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ABSTRACT

Objective: Type 2 diabetes mellitus (T2DM) is an acute metabolic disorder, in which the vogue is increasing persistently globally. The 
maltase-glucoamylase/alpha-glucosidase inhibitor is an oral antidiabetic drug collectively, which is utilizing for regulating carbohydrates that 
ordinarily transformed into simple sugars and absorbed by the intestine. Researchers need to constantly explore alternative therapeutic strategies for 
the clinical management of DM due to the increased adverse event caused by conservative antidiabetic agents. The present study proposes a substitute 
drug to examine the seven bioactive phytocomponents of Silybum marianum (milk thistle) that can regulate the hyperglycemia by downregulating 
alpha-glucosidase and its activity.

Methods: Different integrated web-based in silico tools and techniques were used to model the enzyme (receptor) as well as to determine the 
druggability of different active constituents of silymarin and their pharmacokinetics were predicted. Further, the active site of the enzyme was 
predicted followed by molecular docking method.

Results: The results show silychristin A and silydianin having less carcinogenicity and strong interaction to the target protein (alpha-glucosidase) 
compare to the reference drugs (acarbose and miglitol) and these two molecules can be used for the best drug molecules in T2DM.

Conclusion: In the proposed study, the in silico analysis helps researchers to utilize these compounds for clinical applications. The conclusion also 
suggests that synthetically and semi-synthetically, nucleus and peripheral modifications, either in the form of skeletal rearrangements or partial 
degradations as well as functional group addition and replacement of the active molecules present in silymarin giving access to new structural motifs, 
which can be used in future as a lead compounds for antagonising the alpha-glucosidase in the treatment of diabetes mellitus.
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INTRODUCTION

Diabetes mellitus (DM) is undoubtedly one of the human’s oldest known 
diseases. It was first reported about 3000 years ago in the Egyptian 
manuscript [1]. A perfect variance among T1 and Type 2 DM (T2DM) 
was undoubtedly defined [2,3]. T2DM was previously illustrated in 1988 
as a component of metabolic syndrome [4]. The prompts of T2DM are 
complex, multifaceted and comprise both genetic and environmental 
features as well as behavioral risk factors that affect beta-cell obligation 
and tissue insulin sensitivity [5-7]. Persons with T2DM are more 
susceptible to various forms of short-term and long-term medical 
difficulties, which occasionally lead to premature death. This has been 
seen in patients with T2DM mostly due to the pervasiveness of this type 
of DM. As the prevalence of this metabolic disorder, it is promptly rising 
and standard treatment refuses to steady the disease in most patients, 
prevention would be perceived as a key objective in the relatively 
proximate future. Persons who experience T2DM go through a phase 
of impaired glucose tolerance (IGT). Defects in the action or even 
secretion of insulin seem to be the two main complications ultimately 
leading to the development of glucose intolerance. Any interference in 
the phase of IGT that decreases insulin resistance protects beta-cells or 
both should also prevent or delay progression to diabetes.

Several potential drugs such as sulfonylureas, meglitinides, biguanides, 
and thiazolidinediones and alpha-glucosidase inhibitors can be 
used in medical treatments to regulate high blood glucose problems 
(hyperglycemia). In general, alpha-glucosidase is concomitant 
through the breakdown of polysaccharide and disaccharides into 

monosaccharide glucose [8,9]. Alpha-glucosidase inhibitors are oral 
antidiabetic medications which administered to alter the breakdown of 
carbohydrates that are transformed into simple sugars and absorbed 
by the intestines [10]. Alpha-glucosidase inhibitors appear to have a 
greater affinity of 10,000–100,000 times with carbohydrate-binding 
sites than oligosaccharides and polysaccharides. Oligosaccharides and 
polysaccharides cannot be converted into simple sugars that the body can 
absorb by inhibition of alpha-glucosidase enzyme [11]. Hereafter, alpha-
glucosidase inhibitors are crucial medications to prevent the absorption 
of carbohydrates in the intestine and can be used to treat T2DM and 
IGT [12]. Thus, these hypoglycemic agents are applied to patients with 
early diabetes or combined with other drugs [13]. Medicinal plants 
and herbs are noticeable in traditional medicine and have appealing 
pharmacological activities [14] and the most significant properties of 
medicinal plants are, either they show lower side effects or they are 
without any side effects.. During the past decade, alpha-glucosidase 
inhibitors from natural resources have been extensively established as 
highly purposeful foods or lead compounds to modulate diabetes.

