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ABSTRACT

Chronic lymphocytic leukemia cancer is a deadly one which affects the bone marrow from making it to produce more amounts of white blood cells 
in the humans. This disease can be treated either by radiation therapy, bone marrow transplantation, chemotherapy, or immunotherapy. In radiation 
therapy, the ionizing radiation is used toward the tumor cells, but the main drawback is the radiation may affect the normal cells as well. To overcome 
this drawback, immunotherapy chimeric antigen receptor (CAR) is used. These CAR cells will target only the antigen of the tumor cells and not 
damage the normal cells in the body. In this therapy, the T-cells are taken either from the patients or a healthy donor and are engineered to express the 
CARs which are called as CAR-T-cells. When these CAR-T-cells come in contact with the antigen present on the surface of the tumor cells, they will get 
activated and become toxic to the tumor cells. This new class of therapy is having a great prospect in cancer immunotherapy.
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INTRODUCTION

Chronic lymphocytic leukemia (CLL) cancer is a deadly one which 
affects the bone marrow from making it to produce more amounts of 
white blood cells in the humans [66,67,73]. The lymphocytes consist 
of natural killer cells, B-cells, and T-cells. The bone marrow produces 
both T-cells and B-cells, but the maturation of T-cells takes place in 
the thymus and maturation of B-cells takes place in the bone marrow. 
When these lymphocytes are produced in large amount, they get 
accumulated in spleen, bone marrow, blood, and lymph nodes which 
results in enlargement of these organs and the hemoglobin content 
will get decreased [1,2]. This can be treated either by radiation 
therapy, chemotherapy, immunotherapy, or stem cell transplantation. 
In radiation therapy, the ionizing radiation is used toward the tumor 
cells, but the main drawback is the radiation may affect the normal 
cells as well. Initially, in bone marrow transplantation, the patient 
should be treated with either chemotherapy or radiation therapy and 
allogeneic bone marrow transplantation, but the infections are major 
complication [47]. Here, in this review, we have focused the structure, 
production, evolution of chimeric antigen receptor-T CAR-T-cells, and 
their role in treating CLL.

CAR-T-CELLS

The CAR-T-cells are also known as “living drug” [48] as they are 
engineered with receptor immune cell whose activity is specific toward 
the cancer cells. The targeting efficiency of these cells is very high as 
they target only cancer cells and harmless to the normal cells.

Of these therapies, the latest method is CAR-T-cells. In this method, the 
T-cells are taken either from the patient’s blood or from a healthy donor, 
and then, these cells are genetically engineered to express an artificial 
T-cell receptor which will target and destroy the cancer cells [14,72].

CAUSES OF CLL

The CLL is caused by specific herbicide 2,3,7,8-tetrachlorodibenzodioxin. 
The tetrachlorodibenzo-p-dioxin (TCDD) is a fat-soluble compound in 
contact with the skin, the compound has ability to enter into the gene 
of the organisms [10,76]. The TCDD binds with the aryl hydrocarbon 

receptor which is a type of protein present in the gene resulting in 
gene transcription [11,12]. The primary cause of ionizing radiation 
will break the double-stranded deoxyribonucleic acid (DNA) [13]. 
Furthermore, the risk factor of this cancer depends on age, family 
history, gender, and ethnicity. About 90% of people with CLL are 
above the age group of 50. First-degree relatives (parents, siblings, 
or offspring) of people with CLL have more than twice the risk for 
this cancer. CLL in male is more common when compared to a female. 
According to ethnicity and recent statistical report, the people in 
North America and European countries are more likely to be affected 
by this cancer [77].

AVAILABLE TREATMENT FOR CLL

Chemotherapy
To treat CLL, the drug rituximab, fludarabine, and cyclophosphamide 
against CD20 is used as it inhibits the synthesis of DNA resulting in the 
suppression of tumor cells. The drug cyclophosphamide is used along 
with fludarabine and has a side effect of reducing the white blood cell 
count when taken individually. Hence, the combination of this drug 
used to treat CLL [74,75]. Furthermore, the CLL can be diagnosed only 
when it is treated at initial stages [3-5].

Radiation therapy
Radiation therapy uses ionizing radiation, which controls the cell 
growth by damaging the DNA. Since CLL is a category of blood cancer, 
the success rate of radiation therapy is low because radiation therapy is 
done by introducing a specific area (where tumor cells are located) to 
the ionizing radiation as blood flows all over the body, it is not possible 
to treat with radiation. Most importantly, it has a probability of killing 
the normal cells as well [6].

