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ABSTRACT

Objective: In this study, we aimed to determine the effects of chromium picolinate (CrPic) on diabetes, one of the most common and fatal diseases in 
the world, and its associated oxidative damages.

Methods: CrPic (100 μg/kg) and metformin (1000 mg/kg) were orally administered for 21 days in rats with nicotinamide + streptozotocin-induced 
Type 2 diabetes.

Results: Significant decreases in fasting blood glucose levels were observed 14 days after initial administration in both CrPic (p<0.01) and metformin 
(p<0.001) groups compared with a diabetic control group (DC). Malondialdehyde (MDA) levels of all tissues were significantly higher in the DC group 
than in a normoglycemic control group (p<0.001). MDA levels of the CrPic group significantly decreased in heart (p<0.05) and liver (p<0.01) tissues. 
Glutathione (GSH) and catalase (CAT) levels in heart, kidney, and liver tissues increased in CrPic group (GSH p<0.001, p<0.05, and p<0.01; CAT 
p<0.001, p<0.001, and p<0.05, respectively). Superoxide dismutase enzyme levels significantly increased in CrPic group in the liver tissue (p>0.001), 
but no such changes were observed in heart and kidney tissues (p>0.05).

Conclusion: The results obtained from this study indicate that CrPic may be effective in alleviating hyperglycemia and its consequent oxidative 
damage in experimental Type 2 diabetes.
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INTRODUCTION

Diabetes mellitus is a metabolic disease characterized by hyperglycemia 
resulting from deficiency of insulin secretion, insulin effect, or 
both [1,2]. Chronic hyperglycemia can cause dysfunction and failure 
of various organs including the eyes, kidneys, nerves, heart, and blood 
vessels [3-6]. According to the International Diabetes Federation 2018 
report, the number of people affected by diabetes today is estimated to 
be 425 million, while it is estimated to reach 629 million by 2045 [7]. 
There is no definitive treatment for Type 2 diabetes today. On the other 
hand, it is stated that the worldwide cost of treating and preventing this 
disease is US$ 1 trillion in annually [5]. For this reason, the tendency 
toward the use of natural antioxidant compounds and essential 
minerals (such as chromium [Cr], vanadium, selenium, and manganese) 
for the treatment of diabetes and its complications have increased, 
and studies have focused on this issue. Many researchers suggest that 
oxidative stress plays a significant role in the pathogenesis of diabetes 
mellitus and its complications [8-10]. Levels of reactive oxygen 
species are tightly controlled by the protective actions of antioxidant 
enzymes and non-enzymatic antioxidants in healthy individuals [11]. 
In contrast, antioxidant mechanisms are reduced in diabetic patients, 
which may, therefore, increase oxidative stress [12,13]. Cr is a trace 
element that plays a significant role in controlling blood glucose and 
lipid levels [14,15]. It is a ubiquitous metal, occurring in water, soil, and 
biological systems. The three forms of Cr occurring in the environment 
are metallic (Cr0), trivalent (Cr3), and hexavalent (Cr6). Cr3 is considered 
to be an essential element, both in animal and human nutrition [15,16]. 
Cr deficiency is associated with diabetes mellitus, insulin resistance, 
and glucose sensitivity [17,18]. It has also been reported that Cr 
deficiency may be seen in patients with Type 2 diabetes [19]. Moreover, 
it has been indicated that plasma [20] and serum [21,22] Cr levels are 
lower in diabetic patients than in non-diabetic control (DC) patients.

In this study, we aimed to determine the protective effects of Cr3 against 
hyperglycemia and hyperglycemia-induced oxidative damage in liver, 
kidney, and heart tissues.

METHODS

Experimental design
This study was conducted under the approval (2016–106) of Kafkas 
University, Animal Experiments Local Ethics Committee. A  total of 
40  female Sprague-Dawley rats were divided into four groups of 10 
individuals as follows.

Normoglycemic control group (NC)
This group was fed ad libitum throughout the study. Physiological saline 
was administered by oral gavage throughout the study to provide the 
same conditions as those for the experimental groups.

Diabetic control group (DC)
This group received 110  mg/kg intraperitoneal (i.p.) nicotinamide 
(NAD) + 65 mg/kg intravenous (i.v.) streptozotocin (STZ). In addition, 
physiological saline was administered by oral gavage, during the study 
to ensure the same conditions as those for the experimental groups.

