ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH NNOVARE ACADEMIC SCIENCES Knowledge to Innovation Vol 12. Issue 9, 2019 Online - 2455-3891 Print - 0974-2441 Research Article ## AN ETHNOBOTANICAL EXPLORATION OF MEDICINAL PLANTS IN MANAR BEAT, KARAMADAI RANGE, WESTERN GHATS, TAMIL NADU ## RAMYA EK*, MOWNIKA S, SHARMILA S Department of Botany, Vellalar College for Women (Autonomous), Thindal, Erode, Tamil Nadu, India. Email: ekramya16@gmail.com *Received: 12 June 2019, Revised and Accepted: 15 July 2019 #### ABSTRACT **Objectives:** This investigation provides an ethnobotanical information that truly focused on the traditional medicinal plants used by Irula community inhaled in Manar beat to treat various human diseases. Ethnobotanical study about medicinal plants was carried out from January 2018 to December 2018 in Manar beat, Karamadai range, Western Ghats, Tamil Nadu. **Methods:** The traditional in-depth knowledge of medicinal plants was collected during group discussion, interviews, and guided field walks along with tribe. All the traditional medicinal plants collected during the field visit were identified with local floras and the identity was authenticated by Botanical Survey of India. **Results:** A total of 89 medicinally important endemic, threatened and endangered aromatic herbal plants distributed in 71 genera and 42 families were collected and identified. Among the surveyed plants, Fabaceae and Moraceae with eight species were the largest plant families, respectively. Leaves (35%) are most widely used plant part of reported plants and decoction forms are mostly used by Irulas. The surveyed plants were checked for conservation status in Red Data List formulated by the International Union for Conservation of Nature; around nine species were listed out. Conclusion: The documentation of the medicinal herbal plants will be a good reference to all the young researches to carry out various conservation works Keywords: Ethnobotany, Manar beat, Irulas, Medicinal plants, International Union for Conservation of Nature. © 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i9.34562 #### INTRODUCTION The traditional knowledge in the use of plant species is a routine practice in rich diversified countries, India is one of the leading countries in this practice with heritage of cultural traditions [1]. Starting from the ancient time, the medicinal herbs play key source of drugs. According to the WHO, the world's large population relies on the traditional systems of medicines, particularly on plant-based system to meet their primary health-care needs [2]. Globally estimated that 300,000 plant species are exist, for this only around 15% have been evaluated to determine their pharmacological potential, so invention of new products from natural sources is nowadays highly encouraged [3]. Some of the important medicinal plants are commercially harvested for the extraction of various types of active ingredients. The various medical traditional systems such as Unani, Siddha, and Ayurvedic are hugely depended on the active medicinal properties of plants, whereas the precious wealth of indigenous knowledge is in danger of being lost. The use of traditional tribe's knowledge also reflects the values embedded in the tradition subheld by elders, especially about traditional medicine. The landscape is an essential to the efficacy of medicines, which is well understood by the practitioners, it should not be seen as "miracle" cures based on chemical compounds, but due to curative energy that draws its medicinal qualities founded on a relationship between the plants and the people [4]. Tribal communities are found dispersed in almost all states of India. There are 533 ethnic communities numbering 51,628,638 tribal people distributed all over India. Conventionally, ethnic people are highly knowledgeable about the medicinal plants and their medicinal values. These indigenous people are using a historical continuity of resource use and possess a broad knowledge base of the complex ecological system in their own localities. This knowledge has been accumulated through a series of observation transmitted from one generation to next generation [5]. The conservation and sustainable utilization of biological resources are achieved through documentation of the indigenous knowledge through ethnobotanical studies [6]. The key threats for medicinally important plants are due to overdependency by local people, grazing, forest fires, and commercial activities. The local people depend on these plants are due to the effective nature, non-availability of medical facilities, and ethnocultural beliefs. Cultivation is clearly a sustainable alternative to the present collection of medicinal plants from the wild habitat [7]. Based on the above concepts, an extensive ethnobotanical survey was carried out in Manar beat, Karamadai range, to document the information about the traditional medicinal practices based on the medicinal plant species. The aim of the present study is to evaluate the traditional uses of local native plants to provide safe and efficient information gathered from Irulas, a local tribe inhabited in our study area and documentation of native and active plant species used for the treatment and prevention of various diseases and ailments. #### **METHODS** ## Study area Ethnobotanical survey was carried out in Manar beat, Karamadai range, Western Ghats, Tamil Nadu, from January 2018 to December 2018. The study area lies between 11°16′ N latitude and 76°58′ E longitude. It has tropical climate with maximum temperature beyond 35°C during summer (May–June) and below 21°C during winter (December–January) and average annual rainfall is about 709 mm. Different types of vegetation are available in Karamadai reserve forest, namely, scrub jungle, dry deciduous forest, mixed deciduous forest, moist deciduous forest, and riparian vegetation. Manar beat is an evergreen tropical moist deciduous forest with rich vegetation of floras and faunas. The Table 1: Summary of surveyed medicinal plants in Mannar beat, Karamadai range, Western Ghats | S. No. | Botanical name | Family name | Local name | Habit | Parts
