-rays) to induce 
cancer cell death through free radical formation. This therapy includes 
two mechanisms: First mechanism is apoptosis, resulting in cell death 
within a few hours of radiation and second mechanism is a radiation-
induced failure of mitosis and the inhibition of cellular proliferation 
which kills cancer cells [20]. About two-thirds of x- and γ-ray damage is 
caused by free radicals that kill tumor cells but intimidate the reliability 
and endurance of surrounding normal cells. Response to radiation 
depends on the type, dosage and time intervals of radiation, inherent 
tissue sensitivity, and intracellular factors that include position in the 
cell cycle, concentration of oxygen, thiols, and other antioxidants [85].

CONCLUSION

The abnormal production of free radicals has been known to cause 
several human diseases. The antioxidant defense system can only 
protect the body when the normal physiological level of the free radicals 
is maintained. When there is a high level of ROS, increasing their burden 
in the body, it leads to oxidative stress, tissue injury and subsequent 
diseased conditions. The balance between the two has to be maintained 
as low antioxidant status lead to enhanced oxidative stress in cancer 
patients, even before oncology treatment starts. Data from several 
experiments done both in vivo and in vitro conditions have illustrated 
the importance of antioxidants in cancer prevention therapies. The 
combination of radiotherapy and chemotherapy has shown beneficial 
outputs and has demonstrated the role of enhanced oxidant system. 
Radiotherapy along with chemotherapy kills and decrease the size 
of cancer cells which facilitate the significant alterations in the 
development of the antioxidant system, which is not possible in case 
of chemotherapy alone. Therefore, the need of the hour is to put more 
efforts for clinical validation of the promising antioxidant agents. 
There is a need to prove whether antioxidant therapies can prevent or 
overcome the damaging effects of ROS in life-threatening situations. 
The compounds must be tested for their safety, toxicity, selectivity, 
bioavailability, and therapeutic efficacy. In this context, full execution 
of clinical trials in well-identified and best-suited populations need 
to be done to determine the efficacy of antioxidant agents in cancer 
prevention as well as cancer therapeutics. Combination therapy with 
these agents can also be tried to achieve synergistic clinical effects.

Newer approaches utilizing collaborative research and modern 
technology in combination with established traditional health 
principles will yield dividends in the near future in improving health, 
especially among those who do not have access to the use of costlier 
western systems of medicine, thus decreasing death rates.
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