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ABSTRACT

Objectives: Ionotropic glutamate receptors (iGluRs) play a key role in the development and function of the nervous system. They also play an 
important in memory and learning process. They are implicated in various pathological conditions such as Alzheimer’s, Epilepsy, Huntington’s, and 
Parkinson’s diseases. This prompted us to carry out the present study on 13 selected compounds.

Methods: These 13 compounds were evaluated on the docking behavior of iGluR-2 (iGluR2) using PatchDock. In addition, molecular physicochemical, 
drug-likeness, absorption, distribution, metabolism, and excretion analyses were also carried out.

Results: The molecular physiochemical analysis revealed that all the 13 ligands showed nil violation and complied well with the Lipinski’s rule of five. 
ADME analysis showed that all the ligands (except ligands 1 and 12) predicated to have high gastrointestinal absorption property. Docking studies 
revealed that ligand 8 (dopamine) showed the highest atomic contact energy (ACE) (−78.14 kcal/mol), while ligand 9 (6-hydroxydopamine) showed 
the least ACE (−14.34 kcal/mol) with that of iGluR2. Similarly, ligand 8 (dopamine) has shown to interact with Ser 142 amino acid residue of iGluR2.

Conclusion: Thus, the present study showed the potential of 13 compounds as a modulator of iGluR-2.
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INTRODUCTION

L-Glutamate is the primary excitatory neurotransmitter in the 
mammalian central nervous system (CNS). L-Glutamate employs 
its action through metabotropic (mGluRs) and ionotropic (iGluRs) 
receptors. The metabotropic receptors (mGluRs) are G protein-coupled 
receptors type which plays modulators role in the CNS, whereas 
ionotropic receptors (iGluRs) mediate fast synaptic transmission through 
ligand-gated ion channels. The metabotropic receptors (mGluRs) are 
sub-divided into three groups, they are Group  1 receptors (mGlu1, 
5R) activate phospholipase C enzyme activity, while Group  2 (mGlu2, 
3R) and Group  3 (mGlu4, 6, 7, 8R) inhibit adenylyl cyclase activity 
when expressed in heterologous system. The ionotropic receptors 
(iGluRs) are classified into three sub-types; they are N-Methyl-D-
Aspartate (NMDA) receptors, N-Amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid (AMPA) receptors, and 2-Carboxy-3-carboxymethyl-4-
isopropenylpyrrolidine (kainite, KA) receptors. Apart from these, there 
are also two glutamate delta receptors, namely GluD1 and GluD2 [1]. 
Naur et al. [2] reported that seven subunits of NMDA subtype (GluN1, 
GluN2A-GluN2D. GluN3A-GluN3B), four subunits of AMPA subtype 
(GluA1-GluA4), and five subunits of KA subtype (GluK1 GluK5).

The ionotropic receptors (iGluRs) play a key role in the development 
and function of the nervous system including brain function. They also 
involved in numerous neurodegenerative diseases such as Alzheimer’s 
disease (AD), Parkinson’s disease, schizophrenia, brain damage 
followed by epilepsy and stroke, as well as in the process of learning 
and memory [3]. The ionotropic receptors (iGluRs) are potential 
therapeutic drug targets/biomarker for various neurological disorders. 
In recent years, very good progress has been made in structure 
elucidation and understanding of ionotropic receptors (iGluRs) 
functions [1]. This prompts us to carry out the present study where, 

we have selected 13 compounds they are (1) L-beta-oxalyl-amino-
alanine (L-BOAA), (2) L-beta-methylamino-L-alanine (L-BMAA),  (3) 
L-2,3-diaminopropionic acid, (4) 2,3-diaminobutanoic acid, (5) 
L-2,4-diaminobutyric acid, (6) 4-aminobutyric acid,  (7)  glutamate, 
(8) dopamine,  (9) 6-hydroxydopamine  (6-HOD),  (10) beta-
cyanoalanine,  (11) N-methyl-D-aspartic acid, (12) monosodium 
L-glutamate (MSG), and (13) cyperquat (or) 1-Methyl-4-
phenylpyridinium (MPP+) were evaluated on the docking behavior 
of ionotropic glutamate receptor-2 (iGluR2) using PatchDock. In 
addition, molecular physicochemical, drug-likeness, absorption, 
distribution, metabolism, and excretion analyses (ADME) were also 
carried out. The result shows that the potential of 13 compounds as 
iGluR2 modulators.

