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ABSTRACT

Objective: In the present study, fucoidan extracted from three brown algae, Sargassum wightii, Turbinaria ornata, and Padina tetrastromatica, was 
purified, characterized, and evaluated for antioxidant and cytotoxic properties.

Methods: Algal powders were sequentially extracted with five solvents based on polarity and residue was subjected to acidic extraction. The filtrates 
were precipitated for alginates, and resultant supernatant was precipitated for fucoidan. The precipitate was centrifuged; pellet dialyzed and 
lyophilized to yield crude fucoidan, which was purified by diethylaminoethyl cellulose chromatography and characterized by biochemical tests and 
Fourier-transform infrared (FT-IR) spectrometry. Solvent extracts and fucoidans were subjected to 2,2-diphenyl-1-picrylhydrazyl assay. Fucoidans 
were subjected to trypan blue cytotoxicity assay.

Results: Antioxidant activity was highest in methanol extracts and Padina crude fucoidan, while lowest in hexane extracts and purified Sargassum 
fucoidan. Sargassum yielded the highest amount of fucoidan (7.14%). Total carbohydrates increased as Sargassum> Padina > Turbinaria, sulfates as 
Padina > Turbinaria > Sargassum, and protein content was 0.16±0.001%. Cytotoxicity increased in a dose-dependent manner; the highest and lowest 
for Padina at 200 mg mL-1 (40%) and 10 mg mL-1 (4%), respectively. Antioxidant and cytotoxic properties exhibited a positive correlation with sulfate 
content. FT-IR spectral values were characteristic to fucoidan.

Conclusion: Fucoidans from the three algae effectively scavenged free radicals and showed good cytotoxic activity. There was a positive correlation 
between sulfate content and bioactivity of fucoidans, supporting its structure-function relationship. Thus, extracts and fucoidans from these algae are 
found to be potential candidates for pharmacological applications.
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INTRODUCTION

Fucoidans refer to a class of fucose-containing sulfated cell wall 
polysaccharides with complex, heterogeneous, and diverse chemical 
composition and structure. These polysaccharides in common 
have a backbone of (1 → 3)-linked α-L-fucopyranosyl residues or of 
alternating (1 → 3)-  and (1 → 4)-linked α-L-fucopyranosyl residues 
but may also include sulfated galactofucans with backbones of 
(1 → 6)-β-D-galacto and/or (1 → 2)-β-D-mannopyranosyl units with 
fucose. It contains L-fucose as main sugar unit and varying amounts 
of minor monosaccharides such as D-galactose, D-xylose, D-glucose, 
D-mannose, D-glucuronic acid, and D-uronic acid along with other 
substitutions [1]. A  wide range of biological activities has been 
reported for fucoidan extracted from different brown seaweeds, 
namely, antioxidant [2], anti-inflammatory [3], anticancer [4,5], 
immunomodulatory [6], anticoagulant [7], antithrombotic [8,9], 
antiviral [10], antiarthritic [11], antiobesity [12], and antiallergic [12] 
effects among many others. Several methods are available for fucoidan 
extraction such as hot water, acidic, alkaline [13], microwave-
assisted [14], ultrasound-assisted [15], and enzymatic methods [16], 
purification, and characterization of fucoidan [17]. The molecular 
weight, structure, chemical composition, and bioactivity of fucoidan 
depend on these methods as well as the species, location, and season 
of the collection [18].

Oxidative stress and the release of free radicals are one of the major 
causes for several disease conditions such as rheumatism, cancers, 
aging, neural disorders, ulcerative colitis, and cardiovascular disorders. 

Free radicals released evoke inflammatory responses by damaging the 
important macromolecules and membrane system of cells. Antioxidants 
can neutralize these free radicals, thereby protecting from such 
diseases. The commercially available synthetic antioxidants are found 
to exert harmful effects, and hence, there is a quest for exploring natural 
antioxidants. Fucoidan derived from many brown seaweeds has been 
reported to have an excellent antioxidant property [11].

The World Health Organization, through its cancer research agency, 
International Agency for Research on Cancer, has conducted research 
and reported that cancer is the second leading cause of death globally 
and was responsible for 8.8 million deaths in 2015. Globally, nearly 
1 in 6 deaths is due to cancer [19]. Nowadays, a combination of 
therapies is used to treat cancers, wherein chemotherapy is the most 
commonly employed and it has been found that the synthetic chemo 
drugs used to affect both cancer and normal healthy cells alike, 
causing multiple side effects. Natural alternatives like fucoidan from 
various brown algae have shown promising effects against different 
types of cancers, while also causing no or minimum side effects 
and, in turn, improving the overall health and life expectancy of the 
individuals [20].

