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ABSTRACT

Objective: Incited by the dearth of selective c-Jun NH2-terminal kinases (JNK) inhibitors, efforts have been made to design novel JNK2 inhibitors with 
good selectivity profile by utilizing a set of in silico tools.

Methods: The present study involved 2D QSAR model development through multiple linear regression and partial least square methods. Further, 
the information unveiled through the above model was meticulously utilized to design novel JNK2 inhibitors (compound a and compound b). The 
selectivity of the novel molecules was ascertained through the molecular docking experiments. Determination of Tanimoto similarity index and 
absorption, distribution, metabolism, and elimination (ADME) properties was performed to ascertain the novelty and drug-like properties of the 
designed molecules, respectively.

Results: Four explanatory variables or descriptors, moment of inertia 2 length (subst.1), moment of inertia 3 length (subst.3), Kier Chi4 (path/
cluster) index (whole molecule), and vamp highest occupied molecular orbital (whole molecule), were found to possess profound influence on the 
biological activity with the values of standard parameters, s: 0.28, r: 0.96, r2:0.92, r2CV: 0.82, and f=59.69. Tanimoto index values were found to be 
0.095 and 0.075 for compound a and compound b, respectively.

Conclusion: The values of the statistical parameters proved the developed model to be of excellent quality. The results obtained for ADME prediction 
studies proved both the compounds to be better than the most potent compound (compound 45) of the set of JNK2 inhibitors selected for model 
development. In addition, extremely low Tanimoto similarity index values for both the compounds provided sufficient evidence for the novelty of the 
designed molecules.
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INTRODUCTION

c-Jun NH2-terminal kinases (JNKs), one of the stress-activated kinases, 
are the member of mitogen-activated protein kinase family. These are 
known to be evolutionarily conserved. Insights into the physiological 
roles, through studies conducted so far, of the JNKs have capacitated 
us to understand its way and extent of participation in diverse events 
taking place in the human body. Plethora of studies on JNKs has unveiled 
its crucial involvement in many diseases including neurodegenerative 
diseases[1-8], diabetes [9,10], and cell apoptosis [11], making it a 
crucial target for the discovery of novel scaffolds for the treatment of 
an array of diseases caused through the activation of this pathway. JNKs 
are known to be encoded by a set of three genes (JNK1, JNK2, and JNK3). 
Among them, JNK1 and JNK2 manifest wide expression throughout the 
body [12]. On the other hand, JNK3 shows its presence specifically in 
the brain and to a somewhat lower extent in the heart and the testis. 
A different splicing mechanism for the three JNK genes results in 10 
different isoforms. When the COOH terminus of the JNK genes is spliced 
alternatively, it gives rise to the proteins with the size of either 46 or 
54kDa [12-14]. Most in vitro study models utilize c-Jun as a substrate to 
evaluate the nature and mode of JNK-substrate binding affinity as well 
as specificity. All the three isoforms of JNKs causes activation of c-Jun 
by targeting its delta domain for binding and carry out phosphorylation 
of its serine 63 and 73 residues [14]. Binding and affinity studies of 
JNK-substrate complex have shown JNK2 to possess 25times greater 
affinity toward c-Jun substrate than JNK1 [14]. Even though, different 
isoforms of JNK1 and JNK2 bind to and phosphorylate the substrate to a 

