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ABSTRACT

The modified/regulated drug delivery system helps to sustain the delivery of the drug for a prolonged period. The modified drug delivery system 
is primarily aimed at ensuring protection, the effectiveness of the drug, and patient compliance. The transdermal drug delivery system (TDDS) falls 
within the modified drug delivery system, in which the goal is to deliver the drug at a fixed dose and regulated rate through the skin. Polymers are the 
backbone of the framework for providing transdermal systems. The polymer should be stable, non-toxic, economical, and provide a sustainable release 
of the drug. In general, natural polymers used in the TDDS as rate-controlling agents, protective, and stabilizing agents and also used to minimize the 
frequency of dosing and improve the drug’s effectiveness by localizing at the site of action. Nowadays, manufacturers are likely to use natural polymers 
due to many issues associated with drug release and side effects with synthetic polymers. Drug release processes from natural polymers include 
oxidation, diffusion, and swelling. Natural polymers may be used as the basis to achieve predetermined drug distribution throughout the body. The 
use of natural materials for traditional and modern types of dosage forms are gums, mucilages, resins, and plant waste etc. Thus, the main objective of 
this review article is to give a brief knowledge about the extraction, modification, characterization, and biomedical application of conventional natural 
polymers used in the transdermal drug delivery system and their future prospective.
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INTRODUCTION

Polymer is an essential part of any matrix drug delivery systems. Polymers 
are used for the various drug delivery systems, provide thickness, 
consistency, and volume and also provide multifunctional stability, drug 
release, proper targeting, improved biological compatibility, and patient 
compliance [1]. Choosing a polymer because of the inherent complexity 
of structures requires a comprehensive understanding of the surface 
and bulk properties of polymers so that it can produce the desired 
functionality [2]. In the preparation of the transdermal drug delivery 
system (TDDS), both natural and synthetic polymers can be used. 
Biodegradable polymers are generally high molecular weight materials 
from natural sources such as plants, microorganisms, and animals. 
Natural polymers are preferred compared to synthetic polymer [3] due 
to its low toxicity, renewability, versatility to modify, biodegradability, 
and low cost  [3]. Natural polysaccharide polymers are hydrophilic, 
enzymatically degradable, and are capable of maintaining the stability of 
protein drugs embedded in them and also increasing their therapeutic 
efficacy  [4]. The polysaccharide polymers are biocompatible and 
interact with living cells, which makes them compliant and appropriate 
biomaterials for long systemic circulation and targeted drug delivery 
systems [5]. In general, most natural polymers are considered safe for 
oral use and therefore find applications in the food and pharmaceutical 
industries. Extracting and developing polymers from natural sources 
can reduce regulatory approval requirements [6]. The seasonal result, 
location/climate, soil variability, and stability as they lack viscosity 
or distortion during storage, etc., are some of the difficulties of 
using natural polymers [6]. These problems and the petrochemicals 
revolution led to the growing use of synthetic polymers, slowly 
nudged to the background of natural polymers. Synthetic polymers 
are comfortable and endeavored to drug delivery scientists because of 
their physicochemical properties [6]. The increasing concern about bio-
incompatibility, toxicity, etc., factors led to natural polymers revisited 
repeatedly in the pharmaceutical field. In recent times, the use of natural 
polymers has increased due to the support of “green chemistry” and 
technology materials [6]. Natural polymers are biogenic, and their 

biological properties such as cell recognition and interactions, enzymatic 
degradation, extracellular matrix-like appearance, and chemical 
stability make them materials of choice for drug delivery [6]. The natural 
polymers have the varieties of role in the drug delivery system such as 
emulsification [7], suspension [8], retarding the drug release [9], film 
coating [10], disintegration [11], solubilization, bioadhesion, gelling, 
thickening, viscosity modulation, bulking agent [12], drug encapsulation, 
and mechanical enhancer [13-15]. The use of natural polymers in the 
targeted drug delivery system is also increasing day by day. Increasing 
the use of natural polymers in drug delivery means an increase in 
demand, which indicates the need for research and development into 
new natural polymers or modification of old polymers for subsequent 
marketing [15]. This review article gives a piece of detailed information 
about the extraction, modification, characterization, and biomedical 
application of conventional natural polymers used in the TDDS and their 
future prospective.

DESCRIPTION ABOUT TDDS

The transdermal drug delivery system is characterized as a medicated 
adhesive patch or film system which is mounted over the skin’s surface 
to deliver a predetermined dose of the drug over a extended period [16]. 
The delivery of drugs in a controlled manner through the skin is the 
most challenging field. Thus, the technique for the controlled release of 
drugs through TDDS is more efficient, appealing, and successful [16]. 
The transdermal patch shows to be beneficial compared to other drug 
delivery system, due to the following reasons [16-26]:

•	 This provides patients with safety, secure, and painless self-
administration

•	 TDDS can be useful in poly-medicated patients
•	 TDDS provides a constant rate of drug release to an extended period 

to prevent dose dumping and therapeutic index problems associated 
with oral dose and parenteral administration

•	 TDDS patches enhanced the therapeutic effects of different 
medications by preventing common drug-related problems such as 
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first-pass metabolism, toxic metabolite formation, poor absorption, 
gastrointestinal irritation, etc.