In this context, the present study is aimed at utilizing the three brown 
algal species, Sargassum wightii Greville, Turbinaria ornata (Turner) 
J. Agardh, and Padina tetrastromatica Hauck for the extraction, 
purification, and characterization of fucoidan, and to evaluate its 
antioxidant and cytotoxic properties as a natural and safe therapeutic 
agent.

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. 
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i9.34164

Research Article



100

Asian J Pharm Clin Res, Vol 12, Issue 9, 2019, 99-105
	 Gopidas and Subramani	

MATERIALS AND METHODS

Materials
Analytical grade chemicals were used in all the studies. The chemicals 
and analytical grade reagents were purchased from HiMedia and Sisco 
Research Laboratories, Mumbai and Chennai, India.

Seaweed sample collection and identification
Fresh, matured biomass of three brown seaweeds S. wightii, T. ornata, 
and P. tetrastromatica was collected from the coast of Kilakarai (latitude 
9˚14̍ N and longitude 78˚50̍ E) in Gulf of Mannar located in Southeast 
coast of Tamil Nadu, India. The collected seaweeds were identified and 
documented in Centre for Advanced Studies in Botany, University of 
Madras, Chennai, Tamil Nadu, India. The algae were washed thoroughly 
in seawater, followed by tap water until all epiphytes, sand particles, 
associated fauna, and other extraneous materials were removed. 
Seaweeds were shade dried for 5 days, followed by oven drying (Sandy 
Scientific Instruments and Co., Chennai, India) for 12  h at 60°C, and 
the dry weight of the sample was determined. The material was hand 
crushed and ground using electronic mixer grinder (Philips HL 1643/04 
Vertical Mixer Grinder, India). The powder was processed further for 
the extraction of sulfated polysaccharide fucoidan.

Extraction of sulfated polysaccharide fucoidan
The extraction of fucoidans was done according to a modified protocol of 
Suresh et al., 2013 [21]. A total of 50 g of each algal powder were sequentially 
extracted in a Soxhlet apparatus, with 700 mL of five different solvents 
such as hexane, chloroform, ethyl acetate, acetone, and methanol, in the 
increasing order of polarity. The process was continued until the extract 
turned colorless in each solvent, to ensure the complete decoloration and 
defatting of the dry biomass. This biomass was then dispersed in 2 L of 
0.1 M HCl (pH 2.0–2.5) and boiled at 100°C for 4 h twice, with constant 
stirring. The boiled solution was filtered through a sieve, filter paper as 
well as Whatman No. 1 filter paper, and the filtrates were pooled. Equal 
volumes of 2% Na2CO3 followed by 1% CaCl2 were added to the filtrate and 
kept at 4°C overnight to precipitate the alginates. The resultant precipitate 
was centrifuged (HERMLE Labortechnik GmbH, Z 32 HK, Germany) at 
3900×g for 10 min, at 28°C. The supernatants were pooled, added with 
double the volume of pre-cooled acetone, and kept at 4°C overnight, to 
precipitate out the fucoidan. The precipitate was centrifuged at 3900×g for 
10 min, at 28°C. The pellet was collected, dissolved in water, and dialyzed 
against glass distilled water using a membrane (Molecular Weight Cutoff, 
[MWCO] 14,000; HiMedia Laboratories Pvt. Ltd., Mumbai, India) at 18°C 
for 2 days. Then, the dialysate was centrifuged at 15,680 ×g for 10 min, 
at 28°C, and the supernatant was lyophilized (Mini-Lyodel, Delvac Pumps 
Pvt. Ltd., Chennai, India). This yielded the partially purified fucoidan or 
crude fucoidan.

Purification of fucoidan by ion-exchange chromatography
The crude polysaccharide weighing 500 mg was redissolved in 5 mL glass 
distilled water and loaded on to diethylaminoethyl (DEAE) cellulose 
column (HiMedia Laboratories Pvt. Ltd., Mumbai, India) (25 cm×4 cm), 
previously washed with 25 mL of 4 M NaCl, glass distilled water, and then 
0.1 M sodium phosphate buffer (pH 7.2). This was followed by step-wise 
elution with solutions of 0.1 M sodium phosphate buffer, 0.2, 0.7, and 
1.5 M NaCl. The flow rate was maintained at 60 mL h-1. Eluants of 10 mL 
each were collected, and the carbohydrate content was determined by 
the phenol-sulfuric acid method (Dubois et al., 1956), using D-glucose as 
the standard. Three fractions were obtained, F1, F2, and F3. The fractions 
containing the higher amount of carbohydrates were pooled, added with 
double the volume of pre-cooled acetone, and kept at 4°C overnight, 
to precipitate fucoidan. The precipitated fucoidan was centrifuged at 
15 680×g for 10 min, at 28°C and the pellet was redissolved and dialyzed 
in glass distilled water for 2  days and lyophilized. This yielded the 
purified fucoidan which was stored at 4°C for further study.