different extent, the efficiency of JNK1 isoforms to phosphorylate c-Jun 
is shown to be better [15]. Well established evidences are available, 
through various studies, in the area of autoimmune diseases, depicting 
the crucial involvement of JNK2 in chronic inflammatory diseases 
through the expression of cytokines and certain proteases [16,17]. 
For an instance, metalloproteases, when expressed in rheumatoid 
arthritis are known to contribute toward the destruction of the joints, 
and meticulous analysis suggested the role of JNK signaling in this 
pathway [18]. The second most common chronic inflammatory disease, 
atherosclerosis, is also known to be regulated by JNK pathway [19,20]. 
This fact was proved by the studies carried out on the animals deficient 
in JNK2 genes, and it has been observed that those particular animals 
were less prone to develop atherosclerosis than the rest of the animals 
used in the study. Furthermore, JNK1 deficient animals did not show 
any reduction in atherosclerosis developing tendency and the extent 
of the level of atherosclerosis in the animals remained the same, as in 
non-JNK1 deficient animals. The possible mechanism of the disease, 
most probably, is through the JNK2-facilitated phosphorylation of the 
modified lipid-binding and internalizing scavenger receptor-A that, after 
getting phosphorylated, promotes the uptake of lipids in macrophages 
resulting in the formation of the foam cells. The above findings indicate 
that the complications, which occur during atherosclerosis, can be 
mitigated using specific JNK2 inhibitors. The therapeutic efficiency of an 
inhibitor is directly related to how effectively, as well as how selectively, 
it binds to the binding domain of the receptor. The drug molecule, 
if not selective, may lead to undesirable side effects by targeting a 
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group of enzymes and not just one. However, the profound extent of 
homology in the amino acid sequencing of the binding domain of the 
kinases makes the designing of selective inhibitors very much difficult. 
However, the involvement of JNKs in controlling multifarious functions 
makes it an interesting enzyme to work on. To address this issue of 
non-availability of specific JNK2 inhibitors as therapeutic agents, a set 
of in silico tools, including multiple linear regression (MLR) and partial 
least square (PLS), have been employed to develop a QSAR model. The 
information extracted through the obtained model helped us to design 
novel molecules as JNK2 inhibitors. The prediction of their selective 
inhibitory activity has been made on the basis of their binding affinity 
on JNK2 receptor, evaluated through molecular docking experiments. 
Furthermore, the designed molecules were declared to be novel only 
after calculation of their Tanimoto similarity index.

METHODS

Sketching of preliminary structures
The selection of the data set of tri-substituted thiophenes [21] was made 
on the basis of diversity in the structural architecture of compounds [22], 
exhibiting profound variation in JNK2 inhibitory profile reported as IC50 
values. The reported IC50 values of individual compounds were first 
converted into their respective logIC50 to overcome the usual issues 
related to the possibility of data to be skewed. ChemDraw ultra 8.0 
software was employed to sketch the two-dimensional structures of the 
compounds of the selected series followed by cleaning of each structure 
to transcend the ambiguity barrier usually encountered during the 
substituent defining step.

Defining of substituents
To alleviate the ambiguity pertaining to the effects that various groups 
tend to have on the biological activity of the compound, it becomes 
necessary to define substitution positions around a moiety that 
is common among all the molecules. The present study employed 
TSAR software version  3.3 (www.accelrys.com) to perform all the 
computational work required to build the presented QSAR model. 
First, the two-dimensional structures, along with their logIC50 values, 
were imported in the TSAR worksheet, after their conversion into.
molfile format. After which, three substituents (R1, R2, and R3) in each 
molecule, using ‘‘define substituent’’ option in TSAR, were defined 
around N-(3,4-dimethylthiophen-2-yl)acetamide nucleus, found to 
be common in every molecule of the series (Fig. 1). After defining of 
the substituents, the partial charges of each molecule were calculated 
through an option called Charge 2, primarily known for performing 
the action of deriving charges. As we know, a careful analysis of the 
molecular structure is the key to deduce the importance of various 
physicochemical properties in a molecule accountable for certain 
activity profile. However, certain aspects of the relation between the 
structure of a molecule and its properties can be best understood 
through 3D conformation. Therefore, Corina make 3D program, which 
generates structure in the three-dimensional form, was employed 
for the conversion of chemical structures of the molecules and their 
corresponding substituents into their respective 3D form. Further, the 

generated 3D structures of the molecules were subjected to energy 
optimization process by employing cosmic module. Cosmic during 
flexible optimization, through the supply of force field for calculations 
of energy component of all molecular structures, ensure the selection 
of only those conformations which are found to be more energetically 
realistic.

Data set preparation and data reduction
The onset of 2D QSAR model development was marked by the 
calculation of more than 200 descriptors or explanatory variables 
by TSAR software version  3.3. TSAR, an integrated analysis package, 
makes the investigation of interactions of quantitative structure-
activity relationships, possible. It performs the calculations of 
numerical value of descriptors for all molecular structures and uses 
a statistical approach to define a correlation. A number of descriptors 
from atom counts, molecular indices, molecular attributes, and VAMP 
parameters were calculated [23,24]. The TSAR method is basically 
based on the assumption that an adequate sampling of these structure-
based descriptors reveal all the evidence required to understand their 
biological properties [25]. However, redundancy in data can pose a 
serious problem in developing a reliable and robust model. Therefore, 
to alleviate the chances development of a low-quality QSAR model, data 
reduction was performed using correlation matrix technique, in which 
the intercorrelation among descriptors was evaluated. Among the 
descriptors showing correlation with each other, the one with lesser 
correlation with the biological activity was removed from the model. 
Intercorrelation among the descriptors is highly undesirable in a model 
because if the descriptors share any correlation with each other, then 
they are not considered to be independent in true manner and chances 
that they might give a false prediction about the quality of the model, 
increases.