•	 TDDS is useful for medications that have a short half-life to prevent 
repeated dosing

•	 Simplified medicines reduce inter and intra-patient variability
•	 For unconscious patients with dysphagia or constipation, TDDS has 

a more significant advantage
•	 Avoiding of pre-systemic metabolism leads to a reduction in the 

amount and, thus, a reduction in adverse effects in acute liver 
toxicity

•	 The absorption of the drug can be terminated by withdrawing 
transdermal devices at any point in time

•	 TDDS is usually cost-effective as patches, designed to deliver 1–7-day 
medications as compared with other treatments

•	 In comparison with the nasal cavity, it provides a relatively wide 
range of applications [16-26].

Limitations of TDDS
•	 The drug molecule with a large molecular size is not suitable for 

transdermal delivery (> 1000 Dalton approx.)
•	 The medication must have specific physicochemical properties 

for skin penetration, and if the dosage of a drug is high, i.e., it is 
challenging to deliver more than 10–25 mg/day by transdermal. The 
preferred average drug dosage is below 5 mg/days

•	 The drug or the excipients used in the formulations may result in 
local irritation at the site of administration such as itching, erythema, 
and local edema

•	 Clinical trial is required before applying the transdermal patches to 
the skin surface

•	 At the site of operation, most patients experience dermatitis due to 
system components

•	 The barrier function of the skin changes from one person to another 
person depending upon the age and the location from where they 
belong

•	 Low skin permeability limits the number of medicines available in 
this way

•	 TDDS is not an appropriate system to deliver the ionic drug molecules
•	 Hormones are not the suitable candidates to deliver through the 

transdermal route [16-26].

Building blocks of TDDS
Rate controlling membrane
The TDDS regulates the drug release property by dispersing into a 
matrix of inert polymers. The polymer powder blended physically with 
drug moiety and then molded to get the desired thickness and surface 
area [23-26].

Selection of model drug
•	 It is expected to be therapeutically active (dose in mg), with a 

molecular weight of about maximum 1000 Da.
•	 The drug should be soluble in the vehicle and the log p value of as 

much as 5.

Transdermal drug delivery has now become increasingly widespread. 
For the production of transdermal network, various physicochemical, 
pharmacokinetic, and pharmacological properties of the drug should 
be considered because of the skin’s permeability, and drugs must be 
transdermally distributed through the skin by passive diffusion and 
constrained by several significant restrictions [24].

Pressure sensitive adhesive
Pressure-sensitive adhesive makes direct contact between the 
skin and the transdermal system, and holds the drug in solution 
or suspension form in the system. The consistency of the drug 
spreading mainly depends on the applied force [23]. The rapidity 
of the transdermal device can be achieved by adhesive immune 
to strain. Examples include polyisobutylene, polyacrylate, and 
silicones [24].

Release liners
A patch is usually protected by waterproof padding which is incorporated 
during preparation. The release liner is removed only before applying 
the patch on the skin surface because the release liner is in direct contact 
with the transdermal system, therefore, both physically and chemically 
inert. The release liner consists of a base layer that can be non-occlusive 
(e.g., paper fabric) or occlusive (e.g., polyethylene and polyvinylchloride) 
and a silicone or Teflon release covering sheet. Specific components 
used in transdermal patches as release liners include polyester foil and 
metalized laminate [24-26].

Backing laminate
The following points must be taken into account during the formation 
of the baking layer:

•	 It must be versatile and non-toxic
•	 Getting a low transmission rate of water vapor to facilitate hydration 

of the skin and thus helps to increase the skin permeability of drugs
•	 This should be consistent with the transdermal device because it is 

still in use throughout the operation
•	 It must have strong tensile resistance [24].

For example, polyethylene film, polyester film and polyolefin film, and 
aluminum vapor-coated layer.

Penetration enhancers
The compounds that facilitate penetration of topically used drugs are 
typically called absorption boosters, accelerators, or penetration enhancers. 
They are used in a solution to enhance diffusiveness, and solubility, thereby, 
helps to reduce the skin’s barrier resistance reversibly [24].

For example, hydrocarbons, alcohols, acids, amines, amides, esters, 
surfactant, terpenes, terpenoids, essential oil, sulfoxides, lipids, and 
miscellaneous such as cyclodextrin derivatives and chitosan.

Desired properties for penetration enhancers
•	 The penetration enhancer must be non-irritating, non-sensitizing, 

non-phototoxic, and non-comedogenic
•	 Initiation action should be immediate and the operation period 

should be consistent and repeatable
•	 They should not have any pharmacological activity in the body, i.e., 

should not bind to the surface of the receptor
•	 When the enhancer withdrew, the upper layer regains its natural 

barrier properties wholly and automatically
•	 The accelerants to be used in topical formulations and system should 

be chemically and physically consistent with all medications and 
adjuvants

•	 This should be readily incorporated into preparations for effective 
dermatological activity. It should have an optimal parameter of 
solubility that is comparable to that of the skin

•	 This should stick to the skin surface and spread well when 
applied [23,24].

Plasticizers and solvent
For transdermal formulations, plasticizers ranging from 5% to 
20% (w/w, dry base) have also been used. The plasticizers are also 
responsible for film adhesiveness to other surfaces or membranes 
and for increasing the film strength along with the film’s brittleness 
and ductility [23,24,26]. For example, 15% w/w of glycerol or sorbitol, 
dry basis, phosphate, phthalate esters, fatty acid esters, and glycol 
derivatives such as polyethylene glycol (PEG) 200 and PEG 400 is 
generally used for plasticity. Solvents are used for product reservoir 
preparation [23,26]. For example, methanol, chloroform, acetone, 
isopropanol, dichloromethane, etc.