Characterization of fucoidan
Chemical analyses
The total sugar was determined by the phenol-sulfuric acid method using 
L-fucose as the standard [22]. The sulfate content was measured using 

the BaCl2-gelatine method using potassium sulfate as the standard [23]. 
The protein content was estimated by Bradford’s method with bovine 
serum albumin as the standard [24]. The cysteine HCl-sulfuric acid 
method was performed as a qualitative test for fucoidan [25].

Fourier-transform infrared (FT-IR) spectroscopy analysis 
The functional groups of fucoidan were analyzed in the FT-IR 
spectrophotometer (PerkinElmer System One, PerkinElmer (India) Pvt. 
Ltd., Maharashtra, India). The sample (2 mg) was ground with 100 mg 
potassium bromide and pressed into the disc under vacuum. The 
infrared spectrum was recorded over a range of 4000–450 cm−1, using 
64 scans at a resolution of 4 cm−1.

In vitro antioxidant activity
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay
The antioxidant activity of samples was carried out according to 
the procedure available [26]. Different volume levels of standard 
ascorbic acid and test samples (100, 200, 300, 400, and 500 μL) 
were taken into test tubes and made 1 mL each dose level by dilution 
with the respective solvent in which it was extracted, followed by 
dilution up to 3  mL. Further, 150 μL DPPH solution was added to 
each test tube. Absorbance was taken at 516 nm in ultraviolet (UV)-
visible spectrophotometer (Hitachi U2900, UV-vis double-beam 
spectrophotometer, Hitachi High Technologies America, Inc.) after 
15 min using methanol as blank. About 150 μL of DPPH solution was 
added to 3  mL methanol and absorbance was taken immediately 
at 516  nm for control reading. The free radical scavenging activity 
(FRSA) or percentage antiradical activity was calculated using the 
following equation:

% Antiradical activity={(Control absorance−Sample absorance)÷Control 
absorance}×100

Each experiment was carried out in triplicate and the results are 
expressed as mean percentage antiradical activity ± standard deviation.

In vitro cytotoxicity analysis
Trypan blue exclusion method
The fucoidan was studied for a short-term in vitro cytotoxicity using 
Dalton’s lymphoma ascites (DLA) cells. The tumor cells aspirated from 
the peritoneal cavity of tumor-bearing mice were washed thrice with 
phosphate-buffered saline (PBS) or normal saline. Cell viability was 
determined by trypan blue exclusion method. Viable cell suspension 
(1×106  cells in 0.1  mL) was added to tubes containing various 
concentrations (10, 20, 50, 100, and 200 mg mL-1) of the test compounds 
dissolved in dimethyl sulfoxide, and the volume was made up to 1 mL 
using PBS. Control tube contained only cell suspension. These assay 
mixtures were incubated for 3 h at 37°C. Further, the suspension of cells 
was mixed with 0.1 mL of 1% trypan blue and kept for 2–3 min before 
loading on a hemocytometer. Dead cells took up the blue color of trypan 
blue while live cells did not take up the dye. The number of stained and 
unstained cells was counted separately. The percentage of cytotoxicity 
was calculated by the following equation:

% Cytotoxicity={(No. of dead cells)÷(No of live cells + No of dead 
cells )}×100

Table 1: The weight (in gram) of solvent extracts obtained from 
the three algal species

S. No. Solvents Sargassum 
wightii (g)

Turbinaria 
ornata (g)

Padina 
tetrastromatica (g)

1. Hexane 1.04 0.92 0.25
2. Chloroform 1.05 1.42 0.98
3. Ethyl acetate 0.48 0.43 0.36
4. Acetone 0.15 0.27 0.12
5. Methanol 0.37 0.45 0.34
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RESULTS

Depigmenting and defatting (solvent extraction) of algal samples
The powdered algal samples of S. wightii, T. ornata, and P. tetrastromatica 
were extracted with five solvents hexane, chloroform, ethyl acetate, 
acetone, and methanol sequentially in the increasing order of their 
polarities, to obtain crude extracts (Fig.  1). The amount of solvent 
extracts obtained from the three algae is given in Table  1. The 
sequential solvent extraction was found to be a very effective pre-
treatment method for eliminating all possible contaminants before 
acidic extraction of the algae.