Model development
After curtailing the data to the required level, arbitrary division of 
compounds into training set and test set was done where 23 molecules 
of the data set were included in the training set, and the rest were placed 
in the test set. Training set compounds were then used to perform 
MLR and PLS for model development, and the test set was employed 
to determine the predictability of the generated model through the 
application of same methods. The MLR technique is based on the 
generation of the equation to evaluate the fitting of the model followed 
by a selection of the best model that fits well in it. Several MLR equations, 
based on a single dependent variable, which is usually biological activity, 
and variable descriptors, which constitutes the independent variable, 
are used to produce the equation when combined in different patterns. 
The quality of QSAR model is measured by the values obtained for 
certain statistical parameters such as standard error (SE) of estimate 
(s), Fischer’s ratio (F), and conventional regression coefficient (r2). The 
model generated through MLR method was further investigated for its 
robustness as well as predictability through PLS approach that utilized 
the very training set compounds that were employed to perform MLR. 
PLS analysis is considered as an alternative approach to MLR that is 
applied to enhance the information content in the generated model and 
to alleviate the chances of overfitting [26].

Validation
It is likely for a model, in certain cases, to be generated by chance. 
Therefore, to mitigate these chances, it is highly recommended to 
validate the developed model through diverse methods. The proposed 
study has incorporated two validation techniques through which the 
reliability and the predictability of the QSAR model can be ensured. First 
method was the application of cross-validation analytical technique that 
uses “leave-one-out” approach [27] that involves the removal of single 
compound at a time from the training set and, thereby, determining the 
predictive power of the model by employing the remaining compounds 
left in the training set, defining the model through the previously 
mentioned statistical parameters. Second approach was the internal 
validation in which the predictability of the generated model was 
assured through employing the test set compounds that were not made 

Fig. 1: Substitution pattern around N-(3,4-dimethylthiophen-2-yl)
acetamide nucleus
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part of the model building and were used as an external means of QSAR 
model validation.

Designing of the novel compounds
Through the careful analysis of the structures of the selected series 
collectively with the insights bestowed by the descriptors, that built the 
QSAR model, and their correlation with the JNK2 inhibitory activity, a set 
of novel compounds (not reported here), in unison with the Lipinski’s rule 
of five [28], was successfully designed and their screening was done by 
molecular docking experiments. Libdock score was used as a parameter 
to define the affinity of molecule toward JNK2 binding domain.

Molecular docking experiments
Furthermore, to get insights into the potential interactions between 
the designed lead compounds and the binding domain of the receptor, 
molecular docking studies were performed. In the present study, high-
resolution JNK2 receptor protein data bank (PDB) entry “37e0” was 
employed to study the binding interactions of the designed molecules. 
Molecular docking experiments, being easily reproducible, are among the 
most reliable techniques to study the putative binding of the ligand with 
the enzymatic receptor. This method is a very economical way of drug 
discovery as the irrelevant expenditure of money to carry out synthesis, 
and intrinsic enzymatic assays can be prevented and only those compounds 
exhibiting strong binding with the receptor are chosen for synthesis.

Tanimoto similarity index
Tanimoto similarity index, being a reliable measure of the novelty of a 
molecule, was calculated for the designed molecules. It is an inbuilt tool 
in discovery studio that, through fingerprinting approach, compares 
the reported ligands obtained from PDB and calculates the extent of 
similarity between these ligands and the molecule under probe.

Absorption, distribution, metabolism, and elimination (ADME) 
prediction studies
Since ADME properties are known to play a crucial role in bioavailability and, 
hence, the effectiveness of the drug molecule, their prediction is of paramount 
importance to develop a drug molecule with adequate pharmacokinetic 

and safety profile. The designed molecules were, therefore, analyzed for 
their ADME properties using a publically available software program 
“swissADME.” It is a reliable ADME properties predictor that evaluates the 
molecular structure and estimates values of different parameters utilizing 
which we can clearly predict the drug-likeness of an individual molecule [29].