SOURCES OF NATURAL POLYMERS

Natural polymer has undoubtedly become an interest in the drug 
delivery system due to its physicochemical properties [27]. The 
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polymers derived from plants (e.g., pectin, guar gum, and mannan), 
microbes (e.g., dextran and xanthan gum), and animals (e.g., chitosan or 
chondroitin), has been found in abundance in the atmosphere and can 
also be readily re-producible using recombinant DNA technology [27]. 
The monosaccharide polymers have a wide range of beneficial properties 
such as high stability, non-toxicity, hydrophilicity, biodegradability, gel-
forming ability, and chemical modification ease [27]. There is a range 
of structural compositions of plant polysaccharides that are related not 
only to different plants but also to the portion of plants they derived 
from such as leaves, seeds, roots, and tubers. Two particular structural 
features can clarify the complexity and variety of polysaccharides: First, 
monosaccharides can be bound differently in α or β configuration; 
second, due to the branched side chains [27]. The natural polymers 
consisting of amino acids are somewhat uniform in size, and there is no 
variation. Such polymers are said to be homogeneous or monodisperse. 
In general, the natural polymers made by condensation polymerization 
techniques. Natural polymers tend to be readily biodegradable, and 
they show no adverse effects on the environment or human beings [27]. 
Depending upon the sources, natural polymers classified into three 
major categories, depicted in Fig. 1.

EXTRACTION AND PURIFICATION OF NATURAL POLYMERS USED 
FOR TDDS

The macerated plant parts (calyxes, leaves, stump barks, roots, seeds, 
or fruits) are the primary extract that should be warm in water over 
some time [28]. Then, by filtration technique (using a muslin cloth), 
the gum or mucilage is separated from the part of the plant. By adding 
alcohol, the mucilage or gum is precipitated out of water. Absolute 
ethanol typically used because it precipitates faster and gives higher 
yields than gasoline: water mixture. Furthermore, ethanol is a preferred 
solvent for any extraction process and has also approved by the Food 
and Drug Administration (FDA) [28]. For precipitation, other solvents 
such as acetone and methanol can also be used effectively. Mucilage 
is air-dried or oven-dried after precipitation [28]. Seeds of Mimosa 
pudica have macerated for 10 h in sufficient water. The mucilage that 
was collected, including the seeds, was then dried in the oven for 4–5 
h at 50°C. Passing through No. 18 sieve, dried mucilage was isolated 
from the seed husks. The seed husks were subsequently removed with 
winnowing by the freeze-drying method rather than heating [29,30].

Mucilage extraction from Plantago psyllium seed was successful by 
adding the seeds to boiling 0.1 M HCl until the seed husk dissolves [31]. 
Once the color has changed for all the seeds, the filtration is performed 
and separated. The concentrated filtrate is combined with ethanol to 
precipitate the mucilage and finally dried [31]. Forsskaolea mucilage 
obtained by soaking the seed husk in deionized water at 80°C 
continuously with 2 h ripening [32]. It is then allowed to cool at room 

temperature and left overnight. Upon stirring, 0.5 M NaOH is added to 
separate out the mucilage from the seeds, and the resulting slurry is 
filtered. The mucilage is precipitated on the filtrate by adding 2 M HCl. 
Centrifugation of the residue is then carried out to remove the water 
and acid residues and finally dried [32].

Sesamum indicum/Sesamum radiatum mucilage is extracted by 
proclaiming weighted leaves into hot water for 6 h and is then 
washed with a bag of muslin. It is then precipitated and cleaned with 
ethanol  [3]. It’s dried and milled with salt. Recent extraction in the 
laboratory indicated that mucilage could be effective when extracted 
with cold water from the leaves [3]. It has also been found that mucilage 
browning was less with cold water. In addition, sodium metabisulfite 
(1% w/v) is used as a bleaching agent/antioxidant during maceration 
that prevents enzymatic browning [3].

Cashew is an exudate from the Anacardium occidentale tree bark. The 
gum is milled, dissolved in water, and filtered after processing and dried. 
Alcoholic solvents are generally added in the filtrate to precipitate and 
then dried in a hot air oven at 45°C [32]. The isolates cashew gum is 
dissolved in water and centrifuged to obtain precipitation faster. The 
supernatant stored for drying [32]. First, defatting achieved for parts of 
the plant, such as tubers with petroleum ether and saponins extracted 
with methanol before maceration [33].

Nevertheless, some researchers did not attempt to extract saponins from 
tubers such as Eulophia campestris because they preferred to extract 
mucilage rather than saponins [34]. Mucilage from E. campestris tubers 
extracted by boiling in water for 1 h and then precipitated with acetone, 
and finally dried the mucilage [34]. It may not be necessary to initially 
defeat and extract saponins as fat dissolves in acetone and ethanol, which 
are the common solvents used in mucilage and gum precipitation. In 
contrast, saponins dissolve in ethanol and a mixture of water and acetone; 
this means that during precipitation, fat and saponins are separated from 
the mucilage [34]. Hence, distilled gums and mucilage obtained by water 
maceration and subsequent precipitation over a while using organic 
solvents such as ethanol, acetone, and isopropanol, combined with several 
soakings and washing in organic solvents. This process influenced by 
various factors such as part of the plant, the position of the mucilage, 
method of separation, choice of solvents for extraction, and choice of 
drying technique [34]. The schematic diagram showed in Fig. 2 explained 
the general process of extraction of natural polymers.