Extraction, purification, and characterization of fucoidan
The algal powders post-solvent extraction was subjected to hot acidic 
water extraction, precipitated with acetone, dialyzed, and lyophilized. 
From the crude fucoidans thus obtained, the one that yielded the 
highest amount of total carbohydrates, i.e.  Sargassum, was purified 
by DEAE column chromatography to obtain three fractions F1, F2, 
and F3 (Fig.  2). The fucoidans retained in the dialysis membrane 
(MWCO 14,000) were considered to be of the molecular weight of 
14 kD [27]. The yield of crude fucoidan obtained was highest in 
S. wightii followed by P. tetrastromatica and T. ornata (Table 2) while 
the yield of purified fucoidan or the column fractions F1 (corresponding 
to 0.2 M NaCl elution), F2 (corresponding to 0.7 M NaCl elution), and F3 
(corresponding to 1.5 M NaCl elution) of S. wightii was approximately 
20  mg. The total carbohydrates content was the highest in S. wightii 

followed by P. tetrastromatica and T. ornata, while the sulfates content 
was the highest in Padina followed by Turbinaria and Sargassum. The 
protein content was 0.1% in all the samples. The percentage of total 
sugars, proteins, and sulfates in the purified fraction, F3 of Sargassum 
is also given (Table 2). In the cysteine HCl-sulfuric acid test for fucose, 
the development of a greenish-yellow color that persisted for 24  h 
indicated the presence of L-fucose in all the crude as well as purified 
sample solutions of fucoidan.

FT-IR analysis of fucoidans
FT-IR spectra of the three crude fucoidan samples, as well as the purified 
fraction F3 of S. wightii, showed characteristic absorption bands of 
sulfated polysaccharides (Figs.  3 and 4). The broad, intense bands in 
the regions of 3600–3200 cm−1 (i.e. 3434 cm−1, 3428 cm−1, 3409 cm−1, 
and 3433 cm−1 here) can be attributed to the stretching vibrations of the 
hydroxyl group (-OH) common to all polysaccharides [13]. Stretch bands 
at 2926 cm−1 and 2925 cm−1 indicated C-H stretching of the pyranoid 
ring and C-6 group of fucose and galactose [28]. The bands at 2138 
and 2144 cm−1 corresponds to C-H stretching [8,29]. Asymmetric and 
symmetric stretching vibrations of the carboxylic group (–COO-) gave 
characteristic bands at 1638, 1632, 1611, and 1644 cm−1 and bands at 
1423, 1425, and 1422 cm−1, respectively. It thus proves the acidic nature 
of polysaccharides and hence the existence of uronic acids [30,31]. 
The 1365 cm−1 in the FT-IR graph of F3 fraction, on the other hand, 
indicated the presence of sulfate groups [32] and 1151 cm−1 indicated 
hemiacetal stretching [31]. The signal at 1251 cm−1 indicates primary 

Fig. 1: Five solvent extracts of the three brown algae; (i) solvent extracts of Sargassum wightii, (ii) solvent extracts of Turbinaria ornata, 
and (iii) solvent extracts of Padina tetrastromatica; (a) hexane extract, (b) chloroform extract, (c) ethyl acetate extract, (d) acetone 

extract, and (e) methanol extract

Table 2: Percentage yield and composition of fucoidans extracted

Type of fucoidan % yield Total carbohydrates (%) Sulfates (%) Proteins (%)
SCF 7.14 42.19±0.3 3.11±0.4 0.162±0.001
TCF 0.94 29.69±0.7 4.76±0.3 0.162±0.001
PCF 4.28 33.13±0.2 6.70±0.1 0.164±0.002
F3 0.04 19.72±0.1 4.32±0.2 0.121±0.001
SCF: Sargassum crude fucoidan, TCF: Turbinaria crude fucoidan, PCF: Padina crude fucoidan, F3: Purified fraction of Sargassum fucoidan. Values are mean±standard 
deviation from three independent tests
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and secondary O-sulfate groups characteristic to marine-sulfated 
polysaccharides and stands for asymmetric stretching vibrations of 
sulfate esters (S=O) [8,28,33]. Absorption bands at 1054, 1051, and 
1062 cm−1 correspond to the stretching vibrations of C-O-C and C-O-H 
groups [33,34] while the band 1098 cm−1 in F3 graph corresponds to C-O 
and C-C stretching vibrations of pyranose ring. Absorption at 898 cm−1 
indicated α-glycosidic linkages. An absorption peak at 820 cm−1 can be 
ascribed to the bending vibrations of C-O-S of sulfates at axial C-2 and/
or C-3, C-O-O and complex substitution of C4 and C6 monosaccharide 
units [33,35]. From these data, it can be inferred that the fucoidan 
obtained from the three algae is acidic sulfated polysaccharides with 
the presence of fucose and galactose as the main monosaccharide units, 
has uronic acid content and sulfate esters at axial positions.