RESULTS AND DISCUSSIONS

Eventually, after completion of data reduction step, QSAR model was 
built by a set of four explanatory variables or descriptors including 
moment of inertia 2 length (Subst. 1), moment of inertia 3 length 
(Subst. 3), Kier Chi4 (path/cluster) index (whole molecule), and 
vamp highest occupied molecular orbital (HOMO) (whole molecule) 
(Fig. 2). All the four descriptors, included in the final model, manifested 
excellent correlation with the biological activity. Out of these, two 
descriptors: Inertia moment 2 length and inertia moment 3 length 
exhibited high correlation values of 0.7 and 0.8, respectively, with the 
inhibitory activity. The other two descriptors Kier Chi4 (path/cluster) 
index (whole molecule) and vamp HOMO (whole molecule) also 
showed significantly, but somewhat lower, values of correlation than 
the inertia moment descriptors and are shown in the correlation matrix 
in Table  1. Moreover, no correlation was found among the obtained 
descriptors, further, providing the evidence that if these are used in 
unification, model with a good fit can be obtained. The importance of 
the aforementioned descriptors was also estimated by the calculation 
of their t-test values, jackknife SE, coefficient values, and covariance SE 
values (Table 2). In addition, the predictability of the developed model 
was confirmed through iterative shuffling of the training set and the test 
set. Furthermore, the reliability of the generated model was assessed 
statistically by its r2 value. Among all the generated model, the one 
exhibiting the best values (Table  3) for the all the crucial statistical 
parameters was finally selected for the application of MLR and PLS 
method. The best model was composed of 23 compounds in the training 
set, and 8 compounds in the test set Tables 4 and 5.

A set of 23 training set compounds when subjected to MLR analysis 
(Graph 1) utilizing TSAR 3.3, generated the following regression 

Fig. 2: Correlation of obtained descriptors with different substitution positions

Table 1: Representing the correlation matrix describing the relationship of the obtained descriptors with JNK2 inhibitory activity

Variables −logIC50 Inertia moment 
2 length (R1)

Inertia moment 
3 length (R3)

Kier Chi4 (path/cluster) 
index (Whole molecule)

vamp HOMO (whole 
molecule)

−logIC50 1 0.7448 −0.85683 0.57121 −0.52284
Inertia moment 2 length 0.74448 1 −0.65012 0.47593 −0.17457
Inertia moment 3 length −0.85683 −0.65012 1 −0.33181 0.50122
Kier Chi4 (path/cluster) index 0.57121 0.47593 −0.33181 1 0.10703
vamp HOMO (whole molecule) −0.52284 −0.17457 0.50122 0.10703 1
JNK2: c‑Jun NH2‑terminal kinases, HOMO: Highest occupied molecular orbital
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equation, equation 1, through relating the data set obtained by the 
descriptors left in the model with the biological activity:

Y = 0.4219918* X1 - 4.5166173*X2 + 1.4543194*X3 - 1.6898502*X4 - 
18.533213

Where, X1 = moment of inertia 2 length (substituent 4), X2 = moment 
of inertia 3 length (whole molecule), X3 = Kier Chi4 (path/cluster) 
index (whole molecule), and X4= vamp HOMO (whole molecule) and Y 
represents the biological activity.

In addition, PLS method was employed to derive the regression 
equation. It was performed to ensure that there is the least deviation 
between the results obtained from MLR and PLS. The equation obtained 
through PLS was also subjected to evaluation by considering the values 
of statistical parameters like r2 to assure the quality of the generated 
model (Graph 2).

Regression equation obtained by PLS method generated Equation 2:

Y = 0.613X1 - 4.036X2 + 0.984X3 - 1.922X4 - 20.086

Experimentally obtained log IC50 values for the compounds, the training 
set compounds and the test set compounds, along with their respective 
predicted values from both MLR and PLS methods are shown in Tables 4 
and 5, respectively.

After successfully building, and performing validation, of the QSAR 
model, the results were analyzed and the information deciphered by 
the descriptors, included in the final model, was utilized to understand 
the influence of substitution variations on the biological activity (Fig. 3). 
This was done as it was extremely important to know which groups are 
contributing toward increment and which are detrimental to the inhibitory 
activity so that, they can be replaced to get optimized JNK2 inhibitors.

Moment of inertia 2 length (Subst. 1), which defines the optimal bulk 
and shape required to have a molecule aligned with the active site of the 
receptor and show binding affinity toward it is positively contributing 
toward the model suggesting the increase in its value will lead to 
augmentation in the biological activity of the compounds. Based on such 
information we can infer that those groups, contributing toward the 
substitution pattern of the molecule, which can increase the shape as well 
as mass distribution, at the R1 position, are expected to make a significant 
contribution toward enhancing the activity profile of the molecule.

On the other hand, moment of inertia 3 length was found to be 
negatively correlating to the 3rd substitution position, R3, which implies 
that minimizing the shape or bulk at this position will have a positive 
impact on the activity of the molecules under study.