METHODS

Ligand preparation
Chemical structures of the ligands, namely (1) L-beta-oxalyl-
amino-alanine (CID 2360); (2) L-  beta-methylamino-L-
alanine (CID 105089);  (3) L-2,3-diaminopropionic acid (CID 
97328);    (4)  2,3-diaminobutanoic acid (ChemSpider ID 4475641); 
(5) L-2,4-diaminobutyric acid (CID  134490); (6) 4-aminobutyric 
acid (CID 119);  (7) glutamate (CID 104813); (8) dopamine 
(CID 681); (9) 6-HOD (CID 4624); (10) beta-cyanoalanine (CID 
13538); (11) N-methyl-D-aspartic acid (CID 22880); (12) MSG 
(ChemSpider ID 76943); and (13) MPP+ (CID 39484) were retrieved 
from PubMed (www.pubmed.com) compound and ChemSpider 
(www.chemspider.com) compound database, respectively.

Target protein identification and preparation
The three dimensional structures of the iGluR2 (PDB ID: 3RN8 with 
resolution of 1.7 A) were obtained from the Research Collaboratory 
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for Structural Bioinformatics Protein Data Bank (www.rcsb.org) [4]. 
A chain of this protein was processed individually by removing another 
chain (B, C, and D), ligands in addition to the crystallographically 
observed water particles (water without hydrogen bonds). The 
protein mentioned above was prepared using UCSF Chimera software 
(www cgi.ucsf.edu/chimera).

ADME analysis
ADME analysis was performed by Swiss ADME analysis was carried by 
a standard default protocol [5].

Docking studies
Docking studies were carried out by the PatchDock online server 
(http://bioinfo3d.cs.tau.ac.il/PatchDock). PatchDock adopts geometry-
based molecular docking algorithm method was used to recognize the 
binding scores, by binding residues atomic contact energy (ACE) of the 
given ligands [6]. The docking results were obtained through the email 
address. We also use to get a uniform resource locator which provides 
the top 20 solutions in a table form through email. From these, the top 
one solution (the docked protein-ligand complex) was selected and 
downloaded in a database (pdb) file format. Further, the binding site 
analysis was carried out by PyMOL software (www.pymol.org).

RESULTS AND DISCUSSION

Olney et al. [7] related the neurotoxic action of glutamic acid to 
its excitatory effects. This gives rise to frame new concept called 
“excitotoxin.” According to this report, acidic amino acids have 
possessed strong neuroexcitatory effects and cause neuronal 
degeneration by excessive depolarizing neurons through specific 
receptors responsive to these amino acids [7]. Neuronal death is 
nothing but excitotoxicity which is induced by excessive stimulation of 
neuronal glutamate receptors [8]. For example, ischemia is commonly 
caused due to neuronal activation, which in turn results in increased 
glutamate release.

The above background prompted us to carry out the present study 
on  13 selected compounds. These 13 compounds were evaluated on 
the docking behavior of iGluR2 using PatchDock. Lathyrism is a human 
neurological disorder caused due to excessive intake of plant toxin, 
L-BOAA present in Lathyrus sativus [9]. L-BMAA is another neurotoxin, 
commonly present in cyanobacteria, diatoms, and dinoflagellates 
which is associated with neurodegenerative diseases such as AD, 
amyotrophic lateral sclerosis, and Parkinson’s disease  [10]. Several 
toxicant-induced Parkinson’s disease model has been reported 
which includes toxicants such as 6-HOD, 1-methyl-4-phenyl-1, 2, 3, 
6-tetrahydropyridine (MPTP), paraquat, and rotenone [11,12]. α, 
β-Diamino acids are well known among the non-proteinogenic amino 
acids due to their abundant availability in nature [13]. Especially, 
L-2, 3-diaminopropionic acid is a precursor of antibiotics and 
staphyloferrin B (a siderophore produced by Staphylococcus aureus) 