Immunotherapy
This is the most promising treatment for CLL where genetically 
engineered lymphocytes (T-cells) are used to kill the tumor cells. 
This therapy is very specific as it targets only the tumor cells and it 
is less harm to the normal cells [9]. By seeing the drawbacks of other 
therapies, CAR-T-cells are the source of immunotherapy for treating 
CLL [7,8] effectively.
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Structure of CAR-T-cells
CAR-T-cells are composed of three portions they are ectodomain, 
endodomain, and transmembrane domain [15]. The overall CAR-T-cells 
are composed of a light chain (VL), a heavy chain (VH), hinge region, and 
transmembrane domain which are a lipid bilayer. The structure of CAR-
T-cells is given in Fig. 1.

Ectodomain
The ectodomain is a membrane protein present on the outer region 
of cytoplasm. It is composed of three parts; antigen recognition 
region, spacer, and signal peptide [16,79]. The signal peptide is a 
single-chain variable fragment (scFv) in which a portion of heavy 
and light chain of immunoglobulin (Ig) is fused by a linker [17]. 
The linker is hydrophilic, and for flexibility, the amino acids glycine 
and serine are present [18]. The antigen recognition domain is scFv 
with a basic ectodomain and more exotic recognition components. 
The tumor antigen will bind in the ectodomain region. The spacer 
is an intermediate which connects the transmembrane domain 
and  ectodomain. The basic form of spacer is the IgG1’s hinge 
region [20].

Transmembrane domain
The transmembrane domain plays an important role in the stability 
of the receptor molecule. The transmembrane is hydrophobic α-helix 
which is the secondary structure of protein where H bond from the N-H 
group is donated as a C=O group of the amino acid which is present 
around the membrane [19,22]. Initially, CD3-ζ was used as the domain 
as they resemble the normal T-cell receptor, but comparatively CD28 is 
the most effective one. These CDs are the proteins that are expressed 
in T-cells and they stimulate the signal which results in activation of 
T-cells [21].

Endodomain
The endodomain is present in the cytoplasm of the cell. It is the 
functional terminal of the receptor and is activated by CD3-ζ which 
presents in the ectodomain. The CD3-ζ contains immunoreceptor 
tyrosine-based activation motif and the efficiency is quite less, and 
hence, a costimulating signal domain is needed [68]. To satisfy these 
conditions, the molecules such as CD28, CD134, CD137, and CD27 are 
included in the CAR-T-cells to enhance the direct costimulation after the 
binding of tumor antigen to the CAR-T-cells [23].

Production of CAR-T-cells
The production of CAR-T-cells involves various steps. The most 
important step is quality control testing throughout the process. The 
process is briefly explained and the flow is depicted in Fig. 2.

Initially, the leukocytes are taken either from the patient or from 
the donor’s blood from the process called leukapheresis [24]. In this 

process, the blood is drawn to the apheresis where the components of 
the blood are separated by centrifugation. Anticoagulants are added 
during this process [25] and the leukocytes are retrieved. Second, the 
T-cells are separated from other components of leukocytes by enriching 
and washing. This process helps in removing the anticoagulants that 
were added in the previous step. Now, the CD4 and CD8 subsets in the 
T-cells are separated by specific antibody beats conjugates which are 
also called as marker [26]. The CD4 is a T helper cell which has CD4 
glycoprotein at their surface and CD8 is a cytotoxic cell which contains a 
glycoprotein. The T-cells will be activated for proliferation and growth. 
The activation of T-cells can be done by three methods; they are as 
follows [37].
1.	 Monoclonal antibody and interleukins (ILs)
2.	 Magnetic beads coated with antibody
3.	 Artificial antigen presenting cells.

Monoclonal antibody and IL
In this method, a monoclonal antibody anti-CD3 and IL-2 which is a 
type of cytokine is added to the T-cells to develop proliferation [27,84].

Magnetic beads coated with antibody
Anti-CD3 or CD28 is coated on magnetic beads resulting in the 
artificial antigen presenting particles [80]. The superparamagnetic 
beads are of diameter 4.5  µm and are removed efficiently with a 
strong electromagnet, leaving <100 residual beads per 3×106  cells 
at the end of production. The beads are used continuously to 
proliferate the T-cells during the expansion [39]. This method results 
in a very strong activation of T-cells when compared to the use of 
monoclonal antibody and IL. The usage of magnetic beads is more 
convenient  as  they are  removed easily after the proliferation of 
T-cells [38,40].

Artificial antigen presenting cells
The other ways to activate the T-cells are using non-viable antigen 
presenting cells. These cells present the antigen on its surface and 
stimulate the T-cells [28,100].

GENE DELIVERY

Gene delivery will be done either by viral method of gene transfer or 
through the plasmid mode of transfer. In CAR-T-cell therapy, viral vectors 
are used in gene delivery, where either lentiviruses or retroviruses are 
used for gene delivery [99]. The vector expresses the gene of CAR which 
is formed by combining the head of the antibody (VH and VL) and the 
T-cell signaling motif [37].