Diabetic + chromium picolinate (D + CrPic)
This group was orally administered 110 mg/kg i.p. NAD + 65 mg/kg i.v. 
STZ + 100 μg/kg orally CrPic.

Diabetic + metformin (D + M)
This group was orally administered 110 mg/kg i.p. NAD + 65 mg/kg i.v. 
STZ + 1000 mg/kg orally metformin.
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NAD (Sigma) was administered i.p.  15  min before STZ (Sigma) 
injection [23]. Rats with fasting blood glucose levels of ≥ 200  mg/
dL 7  days after NAD + STZ administration were defined as Type  2 
diabetics. The experimental groups were administered CrPic (GNC) and 
metformin for 21 days in accordance with the above procedure.

Preparation of study materials
At the end of the study period, animals were sacrificed by decapitation 
under 0.4 mL/kg pentobarbital sodium anesthesia, and tissue samples 
(kidney, heart, and liver) were obtained. Tissues were homogenized 
in phosphate buffer saline (1:9 dilution) using a homogenizer (Wigen 
Hauser). The homogenates were then centrifuged at 10,000 g for 5 min 
at 4°C to separate the supernatants.

Biochemical analysis
Blood glucose levels were periodically determined (days 0, 7, 14, 21, 
and 28) using a glucometer after 8 h of fasting. Malondialdehyde (MDA) 
and glutathione (GSH) levels were measured using the methods of 
Placer et al. [24] and Sedlak and Lindsay [25], respectively. The levels 
of superoxide dismutase (SOD) (Sigma-Aldrich) and catalase (CAT) 
(Cayman) were determined using spectrophotometric test kits.

Statistical analysis
The SPSS 18 package program was used for statistical analysis of 
the data. One-way analysis of variance and Tukey’s test were used to 
analyze among group differences. Statistical significance was accepted 
at p<0.05 (*, #: p<0.05, **, ##: p<0.01, and ***, ###: p<0.001).

RESULTS

At the beginning of the study, blood glucose levels of the animals ranged 
from 71 to 98  mg/dL (mean±standard deviation, n=40). 7  days after 
injecting NAD + STZ, blood glucose levels were significantly increased 
(p<0.001). No significant differences were detected between the 
DC and experimental groups on days 7 and 14 of the study period 
(p>0.05). However, on days 21 and 28 of the study, blood glucose levels 
significantly decreased as a result of CrPic (p<0.01) and metformin 
(p<0.001) administration, respectively (Fig. 1).

MDA levels in the heart tissue significantly decreased in the DC 
group (p<0.001). However, MDA level in the heart tissue significantly 
decreased in the D + CrPic (p<0.05) and D + M (p<0.001) groups. GSH 
and CAT levels significantly decreased in the DC group (p<0.05 and 
p<0.01, respectively). As a result of CrPic and metformin administration, 
GSH and CAT levels significantly increased (p<0.001). No change was 
observed in SOD antioxidant enzyme levels (p>0.05) (Fig. 2).

MDA levels significantly increased in the kidney tissue of the DC 
group (p<0.001), whereas it decreased in the D + M group (p<0.01). In 
addition, GSH and CAT levels significantly decreased in the DC group 
(p<0.05 and p<0.001, respectively) but increased in the D + CrPic 

Fig. 1: Effect of chromium picolinate on fasting blood glucose 
levels (mean±standard deviation, n=10). **p˂0.01, ***p˂0.001 as 
compared with diabetic control group, ### p˂0.001 as compared 

with normoglycemic control group

Fig. 2: Effect of chromium picolinate on oxidative stress 
parameters in heart tissue (mean±standard deviation, n=10). 

*p˂0.05, ***p˂0.001 as compared with diabetic control 
group, # p˂0.05, ## p˂0.01, ### p˂0.001 as compared with 

normoglycemic control group

Fig. 3: Effect of chromium picolinate on oxidative stress 
parameters in kidney tissue (mean±standard deviation, n=10). 

*p˂0.05, **p<0.01, ***p˂0.001 as compared with diabetic control 
group, # p˂0.05, ### p˂0.001 as compared with normoglycemic 

control group

Fig. 4: Effect of chromium picolinate on oxidative stress 
parameters in liver tissue (mean±standard deviation, n=10). 