Some washings and precipitations using solvents, including ethanol, 
acetone, and isopropanol, can able to purify the derived polymer, thus 
remove impurities [34]. Nevertheless, a liquid chromatography-mass 
spectrometry purification method used to perform further purification 
if needed [34]. As far as microbes are concerned, pure ethanol widely 

Fig. 1: Based on the sources, classification of natural polymer and their examples
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used for extraction and purification [34]. Absolute ethanol inactivates 
the bacteria, but the microbes reactivate in the presence of favorable 
conditions and can contribute to polymer degradation. One of the 
drawbacks of renewable polymers is microbial degradation [34]. Some 
of the natural polymers, including chitosan and aloe vera mucilage, 
exhibit antimicrobial activity so that no microbial contamination can 
occur. The microbial load can be easily calculated using traditional 
microbiological measures. Therefore, polymers can be sterilized 
depending on use [35]. Sterilization methods include filtration, use 
of ethylene oxide or hydrogen peroxide, 70% ethanol (resistant to 
hydrophilic viruses and bacterial spores), gamma irradiation, and 
low-temperature radiofrequency glow discharge plasma treatment 
can be used for polymer sterilization process [35]. To prevent polymer 
degradation, morphological changes, chemical damage, the choice of 
sterilization technique is paramount [35].

MODIFICATION OF NATURAL POLYMERS BY VARIOUS 
TECHNIQUES

Natural polymers improved as a way of overcoming their drawbacks 
such as viscosity, microbial degradation, and partial or low solubility. 
Furthermore, altering existing polymers improves their properties 
and flexibility in the delivery system. Reformation should be made in 
such a way that the existing polymers do not sacrifice their physical/
biological properties. Modification methods include grafting, cross-
linking, derivative formation, and blending of polymer-polymers [36].

Grafting and Cross-linking
Singh and Chauhan synthesized a polymer network of psyllium husk and 
methacrylamide (MAAm) with ammonium persulfate (APS) used as an 
initiator and N, N-methylene-bisacrylamide (N, N-MBAAm) used as an 
cross-linking agent [36]. The synthesis carried out through a free-radical 
process followed by chemically induced polymerization. The ammonium 
persulfate has developed reactive psyllium in MAAm and N, N-MBAAm 
site chains. The four reactive sites on N, N-MBAAm can be connected to 
the psyllium and poly radicals (MAAm) to create a three-dimensional 
(3D) psy-cl-poly (MAAm) hydrogel. Insulin is introduced in the hydrogel 
with a proper swelling balance process. Afterward, the hydrogel swelled 

and dried to obtain an insulin-loaded polymer matrix system. The 
polymer matrix was evaluated at predetermined time for swelling and 
release of the drug [36]. The swelling and release of the drug occurred at 
a higher rate with neutral pH than acidic pH environment, but the release 
from the hydrogel still modulated with differences in the structure of 
polymer network and cross-linker used [36].

Moreover, psyllium polymeric network was synthesized by using 
N-hydroxymethyl acrylamide, and N, N-MBAAm used as cross-linkers, 
and salicylic acids and tetracycline hydrochlorides used as model 
drugs  [37]. Besides, hydrogels based on psyllium-N-vinylpyrrolidone 
was also obtained by radiation mediated cross-linking process and 
5-fluorouracil was used as a model drug in that preparation [38]. In 
another study, methacrylic acid and sterculia gum have modified using 
APS as the initiator, and N, N-MBAAm used as a hydrogel generating 
cross-linking agent [39].

Sterculia gum and modified sterculia-cl-poly (MAAc) were 
characterized for swelling ability, drug release, morphological, and 
structural alteration [40]. A comparison study revealed that sterculia-
cl-poly (MAAc) has demonstrated morphological variability as opposed 
to the smooth and homogenous sterculia gum. The swelling was 
analyzed according to the parameters of the reaction. The authors 
noted that sterculia-cl-poly swelling (MAAc) was decreased as the 
concentration of monomers in the polymer matrix increased [40]. In 
addition, sterculia-cl-poly (MAAc) swelling was increased with an 
increase in APS concentration (used as initiator) and decreased with 
an increase in N, N-MBAAm concentration. Swelling also increased with 
an increase in sterculia gum [40]. In the aqueous medium, swelling is 
depending on matrix retention time. In comparison, with an increase 
in pH, swelling increased and decreased by 0.9% NaCl. While swelling 
increased as pH grew, drug release rates were higher at lower pH 2.2. 
This was attributed to the accelerated solubility of the drug ranitidine at 
lower pH. The authors have changed the sterculia gum with acrylamide 
(AAm) and used the same initiator and cross-linker [40]. Many natural 
polymers grafting and cross-linking have been reported so far such as 
polyacrylamide grafted into Katira gum and Katira gum cross-linked 
with glutaraldehyde [41,42]; guar-gum cross-linkage with trisodium 

Fig. 2: Schematic diagram for the general extraction process of natural polymers
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trimetaphosphate [43]; and an epichlorohydrin cross-linked with 
cashew gum [44].