The shape of a molecule plays a crucial role in its orientation and, 
thereby, its interaction with the binding site of the receptor. On the other 

hand, the mass of the molecule is accountable for ADME properties as 
well as its toxicity. Therefore, a drug to possess both safety and efficacy 
must have an optimal shape and mass.

Kier Chi4 (path/cluster) index (whole molecule) belongs to the 
molecular connectivity indices class of descriptors. This descriptor was 
developed and refined by the scientists, Kier and Hall. It is presented 
by a series of numbers known as “orders” and by the type of subgraph 
(path, cluster, path/cluster, and chain). Normally, steric hindrance due 
to the presence of bulky substituents in a molecule poses a barrier 
in establishing bonds with a receptor binding site, but at the same 
time an optimal bulk and branching aids in the desirable orientation 
of the compound, thereby, increasing its chances of effective bonding 
interactions with the receptor.

As it is clear from the obtained t-values of the descriptors, included in 
the final model, that Kier Chi4 (path/cluster) index is having the highest 
t-values among other descriptors entered in the model. This predicts 
its importance in the designed model, and as it is positively correlated 
to the whole molecular structure, addition of the bulky groups or 
enhancing the branching can be expected to augment the biological 
activity of the compounds.

Vamp HOMO descriptor was included in the final model and describes 
the highest level of energy in molecules with electrons. It finds its 
significance in the reactivity and other properties of a molecule. The 
values of this descriptor describe a molecule either to be a strong or 
a weak nucleophile. As it can be understood from the statistical data, 
obtained through the physicochemical parameters that were used to 
build our model, that the vamp HOMO is correlating negatively to the 
biological activity for the whole molecule, as inferred from the t-value 
of this descriptor, therefore, an overall decrease in the nucleophilic 
character is desirable to improve the biological activity of the selected 
compounds.

After in-depth analysis of the results and structures of the selected series, 
intriguing facts of the structures, showing a remarkable correlation 
with the descriptors, came into our notice. As we observed that moment 
of inertia 2 length (Subst. 1), through its positive correlation with the 
activity of the molecules, indicated that if the bulk and the shape of the 
substituents, at the R1 position, is increased, then an increase in activity 
can be achieved. This fact was found to be true when meticulous study 
of the different substitution pattern around the molecules was done. 
For an instance, when an aryl group, from analog 4, was replaced by 
a fused heterocyclic substituent and when bulk, as well as branching, 
was increased at this position, as in analog 9, a dramatic increase in 
potency was observed. This fact became quite clear from the structures 
of compounds 4, 5, 6, 8, 16, 18, 27, 28, and 29 of the series, which 
exhibited a lower value of this descriptor (Table 6). Furthermore, unlike 
rest of the molecules of the series, these are not substituted with fused 
cyclic structures such as quinolones, isoquinolines, and quinoxaline 

Table 2: Depicting the significance of descriptors used for building the QSAR model

Descriptors Coefficienta Jackknifeb Covariance SEc t‑valued t‑probabilitye

Inertia moment 2 length 0.42199 0.1802 0.14549 2.9004 0.00953
Inertia moment 3 length −4.5166 0.68783 1.01 −4.4719 0.00029
Kier Chi4 (path/cluster) index 1.4543 0.24587 0.24117 6.0302 1.059e‑005
vamp HOMO (whole molecule) −1.6899 0.53453 0.58935 −2.8673 0.10243
aRepresents the regression coefficient for individual variables in the QSAR equations. bRepresents an estimate of the SE on each regression coefficient derived from a 
jackknife method on the final regression model. cRepresents an estimate of the SE on each regression coefficient derived from covariance matrix. dIs the measure of the 
significance of each variable included in the final model. eRepresents statistical significance for t‑values. SE: Standard error. HOMO: Highest occupied molecular orbital

Table 3: Obtained values of significant statistical parameters for the developed model