used | Active principle | Therapeutic uses | Mode of preparation | |------------|------------------------------------|------------------|----------------|-------------------|---|--|---|----------------------| | l. | Acacia caesia
Willd. | Mimosaceae | Nanjupattai | Climbing
shrub | Bark | Phenols | Wound healing and skin diseases | Paste | | 2. | Acacia concinna
Dc. | Mimosaceae | Shiakakai | Climbing
shrub | Bark,
leaves | Alkaloids | Jaundice,
constipation, skin
problems, and
astringent | Powder | | | Acalypha fruticosa
Forsk. | Euphorbiaceae | Ceera sedi | Shrub | Roots,
leaves,
and stem | Terpenoids and tannins | Febrifuge, whooping cough, toothache, constipation, and eye infection | Extraction | | | Acanthus ilicifolius
L. | Acanthaceae | Kalutai mulli | Shrub | Roots,
leaves,
and stem | Steroids and terpenoids | Rheumatism,
asthma, paralysis,
psoriasis, astringent,
wounds, and
leukorrhea | Decoction | | i. | Achyranthes
aspera L. | Amaranthaceae | Nayuruvi | Herb | Whole
plant | Alkaloids and steroids | Stomach ache, piles,
menstrual disorder,
and dysentery | Extraction | |). | Adenanthera
pavonina L. | Mimosaceae | Ani kundumani | Tree | Leaves | Fatty acids | Diarrhea | Juice | | ' . | Adenostemma
lavenia O. Kze. | Asteraceae | Vadakala | Herb | Leaves
and root | Alkaloids | Wound healing, injuries, and worms | Extraction and paste | | 3. | Aerides maculosum
Lindl. | Orchidaceae | - | Epiphyte | Leaves
and
flower | Glycosides,
saponins, and
steroids | Skin diseases and wound healing | Decoction | | | Aerva lanata Juss. | Amaranthaceae | Ciru-pulai | Herb | Roots | Flavonoids | Snakebite, cough,
asthma, and
headache | Decoction | | 0. | Ailanthus excelsa
Roxb. | Simaroubaceae | Peru | Tree | Bark | Alkaloids and flavonoids | Skin diseases,
jaundice,
anthelmintic,
expectorant,
antiasthmatic,
allergy,
antispasmodic,
antipyretic, and
bronchoconstriction | Paste | | 1. | Alangium
salvifolium Wang. | Alangiaceae | Alandi | Tree | Root,
seeds,
fruits,
and
leaves | Flavonoids,
glycosides | Hemorrhoids,
rheumatism
arthritis, loose stool,
herpes, and blood
disorders | Decoction and paste | | 2. | Albizzia amara
Boiv. | Mimosaceae | Oonjapattai | Tree | Bark and root | Terpenoids, saponins | Inflammations and snakebite | Decoction | | 3. | Alysicarpus
monilifer DC. | Fabaceae | Kasukkoti | Herb | Leaves,
stem, and
root | Saponins and alkaloids | Inflammation, chest pain, skin diseases, jaundice, and fever | Paste and decoction | | 4. | Anisomeles
malabarica R.Br. | Lamiaceae | Payemiratti | Herb | Whole
plant and
leaves | Alkaloids and glycosides | Antispasmodic,
diaphoretic,
rheumatic pains,
dyspepsia, and colic | Paste | | 5. | Anodendron paniculatum A. DC. | Apocynaceae | Sarakkodi | Climber | Leaves
and fruits | Alkaloids and glycosides | Jaundice | Powder | | 6. | Argyreia cuneata
Ker Gawl. | Convolvulaceae | Kanvalipoo | Climbing shrub | Leaves | Alkaloids and lipids | Diabetes, skin diseases, and cough | Decoction | | 7. | Aristolochia indica
Linn. | Aristolochiaceae | - | Climber | Whole plant | Alkaloids and flavonoids | Cough, astringent, and purgative | Juice | | 8. | Artocarpus hirsuta
Lamk. | Moraceae | Aiyinipila | Tree | Seed and
fruit | Flavonoids | Asthma and skin diseases | Powder | | 9. | Artocarpus
integrifolia Linn. | Moraceae | Palamarum | Tree | | Flavonoids,
terpenoids | Asthma, fever, and diarrhea | Extraction | | 20. | Atalantia
monophylla
Correa. | Rutaceae | Kattuelumeachi | Shrub | Whole
plant | Alkaloids | Rheumatism,
joint pains, and
connective tissues
disorders | Decoction | (Contd...) Table 1: (Continued) | S. No. | Botanical name | Family name | Local name | Habit | Parts
used | Active principle | Therapeutic uses | Mode of preparation | |--------|---|-----------------|------------------------|-------------------------|---|-------------------------------|---|--------------------------------| | 21. | Azadirachta indica
A. Juss. | Meliaceae | Vembu | Tree | Whole
plant | Flavonoids | Virus infection,
anti-inflammatory,
insecticide, and skin
diseases | Extraction | | 22. | Bachanania
axillaris (Desr.) | Anacardiaceae | Kolamaavu | Tree | Bark,
fruit, and
leaves | Phenols and flavonoids | Anticancer, antidiarrheal, anti-inflammatory, antioxidant, depurative, purgative, and tonic | Decoction | | 23. | Bauhinia racemosa
Lamk. | Fabaceae | Vellaimantarai | Tree | Whole
plant | Phenols and flavonoids | Cough, abdominal diseases, anorexia, and ascaris | Juice and decoction | | 24. | Begonia
malabarica Lamk. | Begoniaceae | - | Herb | Leaves
and
whole
plant | Flavonoids and steroids | Respiratory
infections, diarrhea,
blood cancer, and
skin diseases | Decoction and paste | | 25. | Benkara
malabarica Lamk.