*p˂0.05, **p˂0.01, ***p˂0.001 as compared with diabetic control 
group, ##p˂0.05, ###p˂0.001 as compared with normoglycemic 

control group
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(p<0.05 and p<0.001, respectively) and D + M (p<0.001) groups. No 
significant differences were detected between SOD levels in the groups 
(p>0.05) (Fig. 3).

MDA levels in the liver tissue of the DC group were found to be 
significantly higher than in that of the NC group (p<0.001). MDA levels 
in liver tissues of the D + CrPic and D + M groups significantly decreased 
(p<0.01 and p<0.001, respectively). SOD, GSH, and CAT antioxidant 
enzyme levels significantly decreased in the DC group (p<0.001, p<0.01, 
and p<0.001, respectively) but increased in the D + CrPic (p<0.001, 
p<0.01, and p<0.05, respectively) and D + M (p<0.001, p<0.01, and 
p<0.001, respectively) groups (Fig. 4).

DISCUSSION

Insulin resistance is an important cause of diabetes, metabolic 
syndrome, obesity, hypertension, dyslipidemia, and cardiovascular 
diseases [26,27]. In Type 2 diabetes, treatment aims to increase insulin 
sensitivity. This study demonstrated that CrPic can increase insulin 
sensitivity and reduce hyperglycemia in diabetic rats (Fig.  1). Many 
other studies have previously demonstrated that CrPic can lower blood 
glucose levels in animals and diabetic patients [11,28-30]. Doddigarla 
et al. stated that CrPic and melatonin each alone and in combination 
decreased blood glucose levels in high carbohydrate diet-fed male 
rats [31]. Refaie et al. also reported that CrPic did not alter blood 
glucose in non-diabetic rats but significantly reduced in alloxan-induced 
diabetes. They stated that CrPic has also linked this mode of action to the 
glucose tolerance in the host [32]. Another study indicated that CrPic 
reduced plasma glucose levels and improved unbalanced carbohydrate 
metabolism in diabetic rats [33]. CrPic exerts its antihyperglycemic 
and insulin-sensitizing actions through two mechanisms. The first is 
through increased GLUT4 expression [34] and the second through the 
regulation of lipid and carbohydrate metabolism [35].

Hyperglycemia can lead to decreased antioxidant enzyme levels despite 
increases in free radical levels in diabetes mellitus [11,36]. Increase in 
lipid peroxidation and activation of the hexosamine pathway, polyol 
pathway, and protein kinase C increase the production of free oxygen 
radicals [37,38]. Nowadays, researchers have stated that antioxidants 
obtained from natural sources as well as some trace elements such 
as CrPic can help prevent diabetes and its complications [14,15]. 
Another study stated that Cr supplementation decreased plasma 
glucose, TBARS, and HbA1c levels, while it increased levels of TAS in 
Type 2 diabetes patients [39]. Refaie et al. found that diabetic rats have 
significant reductions in SOD, GPx, and CAT activities in liver tissues. 
They stated that this reduction may be related to overproduction of 
ROS and disrupting the activity of these enzymes. In the same study, 
researchers were determined that CrPic reduced liver MDA levels, 
whereas increased SOD, CAT, and GPx levels [32]. In the present study, 
MDA levels in heart, kidney, and liver tissues significantly increased in 
the DC group compared with the NC group (Figs. 2-4). There were no 
differences in SOD antioxidant enzyme levels in heart and kidney tissues 
between groups (Figs. 2 and 3). However, SOD levels in the liver tissue 
significantly increased in the D + CrPic group compared with those in 
the DC group (Fig. 4). Moreover, GSH and CAT enzyme levels in all tissues 
significantly increased in the D + CrPic group (Figs. 2-4). Previous studies 
have demonstrated that CrPic supplementation inhibits the increase in 
lipid peroxidation seen in diabetic patients [40,41]. Sundaram et al. 
found that CrPic significantly increased liver GSH, GSH reductase, CAT, 
and SOD enzyme levels in rats with Type 1 diabetes [37]. Al-Rasheed 
et al. reported the modulating effect of CrPic in myocardial infarction-
induced oxidative stress [42]. However, the mechanism by which CrPic 
reduces oxidative stress is not fully understood. We hypothesize that 
CrPic may reduce oxidative damage by reducing fasting glucose levels.

CONCLUSION

In this study, CrPic was found to be effective in reducing hyperglycemia 
in Type 2 diabetes and in suppressing lipid peroxidation by enhancing 
antioxidant mechanisms.
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