Model type Test set compounds r r2 r2CV s value f value
Final model 4,6,,23,29,43,44,50 0.96 0.92 0.82 0.28 59.69
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rings at the R1 position and, probably, due to this reason manifested a 
lower activity profile. Likewise, those compounds, such as 15 and 17, 
which are not substituted with the fused cyclic substituents, but with 
somewhat bulkier substituents consisting of multiple numbers of rings 
and chains, also exhibited activity profile comparable to the compounds 
with fused rings substituted at the R1 position. Whereas, moment of 
inertia 3 length, showing negative correlation at the R3 position, implied 
that an increase in bulkiness as well as the shape of a molecule at this 
position will eventually lead to the decrease in the activity and hence, 
potency of the compounds. This was also found to be realistic because 
when ester group was replaced by a triazole ring at this specific position, 
it gave a remarkable hike in the activity of the compounds. Interestingly, 
both the ester and the triazole ring have comparable molecular mass 
and, thus, no additional bulk was introduced to the molecule. Therefore, 
just lowering the bulk at this substitution position cannot be accounted 
for an augmented activity profile. The probable cause for improved 
activity, perhaps, can be the flat structure of the triazole ring, which 
led to the smaller shape of the compound that helped it to easily enter 
into the binding domain and fit closely with the walls of the active site. 
The importance of Kier Chi (path/cluster) descriptor of the order four 
can be understood if we again notice an increase in activity profile, 
facilitated by an increase in bulk at the R1 position. This substitution 
pattern, where fused ring replaced the single aryl ring, eventually led to 

an increase in overall bulk of the molecule that, in turn, resulted in the 
enhanced potency of the molecules. Furthermore, for an instance, when 
methyl group was added to the 5th position on the triazole ring, as in 
compound 31 and 33, an increased potency was seen when compared 
to an analog bearing hydrogen atom at this position, as in compound 
32 and 34. This augmentation in the activity profile of the molecules, 
through increasing the mass distribution on the entire molecule, made 
us to infer that the presence of this descriptor in the final model is 
of immense relevance. Finally, the significance of the vamp HOMO 
descriptor came into notice when a nitrile group introduced on the 
R2 position, in analog 9 with methoxyphenyl group substituted at R1 
position, brought about a remarkable increase in the potency whereas, 
other methoxyphenyl substituted analogs did not show an increment 
in the activity, to such an extent, when methyl or ethyl groups, as in 
analogs 4,5,6,8, were introduced at the same position (R2). In addition, 
this methoxyphenyl analog with cyano group substitution at R2 was 
found to have greater value for vamp HOMO descriptor, as can be 
seen from Table 6, than other analogs with methyl or ethyl group at R2 
position and similar substitutions, as that in analog 9, at the other two 
positions (R1 and R3). A similar hike in activity profile was witnessed 
when halogen groups or a nitrile group replaced methyl group at the 
same position, R2. These analogs, with cyano or halogen groups placed 
at R2 position, constitute the group of compounds exhibiting the best 
JNK2 inhibitory activity in this series of compounds (Fig. 3), further 
enhancing the reliability of the developed model, which indicated an 
increase in the activity profile of the molecules with decrease in their 
nucleophilic character or increase in the electrophilic behavior. The 
compounds, with electronegative groups such as chloro and cyano, were 
found to exhibit excellent JNK2 inhibitory activity but, the compounds 
with bromo group were found to be comparatively less potent. The 
remarkable hike in the inhibitory activity must be attributed to the 
overall decrease in the nucleophilicity, due to the presence of highly 
electronegative groups, on the R2 position of the molecules. It has been 
assumed that this decrease in nucleophilicity capacitated the molecule 
to accept electron pairs and to form covalent bonds with the receptor 
binding domain. It is believed that a molecule, that is capable of making 
hydrogen bonds as well as covalent bonds, exhibits better bioactivity 

Table 4: Training set compounds included in the final model

Name of the compound IC50 (nm) Predicted values

MLR PLS
5 22500 −4.0704 −3.9940
9 28400 −4.3828 −4.2531
15 1838 −3.3731 −3.5167
16 4524 −3.3671 −3.4136
17 613 −3.43 −3.4658
18 2571 −3.4323 −3.4635
19 4150 −3.3478 −3.3175
20 765 −3.0392 −2.9726
21 409 −2.7746 −2.6623
22 863 −2.7933 −2.6800
27 824 −3.3891 −3.4146
28 1300 −3.43 −2.7766
30 230 −2.1641 −2.1702
31 81 −2.0460 −2.0487
32 125 −2.0344 −1.9499
33 42 −1.7387 −2.0887
34 31 −1.4689 −1.6786
45 8 −0.9754 −1.1355
46 50 −1.6935 −1.5671
47 43 −1.8163 −1.7088
48 26 −1.5397 −1.4035
49 90 −1.7169 −1.5848
51 41 −1.5456 −1.4344
MLR: Multiple linear regression, PLS: Partial least square