Tirveng. | Rubiaceae | Sirukarai | Thorny
small
tree | Leaves | Alkaloids and flavonoids | Abdominal pain and throat infection | Juice and paste | | 26. | Blachia umbellata Baill. | Euphorbiaceae | Aatthumanthai | Shrub | Leaves | | Rheumatism | Paste and tonic | | 27. | Blepharis
boerhaaviaefolia
Pers. | Acanthaceae | - | Under
shrub | Leaves,
root,
fruit, and
seeds | Alkaloids and flavonoids | Wound healing,
ulcers, nasal,
asthma, throat
inflammation, spleen
disorders, diarrhea,
urinary disorder,
kidney stone, and
nervous disorders | Decoction | | 28. | Cadaba
fruticosa (L.)
Druce. | Capparidaceae | Chikondai | Shrub | Leaves | Alkaloids and glycosides | Dysentery, diarrhea,
body pain, and
poisonous bites | Juice | | 29. | Cadaba trifoliata
Wight. & Arn. | Capparidaceae | Kattagatti | Shrub | Leaves,
stem, and
roots | Tannins | Antirheumatic,
anthelmintic,
antibacterial, and
viral infection | Decoction
and
extraction | | 30. | Calamus rotang
Linn. | Arecaceae | Pirambu | Climber | Fruit and
leaves | Flavonoids | Astringent,
antidiarrheal,
anti-inflammatory,
chronic fevers,
piles, abdominal
tumors, strangury,
antibilious, and
spasmolytic | Decoction | | 31. | Capparis grandis | Capparidaceae | Pachara | Tree | Whole | Alkaloids and | Ulcer, asthma, and | Tonic and | | 32. | Linn. f. Capparis zeylanica | Capparidaceae | Adhandai | Shrub | plant
Root | flavonoids
Fatty acids and | anorexia
Dysentery and | juice
Extraction | | 33. | Linn. Caralluma adscendens R.Br. | Asclepiadaceae | Kallimudayan | Herb | Stem,
root, and
flower | flavonoids
Lipids | diarrhea
Cough, cold,
diarrhea, high
pressure, and
swelling | Decoction and paste | | 34. | Caralluma
pauciflora N. E.Br. | Asclepiadaceae | Puliyanprinadai | Herb | Leaves
and
whole
plant | Flavonoids and saponins | Ulcer, rheumatism,
diabetes, and
inflammation | Decoction and paste | | 35. | Caralluma
umbellata Haw. | Asclepiadaceae | Erumaikalli
mulayan | Herb | Stem | Glycosides | Stomach disorder,
abdominal pain,
obesity, diabetes,
and ulcer problems | Juice | | 36. | Cassia javanica L. | Caesalpiniaceae | Konari | Tree | Seeds
and bark | Glycosides and flavonoids | Laxative, antipyretic, fever, and emesis | Decoction | (Contd...) Table 1: (Continued) | S. No. | Botanical name | Family name | Local name | Habit | Parts
used | Active principle | Therapeutic uses | Mode of preparation | |--------|---|-----------------|-----------------------|-------------------|--|---------------------------|--|--------------------------------| | 37. | Cassia occidentalis
Linn. | Caesalpiniaceae | Peyaverai | Shrub | Seeds,
leaves,
root,
fruit, and
whole
plant | Glycosides | Cutaneous diseases, cough, asthma, sweetish, bitter, stomachic, fevers, good for sore throat, diuretic, ringworm, scorpion, elephantiasis, sting, snakebite, ascites, purgative, febrifuge, sore eyes, and skin diseases | Extraction | | 38. | Celtis phillipensis
Blanco. | Cannabaceae | Kodalimuruki | Tree | Root | Terpenoids | Diarrhea | Decoction | | 39. | Cenchrus ciliaris
Linn. | Poaceae | Kollukattai pullu | Herb | Leaves | Lipids | Kidney pain, wound healing, and tumors | Decoction | | 40. | Centella asiatica
Urb. | Apiaceae | Vallarai | Creeping
herb | Leaves | Terpenoids and glycosides | Wound healing,
brain tonic, and
cardiotonic | Infusion | | 41. | Cereus pterogonus
Lamk. | Cactaceae | Ooci kalli | Shrub | Whole
plant | Proteins | Purgative,
astringent,
constipation,
refrigerant,
antiperiodic, and
antipyretic | Extraction | | 42. | Ceropegia juncea
Roxb. | Asclepiadaceae | Jaathili | Climbing
herb | Leaves
and root | Alkaloids and steroids | Bacterial infection,
ulcer, and
inflammation | Decoction and juice | | 43. | Chamaecrista
pumila (Lam.) K.