Viral transduction
High efficiency is obtained from viral transduction [41,78]. Since 
the retrovirus transduces the divided and proliferated cells, where 
activated T-cells are used. The CD28 signaling domain and CD3-ζ 
are combined together with the scFv to form the CAR gene and 
then transduced to the lentiviral vector. This is specific to the 
CD19 cells that are mainly present in B-lymphocytes, which are the 
chronic lymphocyte leukemia tumor cells. The viral vector encoding 
CAR  gene  after the entry of the target region, it results in CAR-T-
cells [42].

Plasmid-based gene delivery
In plasmid-based gene delivery, the gene transposon system is used. 
A  transposon is the sequence of DNA, which can change its position 
either by insertion or excision within the genome by transposase 
enzyme. The CAR transgene is inserted into the plasmid, and then, the 
plasmid is inserted into the T-cell genome. After the transformation 
studies, CAR-T-cells are produced and the cells are injected into the 
patient’s body [43-46]. The CAR-T-cells lyse the CD19-positive targets, 
and the release of cytokines will activate the cellular components 
of the adaptive and innate immune system for enhancing the tumor 
rejection [83].Fig. 1: Structure of chimeric antigen receptor-T-cells
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CAR-T-cell evolution
The CAR-T-cells have been evolving since the initial development of 
immunotherapy. There are four generations of CAR-T-cells, which is 
depicted in Fig. 3. The structure differs from each other by the changes 
in the position of endodomain.

First generation
The first generation consists of simple structure, CD3-ζ which is 
present in the endodomain, a primary signal transmitter [29,30,69]. 
This type of CAR-T-cells is less efficient as they cannot produce enough 
amounts of cytokines. Hence, IL-2 should be added to it. Thus, the 
first-generation CAR-T-cell which is transfected with single chain 
receptors is benefitted only by the accompany of cytokines [31]. The 
transmembrane domain of CAR-T-cell consists of either homologous 
or heterologous dimer of CD3, CD8, and CD28 [32]. However, the 
first-generation CAR-T-cells did not give satisfied outcomes due to 
insufficient production of cytokines.

Second generation
In the second generation, the CAR-T-cell dual signal has been used for 
T-cell activation. Three receptors are included in this generation; they 
are antigen receptor, cytokine receptor, and costimulatory receptor. 
The T-cell antigen receptor is present on the ectodomain where the first 
signal is received after the antigen presenting cells bonded with it. The 
costimulatory receptor is present in the endodomain which contains 
CD28/CD137/CD27/CD134 [33,34,85,101]. The CD137 can maintain 
and strengthen the production of the IL-2 cytokine to destroy the tumor 
cells [82].

Third Generation
In this generation, an extra signaling domain has been added to already 
existing second-generation CAR-T-cells. This signal domain is of OX40 or 
41BB to increase the potential of the production of the cytokines [35]. 
This CAR-T-cell is predominantly used in the treatment of lymphoma 
and colon cancer [36,81].

Fourth generation
This CAR-T-cell has scFv in ectodomain, CD3-ζ in transmembrane 
domain, and in endodomain CD3-ζ, CD28, as a costimulatory and 
additionally has a modified inducible expression cassette for a 
transgenic protein-like cytokine is present. These are called T-cell 
redirected for universal cytokine (TRUCKs)-mediated killing. It activates 
T-cells and also activates and engages the innate immune cells to 
terminate the antigen-negative tumor cells. To engineer these TRUCKs, 
two transgenes require one for the CAR and the other for inducible 
cytokines. Therefore, the CAR-T-cells were additionally engineered with 
a nuclear factor of the activated T-cell-responsive expression cassette 
for the inducible expression of a transgenic cytokine, for example, 
IL‑2. These TRUCK T-cells can also be used for treating viral infection, 
autoimmune diseases, and metabolic disorders [70,71].

Various antigens being targeted by CAR-T-cells
The CAR-T-cells are not only for treating CLL but also used for the 
treatment of various cancers.

Table  1 gives the information about the various cancers that can be 
treated by CARs [48-65,86-98].

Fig. 2: The production process of chimeric antigen receptor-T-cells

Fig. 3: Evolution of CAR-T-cells
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CONCLUSION

The treatment for cancer using CAR-T-cells has given many promising 
outcomes. Not only CLL but also various cancers, viral disease and 
genetic disorders can also be cured without any side effects. The CAR-T-
cells have been successfully used for treating all kinds of hematological 
cancers. The functionality of the CAR-T-cells can be effectively increased 
by modifying the domain of the CAR.

FUTURE PERSPECTIVES

The CAR-T-cells are “living drug,” by manipulating their domain 
structures the applications can be broadened. These can be used for 
treating many genetic disorders and immunodeficiency disorders. The 
CAR-T-cells are more specific in nature when compared to chemotherapy 
and radiation therapy, and the side effects are also less when compared 
to others. Hence, the application of these cells can be used in various 
clinical trials for further development.
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