In vitro antioxidant activity
The in vitro antioxidant activities of the solvent extracts were evaluated by 
DPPH scavenging assay. When a solution of DPPH is mixed with that of a 
substrate (AH) that can donate a hydrogen atom, then this gives rise to the 
reduced form with the loss of its violet color. Among the five solvent extracts 
of S. wightii, the methanol extract of the concentration of 500  mg mL-1 
showed the maximum DPPH scavenging activity of 86.88±0.29%. The 
lowest activity observed was 19.88±0.62% in the 100  mg mL-1 
concentration of hexane extract (Fig. 5a). The maximum activity among 
solvent extracts of P. tetrastromatica observed was 86.52±1.05% by 
the 400  mg mL-1 concentration of methanol extract, and the lowest 
was 47.35±0.16% by the 100  mg mL-1 concentration of hexane extract 
(Fig. 5b). In case of solvent extracts of T. ornata, the maximum activity was 
93.47±1.28% in the 400 mg mL-1 concentration of methanol extract, while 
the lowest was 46.47±0.36% in the 100 mg mL-1 concentration of hexane 
extract (Fig. 5c). There is a linear increase in the DPPH scavenging activity 
in a dose-dependent manner although some extracts exhibited altered 
activity with an increase in extract concentration.

The DPPH scavenging assay was also conducted for the crude and 
purified fucoidans. In all samples, there is an increase in the antioxidant 

activity as the concentration of sample increased. The highest activity 
was shown by the crude fucoidan of Padina and the lowest by the crude 
fucoidan from Sargassum (Fig. 5d).

In vitro cytotoxicity analysis of crude and purified fucoidan
The cytotoxic nature of crude and purified fucoidans was investigated 
by conducting trypan blue exclusion method of cytotoxicity analysis. The 
Dalton’s ascites lymphoma cells were treated with varying concentrations 
of the crude and purified fucoidans (10, 20, 50, 100, and 200 mg mL-1) to 
observe the following results. The activity was measured as percentage 
cytotoxicity. The maximum cytotoxicity was exhibited by 200 mg mL-1 of 
crude fucoidan from Padina (40%), whereas the least toxicity was observed 
in the 10  mg mL-1 concentration of Padina. There is an increase in the 
cytotoxic effect of the fucoidans in a dose-dependent manner. On contrary 
to this, only the 200 mg mL-1 concentration of Sargassum showed activity, 
while for all other concentrations, there was no cytotoxicity observed. At 
very lower concentrations like 10 or 20  mg mL-1, only Padina fucoidan 
showed some activity. The effect of samples on the cells can be seen in the 
figures that follow. The dead cells took up the trypan blue dye and can be 
seen as blue entities against a background of uncolored live cells (Fig. 6).

Fig. 2: Crude fucoidan obtained from: A=Sargassum wightii, 
B=Padina tetrastromatica, and C=Turbinaria ornata and purified 

fractions F1, F2, and F3 of Sargassum crude fucoidan

Fig. 3: Fourier-transform infrared spectra of crude fucoidans 
of (a) Turbinaria ornata, (b) Padina tetrastromatica, and 

(C) Sargassum wightii

Fig. 4: Fourier-transform infrared spectra of F3, the purified 
fraction of crude fucoidan from Sargassum wightii
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DISCUSSION

Fucoidan constitutes about 5–10% of the dry algal biomass. The 
composition of fucoidan varies in brown algae with respect to its 
species, environment, and collection season. Hayakawa and Nagamime 
(2009) also reported that purified fucoidan contains <0.1% of protein 
contamination. The difference in the previous reports and the current 

study may be due to the differing habitats, seasons, extraction, and 
purification methods, and the type of species studied [36]. From the 
FT-IR data, it was concluded that the fucoidan obtained from the three 
algae is acidic sulfated polysaccharides with the presence of fucose and 
galactose as the main monosaccharide units, has uronic acid content 
and sulfate esters at axial positions.