Formation of derivatives
Natural polymeric derivatives have found better physicochemical 
properties such as hydrophilicity, solubility, swell ability, drug release, 
stimulus-response, and film formation [14,45]. The natural polymeric 
derivative can be formed by various chemical techniques such as 
carboxymethylation, carbamoylethylation, cyanoethylation, acetylation, 
deacetylation, sulfation, phosphorylation, and esterification [14]. 
Carboxymethylation increases their solubility by adding carboxymethyl 
groups to the existing polymers. Natural polymers such as cashew 
gum [46], xyloglucan gum [47], locust bean gum [48], starch [49], 
hemicelluloses [50], konjac glucomannan [51], xylan [52], guar gum, 
and tara gum [53] have been carboxymethylated to increase their 
solubility [45]. Carboxymethylation was carried out by using aqueous 
and non-aqueous method [47,53]. The process of carboxymethylation 
using the aqueous method is determined by solvent structure, 
solvent composition, sodium hydroxide, monochloroacetic acid 
concentration, reaction time, and temperature of the reaction [47]. At 
the presence of sodium hydroxide, carbamoylethylation of mucilage 
and gum is done with AAm. The reaction parameters that affect the 
carbamoylethylation process include the gum-liquor ratio, sodium 
hydroxide, AAm concentrations, and reaction temperature [54]. 
Carbamoylethylation increases the properties of the gum, including 
water solubility, consistency, and clarity of solution [55]. For example, 
carbamoylethylated polysaccharides (mucilage and gum) include 
guar gum [54] and the cassia tora gum [53]. Cyanoethylation is 
another method used to alter the natural polymers and improve their 
solubility and chemical stability. In the presence of sodium hydroxide, 
the cyanoethylation process is performed with acrylonitrile. Thus, 
acrylonitrile and sodium hydroxide concentrations, temperature, and 
time of reaction are the parameters that affect the process [56]. Some 
of the examples of natural cyanoethylated polymers are cassia tora 
gum [56], tamarind kernel powder [57] etc.

Polymer-polymer blending
Polymer-polymer blending is an easy and comfortable way to change 
polymeric nature or form new polymers without the chemical reaction/
synthetical process [58]. The blending may occur due to physical bonding 
between two or more polymers at a time [58]. The mixing may also be due 
to chemical bonding, or covalent bonding (cross-linking) or ionic bonding 
interacting between the two or more polymers. Blending polymers is a 
way to boost the properties of the participating polymers [58]. A mixture 
of alginate, sapwood bean gum, and xanthan gum in microspherical 
drug delivery system improved the efficacy in drug trapping and further 
delayed the drug release compared to alginate and sapwood bean or 
alginate and xanthan gum mixture [58]. Microbeads made with an alginate 
and Irvingia gum combination have significantly improved the efficiency 
of drug loading and controlled the drug release over 7 h compared to 
alginate microbeads [59]. Natural and synthetic gum composites have 
also been used to create hydrogels, including carboxymethyl cellulose 
(CMC)/locust bean gum and methacrylate copolymers [60]. However, its 
interaction with CMC developed a hydrogel that enhances the mechanical 
strength of CMC [60].

CHARACTERIZATION OF NATURAL POLYMER

Plant mucilages and gums are mostly polysaccharides in nature. The 
structure, physicochemical, physicomechanical, and drug delivery 
properties need to thoroughly elucidate to advance the use of mucilages 
and gums from bench to pilot scale. It is also essential to distinguish 
between each natural polymer with others. The comprehensive 
characterization of a natural polymer can show its uniqueness and 
improve its use in pharmaceutical applications [61].

Structural elucidation of natural polymers
The identification of the polymer is usually done by determining the 
structure of the polymer. The properties of polymers depend on their 

chemical structure and chain conformations. While to fully elucidate a 
polymer’s structure and chain conformation, a wide range of techniques 
are available to describe and classify a polymer systematically [61]. 
Fourier transform infrared spectroscopy, liquid state nuclear magnetic 
resonance (NMR) (one and two dimensions), solid-state NMR, Raman 
spectroscopy, gas chromatography (GC), GC-mass spectroscopy (GC-
MS), and high-performance liquid chromatography are used to classify 
and identify the polymeric structures [61]. Polysaccharide chain 
conformations in solutions are elucidated by static and dynamic light 
dispersion, viscosity analysis, circular dichroism analysis, atomic force 
microscopy (AFM), single-molecule force spectroscopy based on AFM, 
fluorescence correlation spectroscopy, and NMR spectroscopy [61].

Identification of sugar constituents
The mucilage or gum is hydrolyzed with dilute acids to determine the 
sugar constituents [14]. Chromatographic techniques, including size 
exclusion chromatography with multi-angle laser light scattering, GC 
can able to isolate the various monosaccharides from gum and mucilage. 
Structural elucidation can also be done with NMR spectroscopy and 
MS  [14]. Methylation, periodate, and lead tetra-acetate oxidation is 
elucidate the process of monosaccharide-monosaccharide bonding in 
polymer chemistry [14].

Polymorphism determination
An alteration in the polymeric structure can also change its degree of 
crystallinity, which further affects their properties such as solubility, 
stability, and drug release [29]. Various analytical techniques have been 
used to determine polymorphism such as gel electrophoresis, differential 
scanning calorimetry (DSC), wide-angle X-ray diffraction (XRD), and 
powder XRD [29]. However, the X-ray diffraction is the primary technique 
which is used to determine the degree of crystallinity of a polymer. 
Characteristic peaks reflect the degree of crystallinity in the obtained 
spectrum [29]. The lack of characteristic spectrum peaks is indicative 
of the polymer’s full amorphous existence [29]. The majority of natural 
polymers are either amorphous or semi-crystalline. The polymer, which 
is high-crystallinity in nature, is more soluble and vice-versa [62].