[14]. Similarly 2, 3-Diaminobutanoic acids have well known to be part 
of few peptide antibiotics and toxins [13]. Craighead et al. (2009) 
had reported the presence of 2, 4-diaminobutyric acid (neurotoxic 
amino acid) in shallow springs of Gobi desert, Mongolia [15]. 6-OHDA 
is neurotoxic amino acid, which structural resemble with that of 
dopamine, catecholamines, and noradrenaline [16]. NMDA has 
been reported from various animal phyla such as amphibians (Rana 
esculenta), arthropods, birds (Gallus gallus), chordates, cephalopod 
(Octopus vulgaris), crustacean (Carcinus maenas), mammals (Rattus 
norvegicus), mollusks, ray fish (Torpedo ocellata), and tunicates (Ciona 
intestinalis) [17]. MSG is the sodium salt of glutamic acid. The intake 
of MSG is associated with metabolic dysfunction, neuroendocrine 
disorders, oxidative stress, learning, and memory deficit [18]. MPP+ 
is the toxic metabolite of MPTP which induces apoptosis in cerebellar 
granule neurons [19]. The molecular physicochemical and drug-
likeness properties of 13 selected compounds were carried out using 
Molinspiration online software tool. In the present study, all the ligands 
exhibited nil violation and complied well with the Lipinski’s rule of five 
as shown in Table 1.

With regard to drug-likeness score, all the ligands showed active to 
moderate active score towards all the six descriptions. Interestingly, 
none of them showed inactive score as shown in Table 2.

ADME is important screening tool which is employed in the early 
stage of drug discovery, drug design and drug screening, due to its 
unique characteristic nature [20]. Table  3 showed the ADME profile 
of the 13 selected compounds; all the ligands [except 1 (L-beta-
oxalyl-amino  alanine) and 12 (MSG)] are predicted to have high 
gastrointestinal absorption effect.

The glutamate receptors (GluRs) have been reported to regulate cytokine, 
immune responses, matrix metalloproteinase release, peripheral pain, and 
synoviocyte proliferation. Thus, a glutamate receptor (GluR) antagonist 
acts as a potential drug with multimodal activity against arthritis [21]. 
The ionotropic receptors (iGluRs) play a key role in synaptic transmission 
and are reported in the post-synaptic neural membrane [22]. Therefore, 
both the physiological and pathological roles of iGluRs have been detailed 
studied using molecular and pharmacological approaches [23]. Docking 
studies revealed that ligand 8 (Dopamine) showed the highest ACE 
(−78.14 kcal/mol), while ligand 9 (6-HOD) showed the least ACE (−14.34 
kcal/mol) with that of iGluR2 as shown in Table 4.

The binding affinities of the 13 ligands to iGluR2 exhibited the following 
order ligand 8 (Dopamine) > ligand 1 (L-beta-oxalyl-amino-alanine) 
> ligand 10 (Beta-cyanoalanine) > ligand 6  (4-Aminobutyric acid) > 
ligand 2 (L-  beta-methylamino-L-alanine) > ligand 12 (MSG) > ligand 
13 (MPP+) > ligand 11 (N-methyl-D-aspartic acid) > ligand 3 (L-2,3-
Diaminopropionic acid) > ligand 4 (2,3-diaminobutanoic acid) > ligand 7 
(Glutamate) > ligand 5 (L-2,4-diaminobutyric acid) > ligand 9 (6 HOD).

Table 1: Molecular physicochemical descriptors analysis of 13 compounds using Molinspiration online software tool

Ligands Log Aa TPSAb Natomsc MWd noNe nOH NHf Nviolationsg Nrotbh Volumei

1 −4.52 129.72 12 176.13 7 5 0 4 142.94
2 −3.25 75.35 8 118.14 4 4 0 3 113.52
3 −4.21 89.34 7 104.11 4 5 0 2 95.84
4 −3.83 89.34 8 118.14 4 5 0 2 112.43
5 −3.96 89.34 8 118.14 4 5 0 3 112.64
6 −1.10 63.32 7 103.12 3 3 0 3 101.33
7 −4.41 103.45 10 146.12 5 3 0 4 125.61
8 −0.05 66.48 11 153.18 3 4 0 2 144.97
9 −0.13 86.71 12 169.18 4 5 0 2 152.99
10 −3.58 87.11 8 114.10 4 3 0 2 101.41
11 −2.61 86.62 10 147.13 5 3 0 4 129.23
12 −3.70 107.90 10 146.12 5 3 0 4 123.67
13 −2.73 3.88 13 170.24 1 0 0 1 171.09
aOctanol‑Water partition coefficient, bPolar surface area, cnumber of non‑hydrogen atoms, dmolecular weight, enumber of hydrogen bond acceptors [O and N atoms], 
fnumber of hydrogen bond donors [OH and NH groups], gnumber of rule of 5 violations, hnumber of rotatable bonds, imolecular volume
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In the present study, interaction with Ser142 amino acid residue has 
been shown by two ligands such as ligand 1 (L-beta-oxalyl-amino-
alanine) and ligand 8 (dopamine). The present finding was in good 
agreement with an earlier report [4].