Larsen. | Fabaceae | - | Shrub | Whole
plant and
leaves | Tannins and flavonoids | Diarrhea and
bacterial infection | Decoction | | 44. | Cipadessa
baccifera Miq. | Meliaceae | Pullipancheddi | Shrub | Whole
plant | Alkaloids | Indigestion, cough, and antifertility | Juice | | 45. | Cissampelos
pareira Linn. | Menispermaceae | Malai
Thangivaer | Climber | Root and
leaves | Flavonoids and alkaloids | Wound healing,
antidote, anorexia,
indigestion, blood
purification, and
anti-inflammation | Paste | | 46. | Cissus
quadrangularis
Linn. | Vitaceae | Pirandai | Climbing
shrub | Stem,
root, and
leaves | Flavonoids and terpenoids | Bone breakage,
appetizer dyspepsia,
indigestion, and
piles | Juice | | 47. | Clausena
dentata (Willd.) M.
Roem. | Rutaceae | Kattu
karuveppilai | Small
tree | Leaves
and root | Alkaloids and coumarins | Gastrointestinal disorders, fever, rheumatism, headache, hypotension, and sore throat | Tonic and paste | | 48. | Clerodendron
serratum Spr. | Verbenaceae | Angaravalli | Shrub | Leaves,
stem,
seed, and
root | Flavonoids and phenols | Asthma and respiratory diseases | Paste and decoction | | 49. | Coccinia
grandis (Linn.) | Cucurbitaceae | Kovakai | Climber | Fruit | Alkaloids and glycosides | Leprosy, fever, asthma, bronchitis, | Juice | | 50. | Voigt.
Combretum
albidum G. Don. | Combretaceae | Odai Kodi | Climber | Leaves,
fruit,
and stem
bark | Terpenoids and flavonoids | and jaundice
Peptic ulcer,
diarrhea, dysentery,
jaundice, and skin
diseases | Paste, juice,
and decoction | | 51. | Cordia sinensis
Lam. | Boraginaceae | Sellai | Small
tree | Leaves
and fruit | Flavonoids | Anti-inflammatory,
blood pressure,
hypotensive, and
diuretic | Decoction | | 52. | Crataeva adansonii
DC. | Capparidaceae | Marvilinga | Small
tree | Stem
bark | Phenols | Joint pain | Decoction | Table 1: (Continued) | S. No. | Botanical name | Family name | Local name | Habit | Parts
used | Active principle | Therapeutic uses | Mode of preparation | |--------|--|----------------|----------------|----------------|------------------------------------|---------------------------|---|----------------------------| | 53. | Crataeva religiosa
Forst. | Capparidaceae | Mavilankai | Small
tree | Bark | Phenols and terpenoids | Urinary complaints,
snakebite, and
ascites | Decoction | | 54. | Crotalaria
hebecarpa (DC.) | Fabaceae | Godhadi | Herb | Whole
plant | Flavonoids | Skin diseases,
snakebites, and | Paste and powder | | 55. | Rudd.