Recently, drug designs used to significantly diminish blood glucose 
levels and try to maintain blood glucose homeostasis with slightly 
fewer adverse effects. In the structure-based drug design method, 
structures of considered target proteins are usually utilizing to perceive 
novel compounds that are therapeutically applicable. Computational 
or molecular docking is a simulation strategy that predicts molecules 
that properly bind to targets including enzymes and receptor proteins. 
Moreover, the rational methodology in virtual screening is known as the 
hierarchical method, which seems to be a valuable tool for computing 

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. 
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i9.34460

Research Article



226

Asian J Pharm Clin Res, Vol 12, Issue 9, 2019, 225-229
 Zonoubi et al. 

and screening protein structures to explore new ligands [15]. The ligand 
must have a high affinity with proteins to assess the binding site of a 
compound for a given receptor, as well as the property of interactions 
and leverage based on a scoring entity [16]. For example, the activity 
of a precise protein in human can be antagonized by the inhibitor 
discovery and protein-ligand interactions can be chosen mainly as a 
possible drug development which is called a pharmacophore model 
that can be utilized to achieve and recognize small molecules in two-
dimensional or three-dimensional (3D) (in silico) protein structure 
and function prediction [17]. Therefore, the demand for enhanced 
pharmacophore modeling is significant to diminish drug costs and new 
drugs are most likely to bind to the target protein [18,19]. The current 
study conducted a high-performance molecular docking to screen the 
potential of alpha-glucosidase from natural compounds and evaluated 
the analysis of alpha-glucosidase activities.

METHODS

Homology modeling
The target sequences of alpha-glucosidase enzyme were compiled from 
the UniProtKB protein knowledgebase (ID: O43451) and compelled 
using NCBI PSI-BLAST to identify the template sequences. Further, the 
3D protein structures were built using Swiss-Model (2QLY.1.A) and 
the protein structure was modeled using Swisspdbv viewer [20-23]. 
The consequential 3D structure of the protein was exposed to quality 
analysis using SAVES to predict the stereochemical activity of amino 
acids on the bases of geometry through various parameters such as 
WHATIF, ERRAT, and PROCHECK [24-27].

Active site prediction
The geometric and topological possessions of modeled protein 
2QLY.1.A (Computed Atlas of Surface Protein Topography [CASTp] ID: 
J_5C744E039BB01) exerted to predict active site amino acid, based on 
surface pockets, interior cavities, cross-channel, and hydrogen bond 
interactions using CASTp calculation server. CASTp is a web server 
which provides online services for retrieving, outlining, and quantifying 
these geometric and topological attributes of protein structures [28]. 
The basic components of computational geometry exert in CASTp are 
Delaunay triangulation, alpha shape, and discrete flow [29-33]. The 
modeled 2QLY.1.A (CASTp ID: J_5C744E039BB01) active sites were 
revealed using CASTp web server.

Ligand preparation and pharmacophore analysis
Silybin A, silybin B, isosilybin A, isosilybin B, silychristin A, silychristin B, 
and silydianin are active components (phytoconstituents) present in 
milk thistle that was used as an assessment compounds, and acarbose 
and miglitol as a standard compound were retrieved from ChEMBL 
Database using SDF file format (https://www.ebi.ac.uk/chembl/). 
Moreover, the structures of the ligands (active molecules) were 
converted to Mol. format using Chemsketch software to avoid any 
unsolicited mistake in the structures. The pharmacophore analysis 
was performed to determine chemical properties and predict drug-like 
molecule, by means of molinspiration online server. The rule of 5 shows 
the considerations which are a set of basic molecular descriptors to 
predict drug-like molecule which have Log p≤5, molecular weight (MW) 
≤500, hydrogen bond acceptor numbers ≤10, and hydrogen bond donor 
numbers ≤5. Those molecules which violate rather than one of these 
rules might have bioavailability problems [34]. These parameters help 
to screen the compounds to understand drug-like properties.