Determination of molecular weight and polydispersity index
The determination of polysaccharide’s molecular weights may 
be challenging due to their heterogeneity and polydispersity 
behavior  [63]. Polysaccharide fractions of mucilage and gums can 
be observable by preparative chromatography, for example, scale 
exclusion chromatography (SEC), GC, and viscometer rheometric 
technique generally used for molecular weight and polydispersity 
determination  [64]. The determination of viscosity gives a brief 
knowledge about the molecular weight as it is a direct molecular weight 
representation. The multi-angle laser light scattering is faster and more 
reliable when combined with chromatographic techniques, such as, Size 
exclusion chromatography (SEC) [65]. Summers et al. recently promotes 
the advanced polymer chromatography system that provides a better 
polymer distribution resolution with a shorter time-span to determine 
molecular weight distribution [65]. Nevertheless, the system also appears 
to be advocated for samples of low molecular weight polymer [65].

Surface characteristics of natural polymers
The surface morphology of a polymer or its derivative can affects the 
rate and mechanisms of drug release from the polymer [66]. The surface 
modification of a polymer is used to screen the drugs [66]. A polymer 
(modified or natural polymer) morphology also affects the degree and 
length of its circulation through blood, polymer-drug interaction, or nano 
or micro-particle-cell interactions or cell encapsulation [67]. Hence, an 
understanding of the morphology of natural polymers such as shape, 
scale, and surface chemistry is imperative and can able to determine 
with scanning tunnel microscopy, transmission electron microscopy 
(TEM), scanning electron microscopy (SEM), and atomic force microscopy 
(AFM) [68]. TEM offers a two-dimensional view of a substance while SEM 
provides a 3D view and by exposing the molecular surface and mechanical 
properties, AFM takes it much further. TEM revealed that the particle 
is a nanocapsule with the inner ring display and SEM verified with the 
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hollowness display [68]. The application of technologies such as AFM and 
Raman spectroscopy improves polymer surface characterization. The 
topographical, electromagnetic, thermal, and near-field optical properties 
elucidated on the molecular scale are provided with high-resolution data 
of both chemical and morphological structures [68].

Thermal behavioral analysis
The physical and chemical changes of the polymer are generally 
identified by the DSC during the thermal processes. The polymer 
exposed by a range of temperatures and helps to identify the glass 
transition, crystallization, and decomposition nature of the polymer. 
Polymers act differently above and below their temperatures of glass 
transition [69]. The mechanical properties of the polymer also depend 

on the transition temperature [70]. Polymer thermal activity is distinct, 
and so each polymer is supposed to show a specific thermogram. 
Dynamic mechanical thermal analysis, thermally stimulated current 
spectroscopy, and dilatometry are other techniques used to analyze the 
polymeric thermal behavior [71].

Rheological behavior analysis of natural polymer
Another property based on molecular weight is the viscoelastic 
nature of the polymer. Viscoelastic properties of material contribute, 
for example the strength of the substance, stiffness, release of the 
drug, suspendability, and spreadability [72]. However, the rheometer 
measures the viscosity/flux as well as other parameters such as 
the impact of shear on polymer flow property, the effect of different 

Table 1: Biological source, composition, and uses of common natural polymers in drug delivery systems

Polymer Biological source Main component/s Uses in drug delivery systems Reference
Gum Arabic/
Gum Acacia

Acacia senegal  
(Family-Leguminosae) or 
Acacia arabica  
(Family-Combretaceae)

Composed of 1, 3-Galactopyranosyle β-D 
components, arabinose, glucuronic acid, 
rhamnose, and monosaccharide sugars

Suspending agent, emulsifying agent, 
binding agent, adhesive agent, emollients 
for cosmetics

[74-77]

Agar Gelidium amansii (Family-
Gracilariaceae)

Combination of agarose and agaropectin Suspending agent, emulsifying agent, 
supportive gelling agent, surgical lubricant, 
disintegrating agent, bacterial culture fluid, 
laxative medium

[71,78]

Tamarind Gum Tamarindus indica 
(Family-Leguminosae)

Consists of (1, 4)-β-D-glucan, α-D‐
xylopyranose

Hydrogel, mucoadhesive agent, binding 
agent, emulsifying agent, suspending agent, 
high thermal stability

[79]

Moringa gum M. oleifera (Family-
Moringaceae)

Arabinose, galactose, and glucuronic 
acid

Gelling agent, binder, release retardant, 
lightweight, M. oleifera butter is used for 
baby products to provide a free, radical-
resistant, emollient

[80]

Guar Gum Cyamopsis tetragonolobus 
(Family-Leguminosae)

Polysaccharide made up of (1 
to 4)-Diequatorially associated 
β-Dmannoses monomers, β-1,4 
connected- D-mannopyranoses

Controlled release property, tablet excipient, 
release retardant

[81]

Tragacanth Astragalus gummifer 
(Family-Leguminosae)

Tragacanthin (composed of 
Tragacanthic acid and arabinogalactan), 
Orin, D-galacturonic acid, D-xylose, 
L-fructose, D-galactose