<i>Crotalaria pallida</i>
Aiton. | Fabaceae | Kilukiluppai | Shrub | Leaves | Alkaloids and flavonoids | jaundice
Vermifuge and fever | Extraction | | 56. | Cyrtococcum
patens A. Cam. | Poaceae | - | Herb | Leaves | Alkaloids | Fever, cough, and anti-inflammation | Decoction | | 57. | Cyrtococcum
trigonum A. Cam. | Poaceae | Abbu karkai | Herb | Leaves
and root | Alkaloids | Nervous disorder | Paste and decoction | | 58. | Daemia extensa
R.Br. | Asclepiadaceae | Kodalma | Climber | Whole
plant | Saponins and tannins | Gastric ulcers,
uterine, and
menstrual
complaints | Juice and decoction | | 59. | Dalbergia
coromandeliana
Prain. | Fabaceae | Nukkam | Shrub | Leaves,
bark, and
fruit | Alkaloids and saponins | Wound healing and skin diseases | Decoction and paste | | 60. | Dalbergia
lanceolaria Linn. f. | Fabaceae | Erigai | Tree | Seeds,
root, and
leaves | Phenols and flavonoids | Mild laxatives and inflammatory | Tonic and juice | | 51. | <i>Dioscorea hirsuta</i>
Blume | Dioscoreaceae | Pulidumpa | Climber | Leaves
and stem | Saponins | Diuretic,
rheumatism, and | Decoction, juice, and | | 52. | Dioscorea
oppositifolia Linn. | Dioscoreaceae | Kavala-kodi | Climber | Tuber | Saponins | snakebites
Stomach pain,
spleen disorders, | paste
Decoction | | 53. | Diospyros
buxifolia (Blume) | Ebenaceae | Irampalai | Tree | Leaves,
stem, and | Alkaloids and flavonoids | and cancer of uterus
Antiviral, anti-HIV,
and indigestion | Decoction | | 64. | Hiern.
Diploclisia
glaucescens Diels. | Menispermaceae | Kottaiyachachi | Climber | flower
Leaves
and fruit | Tannins and alkaloids | Diarrhea,
biliousness,
gonorrhea, and | Powder and juice | | 55. | Dodonaea viscosa
Linn. | Sapindaceae | Virali | Shrub | Whole
plant | Terpenoids | syphilis
Headache and
wound healing | Paste | | 66. | Drypetes
roxburghii (Wall.) | Euphorbiaceae | Irukoli | Tree | Bark and
leaves | - | Joint pain and rheumatism | Decoction and infusion | | 57. | Hurus.
Ficus bengalensis
Linn. | Moraceae | Aal | Tree | Bark and
latex | Steroids and flavonoids | Rheumatism,
dysentery, diabetes, | Juice | | 58. | Ficus benjamina
Linn. | Moraceae | Pimpri | Tree | Whole
plant | Alkaloids | gonorrhea, and piles
Ulcers and leprosy | Decoction | | 59. | Ficus racemosa Linn. | Moraceae | Atthi | Tree | Roots
and fruits | Flavonoids and terpenoids | Blood purifier and laxative | Decoction | | 0. | Ficus religiosa
Linn. | Moraceae | Arasu | Tree | Bark and
leaves | Phenols and tannins | Purgative, vomiting, and mouth ulcer | Decoction | | '1. | Ficus tjakela
Burm. | Moraceae | - | Tree | Leaves
and stem | - | Fever, cough, and cold | Decoction | | '2. | Ficus tomentosa
Roxb. | Moraceae | - | Tree | Leaves
and bark | Phenols | Poultice, boils, cuts, and wound | Paste and crushed leaves | | '3. | Gardenia resinifera
Roth. | Rubiaceae | Kambipicin | Tree | Buds and
leaves | Flavonoids | Antispasmodic,
expectorant,
carminative, and
stimulant | Paste | | 74. | Helicteres isora
Linn. | Sterculiaceae | Vadampiri | Large
shrub | Root,
bark,
and stem
bark | Flavonoids and terpenoids | Expectorant,
demulcent,
astringent, intestinal
worms, diarrhea,
and dysentery | Decoction and juice | | 75. | Heterostemma tanjorense Wight. and Arn. | Apocynaceae | Palakeerai | Climber | Leaves | Alkaloids | Antiviral,
antibacterial, skin
diseases, and fever | Paste, tonic, and infusion | Table 1: (Continued) | S. No. | Botanical name | Family name | Local name | Habit | Parts
used | Active principle | Therapeutic uses | Mode of preparation | |--------|--|----------------|-----------------|----------------|---|----------------------------|--|------------------------| | 76. | Hibiscus
micranthus Linn, f. | Malvaceae | Sitraamutti | Shrub | Leaves
and roots | Tannins and anthraquinones | Asthma, diuretic, and febrifuge | Decoction | | 77. | Ipomoea obscura
Ker-Gawl. | Convolvulaceae | Siruthaali | Climber | Seed,
root, and
leaves | Alkaloids and steroids | Anthelmintic,
diuretic, and laxative | Decoction | | 78. | <i>Kyllinga triceps</i>
Rottb. | Cyperaceae | Veluttanirbasi | Herb | Leaves | Terpenoids | Antidiabetes and dysentery | Juice | | 79. | Lantana camara
Linn. | Verbenaceae | Unnichedi | Shrub | Leaves | Terpenoids and steroids | Anti-inflammatory,
antiseptic, and
dysentery | Juice | | 80. | Neptunia oleracea
Lour. | Mimosaceae | Sundaikkirai | Herb | Root | Phenols | Bones of the nose
and hard palate,
syphilis, and cure
earache | Juice | | 81. | Oldenlandia
herbacea Roxb. | Rubiaceae | Nonnanampullu | Herb | Whole
plant and
leaves | Glycosides | Elephantiasis,
fever, verminosis,
inflammation,
asthma, bronchitis,
and ulcer | Decoction
and paste | | 82. | Perotis indica 0.