Pharmacokinetic properties
Pharmacokinetic properties of different components of the silymarin 
were calculated using an admetSAR online server. Calculation of 
physicochemical parameters of small molecules is valuable to screen 
computationally of the chemical compounds for their druglikeness and 
even toxicity potential. The overall of Log P, topological polar surface 
area (TPSA), H-bond acceptor, H-bond donors, and MW were worked 
out separately for an individual constituent by means of OpenBabel 
v2.3.1 [35] that can be utilized for absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) prediction. The incipience of initial 

screening for ADMET has augmented for drug nominees incept in the 
drug discovery phase and decreased the percentage of compounds that 
failed in clinical trials due to ADMET reasons. The TPSA calculation has 
relied on the summation of the fragment contributions, which regards 
the polar fragments centered on O and N. Polar surface area is revealed 
to be an admirable descriptor for drug absorption such as intestinal 
absorption, bioavailability, Caco-2 permeability, and blood–brain 
barrier penetration [36]. The measurement of molecular flexibility 
is the number of rotatable bonds (Nrotb), which is the ordinary 
topological parameter. The Nrotb is a good descriptor to measure 
oral drug bioavailability [37]. Single non-ring bond, bound to the non-
terminal heavy atom (i.e., non-hydrogen), is considered to be a rotatable 
bond. Amide C-N bonds are not considered due to their high rotational 
energy barrier.

Molecular docking
Based on the pharmacophore and pharmacokinetic analysis, the 
designated compounds were docked with the target protein (alpha-
glucosidase) using MGL Tools 1.5.6 and AutoDock 4.2; (Autodock, 
Autogrid, Copyright-1991e2000) from the Scripps Research Institute, 
http:/www.scripps.edu/mb/olson/doc/autodock so that to start and 
run AutoDock, polar hydrogens were added to the protein alongside 
with the Gasteiger type and the non-polar hydrogen was merged with 
the carbons. After that, the internal degrees of freedom and torsion were 
determined to prepare flexible and rigid molecule and to prepare grid 
maps of different grid points that keep ligands covering binding pockets 
fully based on active site amino acids within the selected proteins. The 
size of the grid box was adjusted based on X, Y, and Z axis and 70×70×70 
further require to calculate grid parameters using Autogrid. Molecular 
simulation parameters further to calculate Autodock properties to 
understand protein-ligand interactions by adding the Lamarckian 
genetic algorithm and molecular simulation methods to evaluate 
molecular docking. Though all parameters were considered necessary 
for molecular docking and therefore, pharmacophore mapping were 
fixed and used regularly for different compounds [38-40]. Consequently, 
the output of the docking process was analyzed utilizing EduPymol 
version 1.7.4.4.

RESULTS AND DISCUSSION

The selected alpha-glucosidase protein sequences were aligned using 
PSI-BLAST and modeled using modeler. The resultant protein structure 
is built using Swisspdb viewer. The results showed alpha-glucosidase 
protein has 99.77% of similarity to 5KZW_A protein template with the 
e-value of 0.0 and total score of 1798. The quality analysis of the modeled 
protein was predicted using SAVES. The modeled alpha-glucosidase 
protein has a similar template of 99.77% similar to alpha-glucosidase 
with e-value of 0.0. We built the modeled structure and observed the 
Ramachandran plot with amino acids in the allowed region that shows 
85.6% of amino acids are in complex prediction (Fig. 1) that it shows the 

Fig. 1: α-Glucosidase protein structure is modeled by Swiss-Model 
and Ramachandran plot was predicted using RAMAPAGE
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PRO493, PHE498, TRP527, ASP529, MET530, VAL533, SER534, 
ASN535, PHE536, ARG612, TRP625, ASP628, ASP657, PHE661, and 
HIS686 amino acid residues were found to be the best binding sites 
(Fig. 2). These active sites were considered for molecular docking.