Emulsifier, thickening agent, and 
suspending agent

[82]

Locust Bean 
Gum

Ceratonia siliqua  
(Family-Leguminosae)

Galactomannan (80%), albumin and 
globulin (32%), glutelin (68%)

Binders, viscosity enhancers, stabilizers, 
matrix formers, drug release modifiers, 
coatings, disintegrators, solubilizers, 
emulsifiers, suspending agents, gelling 
agents, and bioadhesives

[83]

Jackfruit 
Mucilage

Heterophyllous artocarpus 
(Family-Moraceae)

Rhamnose, xylose, arabinose, glucose, 
galacturonic acid, pectic acid proteins, 
fats, calcium, and phosphorus

Bio adhesives, binder for tablets, strong 
insulator, absorption of water and swelling 
properties, film-forming ability

[84]

Rosin Pinus toeda  
(Family-Pinaceae)

Abietic acid, Pimaric acid Film coating agent, film-forming agent, 
release modifier, binding agent

[85]

Gum copal Agathis coranthifolia 
(Family-Araucariaceae)

Agathic acid, diterpenoid, Lobdane, 
cis-communicated acid, trans-
communicated acid

Binders, drug release modifiers, film 
coater, viscosity enhancers, stabilizers, 
disintegrates, solubilizes, emulsifiers, 
suspending agents, gelling agents, and 
bioadhesives

[86]

Gum Damar Shorea wiesneri  
(Family-Dipterocarpaceae)

α-resin (40%), β-resin (22%), 
Dammarolic acid (23%)

Binding agent, film-forming agent, 
bioadhesive agents, release retardant

[87]

Pectin Citrus limon (Family-
Rutaceae)

Ester of a (1→4) linked (+) – 
polygalacturonate sequences 
interrupted with (1–2) – (–) – rhamnose 
residues, (+) – galactose, (–) –arabinose, 
(+) – xylose, and (–) – fructose

Drug delivery, gene delivery, wound 
healing, tissue engineering, TDDS, hydrogel 
formation

[88,89]

Alginates Macrocystis pyrifera, 
Laminaria digitata, and 
Laminaria saccharina 
(Family-Laminariaceae)

Copolymer of D-mannuronic acid (M) 
and L-guluronic acid

Drug delivery, tissue engineering, wound 
healing, release retardant, disintegrating 
agent

[90,91]

Xanthan Gum Xanthomonas 
campestris (Family-
Xanthomonadaceae)

D-glucosyl, D-mannosyl, and 
D-glucuronyl acid residues

Cosmetics, drug delivery, water treatments, 
TDDSs

[92,93]

TDDS: Transdermal drug delivery system, M. oleifera: Moringa oleifera
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Table 2: Various natural polymers function, characteristics, limitations, and biomedical application in TDDS

Natural 
polymer

Active 
components

Dose Polymer location/
function

Characteristic Limitations Applications Reference

Gum acacia - - Release modifier/
retardant

Emulsifying 
property is present

Solution viscosity 
is high at solid 
concentration

- [94]

Agar Eserine and 
Pralidoxime 
chloride

- Role of agar in TDDS 
as a nutrient for 
bacterial growth to 
conduct Ames and 
Whitfield spot test

High gel strength at 
low concentrations 
and nutrient for 
bacterial growth

A swelling 
behavior is present

Eserine is used 
in glaucoma and 
pralidoxime chloride is 
used as an antidote to 
treat poisoning

[95]

Tamarind 
Gum

Clindamycin 1% w/w Role of extracts from 
Tamarind seeds 
as a novel gelling 
agent for TDDS and 
it works as release 
retardant

It has excellent 
physical properties 
such as binding, 
stabilizing, 
plasticizing, 
thickening and 
gelling abilities

A high viscous 
solution is formed 
when dissolved in 
water

Clindamycin 
phosphate is the most 
common topical. 
antibiotic used in the 
treatment of acne 
vulgaris

[96]

Moringa gum Tizanidine 
Hydrochloride

6 mg Good film-forming 
and adhesive 
property

Drug release 
modifier

Sticky in nature Centrally acting 
myotonolytic skeletal 
muscle relaxant

[97]

Guar Gum Carvedilol 1.30% 
w/w

Achieved 
controlled release 
and improved 
bioavailability

Non-toxic, 
biodegradable, 
bioadhesive

Microbial 
contamination and 
thickening of gum

Hypertension, 
congestive cardiac 
failure, and angina

[98]

Tragacanth Gentamicin 
and Lidocaine

- Gel forming ability Hydrogel forming 
capability, release 
modifier, higher 
mechanical strength

Solidified in high 
concentration, 
needs external 
pressure to 
dissolve

It has antioxidant and 
wound healing activity

[99]

Locust Bean 
Gum (LBG)

Curcumin 25 mg or 
25% w/w

Increasing the 
concentration 
of LBG helps to 
sustain the release 
of drug from the 
polymer composite 
transdermal films

Higher mechanical 
properties

Solubility is one 
of the major 
drawbacks to be 
controlled under 
defined conditions

Wound healing, anti-
inflammatory agent, 
anti-bacterial agent

[100]

Jackfruit 
Mucilage

Acyclovir 20 mg Film-forming agent It has good film-
forming and binding 
capability

Skin irritancy, 
moisture absorbs

Antiviral agent [101]