Ktz. | Poaceae | Narival | Herb | Whole
plant | - | Snakebites and bronchitis | Infusion | | 83. | Phyllanthus debilis
Hook.f. | Euphorbiaceae | Arulundi | Tree | Root,
leaves,
and
whole
plant | Tannins and
terpenoids | Fever, jaundice,
gastritis, urinary
difficulties,
bone fractures,
menorrhagia,
leukorrhea, asthma,
endometritis, wound
healing, and liver
diseases | Paste and decoction | | 84. | Pongamia
pinnata (L.) Pierre | Fabaceae | Pungan | Tree | Leaves,
stem,
seed, and
flower | Steroids | Antidiabetic,
rheumatism,
Anti-inflammatory,
piles, skin diseases,
and wounds | Juice and
paste | | 85. | Salvadora persica
Linn. | Salvadoraceae | Uka | Shrub | Leaves | Flavonoids | Antiplaque and analgesic | Tonic | | 86. | Santalum album
Linn. | Santalaceae | Sandhanam | Tree | Leaves
and stem | Fatty oils | Gastric irritability,
dysentery, skin
diseases, and
gonorrhea | Paste | | 87. | Terminalia
arjuna (Roxb.)
Wight and Arn. | Combretaceae | Marudha maram | Tree | Bark,
leaves | Flavonoids | Heart disease,
ulcers, dysentery,
and wounds | Decoction and powder | | 88. | Vallaris solanacea
O. Kze. | Apocynaceae | - | Climber | Root and
bark | Terpenoids | Analgesic,
antidiarrheal, and
dysentery | Tonic and paste | | 89. | Ziziphus oenoplia
Mill. | Rhamnaceae | Churipala chedi | Climbing shrub | Fruit and
bark | Flavonoids and phenols | Diarrhea, diabetes,
and anti-cancerous | Decoction | vegetation is floristically rich compared to other regions and represents several unique habitats. The vegetation was conducted in six small villages of Manar beat situated in Karamadai range which are occupied by Irula tribals. #### Data collection Fieldwork was conducted over the 12 months period focusing on collecting ethnobotanical information from local people about the medicinal plants in Manar beat. A total of 15 tribal people (seven men and eight women) aged between 35 and 85 who were cooperating fully were interviewed. Interview was conducted using semi-structured questionnaires and open-ended conversations at homes. The vegetation of the study area, plants therapeutical properties, and the kind of ailments used were among the questions asked. All kinds of information were documented and recorded. Fig. 1: Hill view of Manar beat, Karamadai range Fig. 2: Collection of traditional knowledge of plants from tribe Fig. 3: Life form of plants used as medicinal plants in Manar beat Fig. 4: Different plant parts used for the various health-care problems in Manar beat tribes #### Identification Identity of the collected plant species was done with the volumes of The Flora of the Nilgiri and Pulney Hill-tops [8], The Flora of Presidency of Madras [9], and The Flora of Tamil Nadu Carnatic [10]. The identity is authenticated by matched with type specimens available in the herbarium of Botanical Survey of India, Southern Circle, TNAU Campus, Coimbatore, Tamil Nadu. Herbarium specimens were collected and deposited in the Herbarium of Botany Department, Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India, for future reference. Table 2: Distribution of species occurred in different families | S. No. | Name of the families | Number of the species | |--------|----------------------|-----------------------| | 1. | Acanthaceae | 2 | | 2. | Alangiaceae | 1 | | 3. | Amaranthaceae | 2 | | 4. | Anacardiaceae | 1 | | 5. | Apiaceae | 1 | | 6. | Apocynaceae | 3 | | 7. | Arecaceae | 1 | | 8. | Aristolochiaceae | 1 | | 9. | Asclepiadaceae | 5 | | 10. | Asteraceae | 1 | | 11. | Begoniaceae | 1 | | 12. | Boraginaceae | 1 | | 13. | Cactaceae | 1 | | 14. | Caesalpiniaceae | 2 | | 15. | Cannabaceae | 1 | | 16. | Capparidaceae | 6 | | 17. | Combretaceae | 2 | | 18. | Convolvulaceae | 2 | | 19. | Cucurbitaceae | 1 | | 20. | Cyperaceae | 1 | | 21. | Dioscoreaceae | 2 | | 22. | Ebenaceae | 1 | | 23. | Euphorbiaceae | 4 | | 24. | Fabaceae | 8 | | 25. | Lamiaceae | 1 | | 26. | Malvaceae | 1 | | 27. | Meliaceae | 2 | | 28. | Menispermaceae | 2 | | 29. | Mimosaceae | 5 | | 30. | Moraceae | 8 | | 31. | Orchidaceae | 1 | | 32. | Poaceae | 4 | | 33. | Rhamnaceae | 1 | | 34. | Rubiaceae | 3 | | 35. | Rutaceae | 2 | | 36. | Salvadoraceae | 1 | | 37. | Santalaceae | 1 | | 38. | Sapindaceae | 1 | | 39. | Simaroubaceae | 1 | | 40. | Sterculiaceae | 1 | | 41. | Verbenaceae | 2 | | 42. | Vitaceae | 1 | #### RESULTS Altogether 89 medicinally important plants belonging