Ligand structure preparation and pharmacophore analysis
Chemical library database such as chEMBL was used to retrieve 
the bioactive compounds along with reference molecules. The 
ligand structures were screened to understand drug-like properties 
(Tables 1-3). ADMET and toxicity were performed employing 
Molinspiration and admetSAR online tools. The result obtained 
shows that the standard drugs having the higher predicted value of 
carcinogenicity, acarbose =1.00 and miglitol =0.9714 in comparison 
with silychristin A =0.9165 and silydianin =0.9571 with the lower value 
of carcinogenicity. The molecular simulation techniques were utilized to 
simulate the chemical structure to predict the electrostatic interaction 
and potential energy prediction. QSAR properties were predicted to the 
molecular simulated chemical structures utilizing Hyperchem.

Molecular docking and virtual screening
Molecular docking of particular bioactive compounds alongside with 
reference drug molecules was docked with target protein alpha-
glucosidase. On the other hand, the docking results were predicted 
based on the binding energy (kcal/mol), number of the hydrogen bond, 
inhibitory constant (Ki), ligand efficiency, and interacting amino acids 

Fig. 2: α-Glucosidase protein structures are used to predict 
ligand-binding sites and pockets using CASTp calculation server

Table 1: Pharmacophore analysis of silymarin active compounds predicted using Molinspiration

Ligand miLogP TPSA nAtoms MW nON nOHNH Nrotb Volume
Silybin A 1.47 155.15 35 482.44 10 5 4 400.86
Silybin B 1.47 155.15 35 482.44 10 5 4 400.86
Isosilybin A 1.47 155.15 35 482.44 10 5 4 400.86
Isosilybin B 1.47 155.15 35 482.44 10 5 4 400.86
Silychristin A 1.26 166.14 35 482.44 10 6 4 399.89
Silychristin B 1.26 166.14 35 482.44 10 6 4 399.89
Silydianin 1.21 162.98 35 482.44 10 5 3 395.34
Acarbose −5.51 321.16 44 645.61 19 14 9 544.93
Miglitol −2.75 104.38 14 207.23 6 5 3 189.18
TPSA: Topological polar surface area, nAtoms: Number of atoms, MW: Molecular weight, nON: Number of hydrogen bond acceptor, nOHNH: Number of hydrogen bond 
donor, Nrotb: Number of rotatable bond

Table 2: Absorption, distribution, metabolism, excretion, and toxicity analysis of silymarin active compounds predicted using admet SAR 
tool

Ligand LogS CYP2D6 LogP Carcinogenicity HIA AMES PPB BBB Hepatotoxicity
Silybin A −2.649 0.9231 2.36 0.9022 0.9884 0.6300 0.849 0.6573 0.6000
Silybin B −2.649 0.9231 2.36 0.9022 0.9884 0.6300 0.849 0.6573 0.6000
Isosilybin A −2.649 0.9231 2.36 0.9022 0.9884 0.6300 0.843 0.6573 0.6500
Isosilybin B −2.649 0.9231 2.36 0.9022 0.9884 0.6300 0.843 0.6573 0.6500
Silychristin A −2.518 0.7995 2.40 0.9165 0.9889 0.5500 0.862 0.3007 0.6750
Silychristin B −2.518 0.7995 2.40 0.9165 0.9889 0.5500 0.862 0.3007 0.6750
Silydianin −3.035 0.8457 0.99 0.9571 0.9074 0.6000 0.918 0.2878 0.7750
Acarbose 1.383 0.8974 -8.56 1.0000 0.9664 0.5200 0.193 0.3230 0.6250
Miglitol −0.222 0.9535 −3.26 0.9714 0.7664 0.6000 −0.02 0.9051 0.8750
LogS: Solubility measured in mol/liter, HIA: Human intestinal absorption, AMES: Chemical mutagenicity, PPB: Plasma protein binding, BBB: Blood–brain barrier