Fig. 5: 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of (a) Sargassum extracts, (b) Padina extracts, (c) Turbinaria extracts, and 
(d) various crude and purified fucoidans. PCF: Padina crude fucoidan, TCF: Turbinaria crude fucoidan, SCF: Sargassum crude fucoidan, 

and SPF: Sargassum purified fucoidan (F3). Values are mean±standard deviation from three independent tests

Fig. 6: Percentage cytotoxicity of fucoidans on Dalton’s ascites lymphoma cells
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A linear increase in the DPPH scavenging activity in a dose-dependent 
manner was observed in case of both the solvent extracts and 
fucoidans of the three algae. These results are comparable with those 
reported [37,38]. Reports said that this antioxidant potential of solvent 
extracts of algae may be attributed to the contents of polyphenols, 
pigments, flavonoids, and phlorotannins present in them.

Earlier, many reports have discussed the antioxidant, anticancer, 
cytotoxic, and antiproliferative properties of fucoidan extracted 
from several brown seaweeds, especially Sargassum. In 2014, 
Anjana et al. had reported the anticancer effect of the ethanolic 
extract of S. wightii Greville on DLA cells using trypan blue exclusion 
method [39]. The dose-dependent antioxidant potential of methanolic 
extract of Sargassum swartzii was also reported and was attributed to 
the phenolic compounds in the extract [40]. The findings of the present 
study coincided with this finding. In another report, the F2 fraction 
of fucoidan from Sargassum plagiophyllum, containing higher sulfate 
content was found effective against human liver cancer (HepG2) and 
lung cancer (A549) cell lines [21]. Similar observations were also made 
in Sargassum polycystum, in which of the four fractions obtained, F2 
showed highest yield %, fucose and sulfate content, and DPPH radical 
scavenging activity (55.94±0.69%) [41]. In contrary to these findings, 
it is the F3 fraction of S. wightii that exhibited high contents and hence 
the activity. The current study was also supported by a report on the 
polysaccharide fraction from S. wightii which significantly reduced the 
proliferation of breast cancer cells (MCF7 and MDA-MB-231) in a dose-
dependent manner [42]. Whereas the fucoidan isolated from Padina 
boryana (0.23%) containing 18.6% sulfates, exhibited 79% suppression 
of colony formation in human colon cancer cells DLD-1 at a concentration 
of 200  mg mL-1 [43], and the fucoidan from P. tetrastromatica with a 
yield of 8.18% and 0.7% sulfur showed a 50% reduction in the viability 
of HeLa cells at a concentration of 1.2 mg mL-1 [44]. The yield of fucoidan 
from P. tetrastromatica in the current study was comparatively higher 
(4.28%) with 6.70±0.1% sulfates and exhibited maximum cytotoxicity 
of 40% at 200 mg mL-1 concentration. The difference observed clearly 
hints to the relation between sulfate content in fucoidan and its 
bioactivity. Although the ethanolic extract of P. gymnospora has been 
reported to contain a number of bioactives compared to many other 
algae, its sulfate content and antioxidant activity were found lower 
comparatively [45]. The antioxidant and FRSA of the methanolic extract 
of T. ornata are also already known [46]. The demand for seaweeds 
has enormously increased recently as it is a source of numerous 
bioactive compounds that are targeted for biomedical applications as 
well as the food industry [47]. In this scenario, the fucoidan extracted 
from the brown algae such as Sargassum and Padina, exhibiting good 
antioxidant and cytotoxic activities, is a promising candidate for various 
pharmaceutical applications.

CONCLUSION

We can say that this study demonstrated the antioxidant and 
cytotoxic potential of fucoidans from the three brown algae, S. wightii, 
P. tetrastromatica, and T. ornata from the coast of Kilakarai, Gulf 
of Mannar located in Southeast coast of Tamil Nadu, India. These 
fucoidans which comprise carbohydrates, uronic acid, and sulfate 
esters effectively scavenged free radicals. The solvent extracts also 
showed good antioxidant activity. As reported in some earlier studies, 
there was a positive correlation between the sulfate content and the 
bioactivity of fucoidans. This finding strengthens the existing attempts 
to elucidate the structure-function relations of fucoidan. Hence, these 
algae, its extracts, and fucoidans are found to be potential candidates 
for pharmacological applications. Further studies are required for the 
full-fledged utilization of this highly interesting biomolecule.
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