to 42 families and 71 genera were documented from the study area (Figs. 1 and 2). The documented medicinal plants and their vernacular name, family, status, active principle, and ethnomedicinal uses along with mode of preparation have been summarized in Table 1 and Plate 1. These plant species are used for the treatment of many diseases by tribal people. Among the 89 species of angiosperms, 80 species belong to dicotyledons and 9 species belong to monocotyledons. Dicotyledons (90%) are dominant than the monocotyledons (10%). Of 42 families, 37 families belong to dicotyledons and 5 families belong to monocotyledons are recorded in Table 2. Fabaceae and Moraceae were dominated with eight species. As per the Red Data List formulated by the International Union for Conservation of Nature, around nine plants were enumerated in the Red Data List. Among these, eight plants are least con cern and they possess valuable medicinal properties and one plant is vulnerable (Table 3). The result of habit wise analysis shows that the tree diversity dominates in the study area. Tree recorded 31 species (35%), shrub 24 species (27%), herb 18 species (22%), climber 13 species (15%), and epiphyte 1 species (1%) shown in Fig. 3. The result of part wise plant species used to cure different ailments was recorded. The plant parts such as leaves (35%), root (16%), whole plant (13%), bark (11%), stem (9%), fruits (8%), seeds (6%), and Fig. 5: Pie diagram showing the mode of the action of ethnomedicinal plants flower (2%) were used for illness. Among these plant parts used, leaves are top in list (Fig. 4). After the part wise analysis, the mode of the action of ethnomedicinal plants used for curing diseases in the form of decoction (38%), paste (23%), juice (18%), extraction (8%), tonic (6%), infusion (4%), and dry powder (3%) shown in Fig. 5. #### DISCUSSION From this survey, we have recorded 89 plants belonging to 42 families, most of the plants belong to Fabaceae family in earlier research also supported that even they could find most of the plants belong to Fabaceae family in different regions [11,12]. Fabaceae is of great ethnobotanical importance in indigenous and urban communities throughout the world. Their medicinal value lies partly in their effectiveness in the treatment of a wide variety of human ailments. The variety of chemically active constituents, such as tannins, flavonoids, alkaloids, and terpenoids often found in members of this family, are substances with a high level of biological activity, and the fact that they are used extensively would suggest a pattern of global ethnomedicinal knowledge [13]. Plate 1: Photograph of some of the surveyed ethnomedicinal plants Table 3: International Union for Conservation of Nature plant list category recorded in the study area | S. No. | Name of the plants | International Union for
Conservation of Nature category | |--------|-----------------------|--| | 1. | Acanthus ilicifolius | LC | | 2. | Azadirachta indica | LC | | 3. | Cenchrus ciliaris | LC | | 4. | Centella asiatica | LC | | 5. | Dalbergia lanceolaria | LC | | 6. | Kyllinga triceps | LC | | 7. | Neptunia oleracea | LC | | 8. | Pongamia pinnata | LC | | 9. | Santalum album | V | LC: Least concern, V: Vulnerable Leaves and roots are generally forming the most frequently used plant parts in traditional medicine [14,15]. Among the plant parts, the leaves are most frequently used for the treatment of diseases. This is in consonance with the findings [16]. The roots, fruits, bark, gum and latex, stem, seeds, and flowers are also used as per their availability and curing ability. Many indigenous communities throughout the world also utilized mostly leaves for the preparation of herbal medicine [17,18]. Leaves of *Azadirachta indica* are used for the treatment of skin diseases. The present finding is agreed with the previous report [19,20]. Among the plant part, the root of *Aerva lanata* is used for the treatment of asthma [21]. The present population is switching back to natural medicine, and in this aspect, documentation of medicinal plants is an important one. This type of documentation will help in the conservation of medicinal plants. #### CONCLUSION The present study revealed that the traditional healers of Manar beat, Karamadai range, are rich in ethnobotanical knowledge. Documentation of 89 medicinal plant species