Table 5: Test set compounds excluded from the model and used 
for validation

Name of the compound IC50 (nm) Predicted values

MLR PLS
4 3140 −4.0933 −3.9932
6 6290 4.1371 −4.0736
8 930 −3.6397 −3.4066
23 703 −2.2614 −2.4157
29 1620 −2.7728 −2.9688
43 42 −1.1138 −1.2771
44 9 −1.1266 −1.2841
50 42 −1.7436 −1.6162
MLR: Multiple linear regression, PLS: Partial least square

Graph 1: Multiple linear regression plots between the observed 
and the predicted activity of the test set and the training set 

compounds

Graph 2: Partial least square plot between the observed and the 
predicted activity of the test set and the training set compounds
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due to the fact that the bonding exhibited by it will be stronger but at 
the same time expected to be reversible. Both these features make a 
molecule selective, and at the same time less toxic.

Through unification of the information, derived from in-depth study of 
the descriptors, we deduced that an optimal increase in the bulk, which 
facilitates the proper alignment and binding of the molecule to the receptor, 
at certain positions of the molecule and by introducing electrophilic 
groups and, thereby, decreasing its overall nucleophilic nature, resulted in 

remarkable increase in the JNK2 inhibitory activity. An in-depth study of the 
relationship between these descriptors and the substitution pattern of the 
selected set of molecules, exhibiting potent inhibitory activity against JNK2, 
provided us with the insights, which were minute but extremely significant 
if the structural dependency of biological activity had to be deciphered. The 
present work decoded the fact that not only the substitution but, its position 
also plays an important role in the activity, exhibited by a molecule. This 
point was inferred when we observed a mismatch between the functions of 
the two descriptors, Kier Chi4 (whole molecule) and the moment of inertia 

Fig. 3: Effects of changes in substitution on molecular properties of compound 45 and, hence, inhibitory activity

Table 6: Value of descriptors for individual compounds

Name of the compound Inertia moment 
2 length (R1)

Inertia moment 
3 length (R3)

Kier Chi4 (path/cluster) 
index (whole molecule)

vamp HOMO (whole 
molecule)

4 2.47324 1.29969 3.12238 −8.71408
5 2.37532 1.29058 3.12797 −8.72288
6 2.52301 1.32989 3.22743 −8.66602
8 2.39292 1.33508 3.05893 −9.1517
9 2.36135 1.33771 3.05893 −8.72688
15 2.22349 1.29253 3.57239 −8.79622
16 2.57845 1.29035 3.4956 −8.77136
17 2.71522 1.2913 3.4956 −8.70254
18 2.74655 1.29203 3.4956 −8.6953
19 3.55085 1.29265 3.58211 −8.47165
20 3.51664 1.29121 3.58211 −8.65896
21 3.59092 1.29071 3.58211 −8.79565
22 3.59643 1.29327 3.58211 −8.79007
23 3.5534 1.29895 4.09138 −8.69248
27 2.54694 1.23303 3.35928 −8.73031
28 2.54225 1.23175 3.80929 −8.83065
29 2.53047 1.23033 3.73251 −8.77073
30 3.71936 1.23557 3.81901 −8.77356
31 3.64884 1.2324 3.81901 −8.85264
32 3.7584 1.08427 3.46985 −8.73672
33 3.35507 1.22423 4.32829 −8.64769
34 3.5395 1.08306 3.97912 −8.68449
43 3.52006 1.08319 3.97912 −8.89982
44 3.5729 1.0836 3.97912 −8.88018
45 3.43332 1.08271 3.98471 −8.99727
46 3.71775 1.08474 3.46985 −8.94985
47 3.7028 1.08477 3.46985 −8.88099
48 3.67914 1.08254 3.47544 −9.0398
49 3.78601 1.08459 3.46985 −8.91857
50 3.77593 1.08483 3.46985 −8.90593
51 3.50014 1.08226 3.47544 −9.08026
HOMO: Highest occupied molecular orbital
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3 length (subs R3). Where, on the one hand, positive correlation of Kier Chi4 
predicted an increase in bioactivity of the compounds, through enhancing 
the mass distribution and, hence, bulk of the entire molecule, on the other 
hand, negatively correlating moment of inertia 3 length pointed toward 
reducing the bulk and shape of the molecule, at position R3, to improve 
the biological activity of the selected compounds. This clearly states that 
even if Kier Chi4 descriptor predicted an increase in activity with an overall 
increase in bulk of the molecule but, if bulk is placed at R3 position, instead 
of R1, then, detrimental effects are expected to be observed on the JNK2 
inhibitory activity of the molecules, as predicted by inertia moment 3 
length descriptor. Therefore, an optimal increase in the bulk or branching, 
at only certain positions, will bring about an increase in bioactivity of the 
molecules. The above results explicitly indicates that all the descriptors, that 
entered the final 2D QSAR model, were crucial and their correlation with 
the biological activity concurred well to the substitutions executed in the 
structures of the selected series of the JNK2 inhibitors. An in-depth study 
of these physicochemical parameters has provided substantial insights to 
design better chemical scaffolds in terms of selectivity and efficacy.