CONCLUSION

In the present study, all the tested ligands have shown to dock 
with the target protein (iGluR2). However, ligand 3 (L-2,3-
diaminopropionic  acid), ligand 10 (Beta-cyanoalanine), and 

Table 2: Drug‑likeness property analysis of 13 compounds analogs using Molinspiration tool

Ligands GPCR* 
ligand

Ion channel 
modulator

Kinase 
inhibitor

Nuclear receptor 
ligand

Protease 
inhibitor

Enzyme 
inhibitor

1 −0.23 0.11 −0.80 −0.73 0.20 0.23
2 −2.10 −1.70 −2.79 −3.07 −1.82 −2.00
3 −2.48 −2.29 −3.04 −3.28 −2.14 −2.38
4 −2.52 −2.13 −3.18 −2.88 −2.06 −2.24
5 −1.91 −1.40 −2.69 −3.02 −1.60 −1.67
6 −2.59 −2.61 −3.29 −3.06 −2.40 −2.46
7 −0.45 −0.04 −1.03 −0.84 −0.35 −0.02
8 −0.44 0.01 −0.65 −0.98 −0.67 −0.16
9 −0.38 −0.01 −0.49 −0.74 −0.65 −0.07
10 −2.62 −2.21 −3.21 −3.28 −1.94 −2.15
11 −0.29 0.13 −1.29 −1.12 −0.13 0.01
12 −0.87 −0.10 −1.26 −1.49 −1.27 −0.55
13 −0.37 0.32 −0.84 −2.03 −0.57 0.19
*GPCR: G protein‑coupled receptors

Table 3: ADME analysis of 13 compounds using Swiss ADME online tool

Ligands Gl● BBB# P‑gp◊ CYP1A2* CYP2C19* CYP2C9* CYP2D6* CYP3A4* Log Kp◊

1 Low No No No No No No No −10.28
2 High No No No No No No No −9.71
3 High No No No No No No No −10.00
4 High No No No No No No No −9.29
5 High No No No No No No No −10.32
6 High No No No No No No No −9.18
7 High No No No No No No No −9.81
8 High No No No No No No No −7.93
9 High No No No No No No No −7.20
10 High No No No No No No No −9.61
11 High No No No No No No No −9.58
12 Low No Yes No No No No No −9.95
13 High Yes No No No No No No −9.57
●: Gastrointestinal, #: Blood‑brain barrier permeant, □: P‑gp‑P‑glycoprotein substrate, *: CYP‑Cytochrome P450 Inhibitors, ◊: Skin permeation (cm/s)

Table 4: The interaction energy analysis of 13 compounds with iGluR2 using PatchDock

Ligand ‑ACE (kcal/mol) Interaction of amino acid residue Bond distance (Å)
1 67.39 Leu94

Ser142
Lys218

2.71
3.16
2.68

2 58.51 Leu94
Val95
Arg149

3.30
3.52
3.40

3 21.21 No interaction ‑
4 19.09 Arg64

Glu145
2.83 and 2.89
3.37

5 15.22 Arg64 3.12
6 59.66 Lys157 2.97 and 3.19
7 16.96 Arg64

Glu145
Arg148

3.11
2.63 and 3.23
2.94

8 78.14 Ser142
Lys218

3.09
3.45

9 14.34 Arg149 2.17
10 63.95 No interaction ‑
11 22.70 Glu145

Arg149
2.18 and 3.31
2.15

12 44.48 Phe102 3.12
13 35.15 No interaction ‑
*ACE: Atomic contact energy, iGluR2: Ionotropic glutamate receptor‑2
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ligand 13 (MPP+) do not interact with any amino acid residues of the 
target protein (iGluR2). Thus, the present study showed the potential 
of  13 compounds as a modulator of iGluR2.
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