Table: 3 Molecular docking of silybin active compounds against alpha-glucosidase protein structure using AutoDock

Ligand H-bond Binding energy (kcal/mol) IC 50 Ki (uM/nM) Amino acids
Silybin A 2 −8.35 760.85 (nM) ALA454, TYR691
Silybin B 2 −7.72 2.18 (uM) ALA454, GLN689
Isosilybin A 4 −8.86 320.68 (nM) TRP492, GLN689, GLN689, TYR691
Isosilybin B 3 −8.06 1.24 (uM) TYR385, TRP492, TYR691
Silychristin A 3 −10.00 46.70 (nM) TRP492, ARG612, TYR691
Silychristin B 3 −9.51 106.26 (nM) TYR385, ALA454, ASP628
Silydianin 4 −9.80 65.25 (nM) GLU490, SER534, TRP492, ARG612
Acarbose 3 −7.19 5.41 (uM) GLN689, GLN689, GLN689
Miglitol 5 −5.60 77.96 (uM) TRP492, SER534, GLU490, GLU490, SER534

rigidity of the protein structure. The ligand-binding site was observed 
using CASTp based on the pocket region of geometrically distributed 
amino acids and based on interaction energy. Some of the active site 
amino acids such as TYR385, ASP413, ILE414, MET417, ARG420, 
ASP422, ILE450, ASP452, PRO453, ALA454, GLU490, VAL491, TRP492, 
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within the target proteins. Virtual screening of the reference drugs with 
bioactive compounds was observed based on genetic algorithm cluster 
histogram table and the overall results are listed in Table 3. The docking 
results were observed with reference molecules compared with 
bioactive compounds that show, acarbose has three hydrogen bonds 
with the binding energy of −7.19 kcal/mol and Ki =5.41 μM and another 
reference drug miglitol has five hydrogen bonds with the binding 
energy of −5.60 kcal/mol and Ki =77.65 μM. The reference drugs 
compared with bioactive compounds were shown that silychristin A 
has three hydrogen bonds with the binding energy of −10.00 kcal/mol 
and Ki =46.70 nM and silydianin has four hydrogen bonds with the 
binding energy of −9.80 kcal/mol and Ki =65.25 nM. Other molecules 
revealed 2–3 hydrogen bonds with the lowest binding energy with Ki 
of μM concentrations. The overall result predicts that the silychristin 
A and silydianin having the best pharmacological characters, drug-like 
properties, and strong binding interactions based on the concentration 
of the compound inhibition. The hydrogen-bond interactions and 
its binding energy were assessed for the finest affinity by means of 
EduPymol Molecular Viewer software (Fig. 3).

CONCLUSION

The ADMET profile of the active constitutions of the silymarin has been 
estimated which showed less carcinogenicity compared with standard 
drugs. Even more, based on the protein-ligand interaction shows that 
silychristin A and silydianin having the best interaction compare to the 
reference drugs (acarbose and miglitol) toward the enzyme (alpha-
glucosidase). Further investigation has to be done for confirmation and 
evaluation of these compounds. The conclusion of this study suggested 
that silychristin A and silydianin having a good biological activity which 
can consider them as a lead molecule present in milk thistle. In the 
proposed study, the in silico analysis helps researchers to utilize these 
compounds for clinical applications. The conclusion also suggests 
that synthetically and semi-synthetically, nucleus and peripheral 
modifications, either in the form of skeletal rearrangements or partial 

degradations as well as functional group addition and replacement 
of the active molecules present in silymarin giving access to new 
structural motifs, which can be used in future as a lead compounds 
for antagonising the alpha-glucosidase in the treatment of diabetes 
mellitus.
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