By utilizing the information, deciphered by the derived descriptors, 
two molecules, compound a and compound b, were designed (Fig. 4). 
Interestingly, both the molecules exhibited better ADME profile, than 
the most active compound (compound 45) in the selected series of 
JNK2 inhibitors.

A crystal structure of JNK2 enzyme, PDB entry name “3e70,” with the 
excellent resolution was selected to perform the molecular docking 
experiments. All the designed compounds were docked on to the 
binding domain of the enzymatic receptor. The docking experiments 
were proved to be fruitful and the two compounds, compound a and 
compound b, exhibited high Libdock score of 129.74 and 138.16, 
respectively. Deeper insights, into the binding modes of the molecules, 

revealed that compound a fits itself in adenine binding region, near 
the gatekeeper residue MET111 and its tail facing toward phosphate 
binding region of the receptor (Fig. 5). It was observed to be held 
firmly, through strong hydrogen bonds, with Phe170 and Lys55 amino 
acids. Additional Van der waals bonds were formed with ARG72 and 
ASP69 amino acid residues. Binding mode evaluation of compound 
b revealed its binding position to be the same as that observed for 
compound a and was found to be forming Van der waals bonds 
with exactly the same amino acids (Fig. 6). In conclusion, both the 
compounds get themselves seated deep in the receptor binding site, 
through the strong hydrogen bonds as well as Van der waals forces 
bonding with amino acids in both the planes, further enhancing the 
stable fitting of the molecules to the receptor and, therefore, effective 
enzyme inhibition. Docking of compound 45 has also been shown in 
Fig. 7.

The novelty of the aforementioned compounds, compound a and 
compound b, was ascertained through evaluating the Tanimoto index for 
both the compounds. Moreover, the values of Tanimoto index for compound 
a and compound b were found to be 0.095 and 0.075, respectively, clearly 
suggesting that the designed compounds are highly novel.

In addition to this, an online available ADME prediction software 
“swissADME” was employed to determine the pharmacokinetic 
properties of the designed molecule. According to the results obtained 
(Table  7), the drug-likeness of both the molecules was ascertained. 
Interestingly, both the molecules were predicted as non-Pgp substrate 
whereas compound 45 was found to be a Pgp substrate. Furthermore, 
the designed compounds were not found to violate any of the laws 
proposed to decide the extent of drug-likeness of a molecule whereas, 
compound 45 manifested violations to Egan et al.[30] as well as Veber 
et al. rules[31]. In addition, the absorption of the designed molecules, 
from gastrointestinal tract, is predicted to be high whereas, for the 
compound 45, it is low. This further strengthens the probability of 
designed molecules to show a better pharmacokinetic profile as 
compared to the reported inhibitors.

Fig. 4: Discovered optimized compounds, compound a and 
compound b.

Fig. 5: Docking studies of compound a on c-Jun NH2-terminal 
kinases receptor PDB entry 3e70

Fig. 6: Docking studies of compound b on c-Jun NH2-terminal 
kinases receptor PDB entry 3e70

Fig. 7: Docking studies of compound 45 on c-Jun NH2-terminal 
kinases receptor PDB entry 3e70

a

b
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CONCLUSION

The QSAR model, developed through the application of MLR and 
PLS methods, exhibited excellent values for standard statistical 
parameters and, thereby, proved to be highly reliable and predictable. 
The descriptors that were included in the final model, and their 
correlation with the JNK2 inhibitory activity was exploited to carry 
out replacements of the original groups, present around the N-(3,4-
dimethylthiophen-2-yl)acetamide moiety, with different groups that 
were predicted to bestow optimized activity profile to the existing 
JNK2 inhibitors. The designed molecules, when imposed on the JNK2 
enzymatic receptor, unraveled the potential binding interactions which 
were found to be better than the most active compound of the selected 
series of compounds. Eventually, two molecules, exhibiting excellent 
Libdock score, novelty and predicted ADME properties, have been 
designed for synthesis and further biological evaluation studies.
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