which Fabaceae and Moraceae was occurred in highest proportion of medicinal plants. From this listed plants, nine plants were enumerated in the Red Data List. Medicinal plants used in local health-care traditions are regularly becoming extinct due to overutilization, population explosion, and for other anthropogenic reasons. Therefore, it is essential to conserve such knowledge secreted in the different parts of the country and people should be promoted and protect the medicinal plants for future. ### ACKNOWLEDGMENTS The authors of this paper are gratefully acknowledged the Department of Biotechnology, New Delhi, for funding as micro grant research project. Corresponding author thanks to Tamil Nadu Collegiate Education, Chennai for providing scholarship to carry out the research work. Authors thankful to the tribal people of Manar beat, Karamadai range, Coimbatore district for sharing their valuable knowledge and help during my field work. #### **AUTHORS' CONTRIBUTIONS** Author 1 and 3 to investigate and supervised the findings of this work. Author 1 and 2 performed to separate the tables, figures in category wise and Author 1 performed to writing of the manuscript. #### CONFLICTS OF INTEREST There are no conflicts of interest. #### REFERENCES - Pant S, Samant SS, Arya SC. Diversity and indigenous household remedies of the inhabitants surrounding mornaula reserve forest in West Himalaya. Indian J Tradit Knowl 2009;8:606-10. - 2. Kala CP, Sajwan BS. Sustainable development of medicinal plant resources in India. ENVIS For Bull 2007;7:1-14. - 3. De Luca V, Salim V, Atsumi SM, Yu F. Mining the biodiversity of plants: A revolution in the making. Science 2012;336:1658-61. - Juden LK. Spiritual link is part of traditional knowledge. Nature 2003;421:313. - Azaizeh H, Fulder S, Khalil K, Said O. Ethanomedicinal knowledge of local Arab practitioners in the middle East region. Fitoterapia 2003;74:98-108. - Muthu C, Ayyanar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu, Indian J Ethnobiol Ethnomed 2006;2:43. - Gilani AH, Rahman A. Trends in ethnopharmacology. J Ethnopharmacol 2005;100:43-9. - Fyson PF. The Flora of the Nilgiri and Pulney Hill Tops. Vol. 3. Madras: Superintendent, Government Press; 1915-20. - Gamble JS, Fischer CE. Flora of the Presidency of Madras. Vol. 1-3. Calcutta; Botanical Survey of India: 1967. - Matthew KM. The Flora of the Tamil Nadu Carnatic. Vol. 3. Tiruchirappalli: The Rapinet Herbarium, St. Joseph's College: 1983. p. 278-9. - Rao SS. Ethno botanical study of medicinal plants of Sri Pancha Narasimha Swamy and Sri Matsyagiri. J Medic Plants Stud 2015;3:37-42. - Sadale AN, Karadge BA. Survey on ethno-medicinal plants of Ajara Tahsil, district Kolhapur, Maharashtra-(India). Trends Life Sci 2013;2:21-5. - Molares S, Ladio A. The Usefulness of edible and medicinal fabaceae in argentine and chilean patagonia: environmental availability and other sources of supply. Evid Based Complement Altern Med 2011;2012;1-12. - Rahmatullah M, Ferdausi D, Mollik AH, Jahan R, Chowdhury MH, Haque WM, et al. A survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. Afr J Tradit Complement Altern Med 2009;7:91-7. - Giday M, Asfaw Z, Elmqvist T, Woldu Z. An ethnobotanical study of medicinal plants used by the Zay People in Ethiopia. J Ethnopharmacol 2003:85:43-52. - Premamalini P, Sharmila S. Ethnomedicinal perspectives of botanicals used by the people of pavalamalai, gobi, Erode District, Tamil Nadu for curing various ailments. Int J Adv Herb Sci Technol 2017;3:67-75. - 17. Ganesan S, Suresh N, Kesavan I. Ethnobotanical survey of Lower Palni Hills of Tamil Nadu. Indian J Tradit Knowl 2004;3:299-304. - Gonzalez JA, Garcia-Barrriuso M, Amich F. Ethnobotanical study of medicinal plants traditionally used in the Arribes del Duero, Western Spain. J Ethnopharmacol 2010;131:343-55. - Suresh K, Goyal S. and Parveen F. Ethno medico botany of household remedies of Kolayat tehsil in Bikaner district, Rajasthan. Indian J Tradit Knowl 2003;2:357-65. - Dhivya SM, Kalaichelvi K. Ethnomedicinal plants used to treat skin disease and poisonous bites by the tribals of Karamadai range, Western Ghats, Tamil Nadu, India. Int J Plant Anim Environ Sci 2016;6:53-8. - Sharmila S, Mownika S, Ramya EK. Survey of medicinal plants in Vellalar college for women campus, Erode, Tamil Nadu, India. Int J Pharm Sci Rev Res 2018;53:4-13.