Rosin Diltiazem 
hydrochloride

10% w/w Film-forming ability Excellent 
biocompatibility 
and degradation 
features are present

Slightly dermal 
toxicity is present 
that can be altered 
by chemical 
modification

Treatment of 
arrhythmia, angina 
pectoris, and 
hypertension

[102]

Gum copal Verapamil 
hydrochloride

2% w/v Rate controlling 
membrane in 
transdermal patch

Yellow-colored 
transparent 
hydrophobic 
materials, useful 
for topical wound 
healing

Gum copal films 
are very much 
brittle in nature

Antianginal reduces 
high blood pressure 
and effective in 
migraine treatment

[103]

Gum Damar Diltiazem 
hydrochloride

20% w/w Matrix forming 
agent

Emulsifying, 
stabilizing, strong 
water-resistant, 
high binding 
capacity

Gum damar films 
are brittle when 
dried

Treatment of 
arrhythmia, angina 
pectoris, and 
hypertension

[104]

Zein Ovalbumin 40 mg Film coating is the 
main function of 
zein in this patch

It is hydrophobic 
in nature, but it is 
made up of alcohol-
soluble protein of 
corn

Zein films are 
found to be brittle 
in the absence of 
plasticizers

Ovalbumin is an 
antigen that can be 
used to induce cystitis 
by initially sensitizing 
animals to the antigen

[105]

(Contd...)
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frequencies or temperatures on polymers, and helps to understand the 
capacity of the polymer to behave as a viscous fluid, paste, gel, or a 3D 
network [72].

In vivo characterization of natural polymers
Some of the mucilages and gums can be edible, and some made from 
non-eating plant components. For instance, cashew nuts and fruits 
are consumed, but cashew gum is derived from bark. Toxicity and 
histopathology testing should be done to determine the safety and 
therapeutic efficacy of those gums and mucilages. The natural polymers 
used in the transdermal drug delivery system should be characterized 
in vivo before exposed to the skin surface. The transmucosal delivery of 
Hakea gum tablet was tested in vivo for their mucoadhesive properties 
[73]. The mucoadhesive property was tested ex vivo also, by which the 

tablet detachments were determined after pre-defined contact times 
between the tablet and hydrated intestinal mucosa from the newly 
excised rabbit intestinal mucosa. The strength required for detachment 
increased with contact time and the concentration of Hakea gum [73]. 
To assess the transmucosal distribution, the rabbits were anesthetized, 
Hakea buccal tablets were applied, and blood samples were collected 
from a cannula inserted into the marginal ear at fixed time intervals of 
more than 5 h. The chlorpheniramine (CPM) release was managed by 
Hakea gum and spread throughout 5 h. Moreover, during this time, a high 
concentration of CPM was given and sustained [73]. Nevertheless, the 
more concentration of Hakea gum, the more controlled the release and 
the subsequent reduction of Cmax and bioavailability of the incorporated 
drug [73]. The in vitro and in vivo characterization of the polymer must 
be studied before regulatory authorization for marketing [73].

Pectin Nicotine 2.5% 
w/w

Good film-forming 
ability and release 
modifier

It works as a gelling 
agent, thickening 
agent, emulsifying 
agent, stabilizing 
agent and a good 
source of dietary 
fiber

- Nicotine is a 
stimulant and potent 
parasympathomimetic 
alkaloid

[106]

Alginates Domperidone 10 mg Release modifier 
(Controlled release 
property)

Gel forming, 
thickening and 
stabilizing abilities

Low mechanical 
property (e.g., gel 
strength)

Antiemetic properties 
and antihypertensive 
agent

[107]

Xanthan 
Gum

Propranolol 2.5 mg Control drug release 
through polymer 
hydration process

Thickening, gelling, 
emulsifying and 
stabilizing agent

Concerning their 
colloidal stability

Hypertension and 
angina

[108]

Modified 
Starch

Clonidine 10 mg Maintain the 
stability of patch

High swelling ability, 
high thickening, 
binding, stabilizing 
and improve the 
solubility

- High blood pressure, 
prevents the ADHD

[109]

Carrageenan Acetylsalicylic 
acid

2.5% 
w/w

Conductive polymer 
or hydrogel to 
prepare matrix

Non-toxic, gelling 
agent with viscosity 
building properties

External stimulant 
is needed to 
increase its ability

Antipyretic and 
analgesic effects

[110]

Agarose Progesterone 0.3 ml As a matrix in 
transdermal patch

Release retardant, 
release modifier

Low-gelling and 
low melting 
properties are 
present

Hormone replacement 
therapy

[111]

Cellulose-
Based 
Polymers

Furosemide 24.64–
26.22% 
w/w or 
4.52 mg/
cm2

Ethylcellulose has a 
good film-forming 
property

Ethylcellulose (EC) 
is regarded as non-
toxic, nonallergic, 
and nonirritating 
material

Low water 
permeation 
property

It is commonly used 
in the treatment of the 
cardiac and pulmonary 
disorders in premature 
infants and neonates

[112]

Polylactide TS 1 g (64 µg 
of TS per 
0.64 cm2)

Good controlled 
release property and 
high film-forming 
capability

Biocompatible, 
biodegradable, and 
erosion profiles are 
present

Dose dumping and 
incompetent drug 
release property

NSAIDs and topical 
analgesic effects

[113]

PHA Ketoprofen, 
clonidine, and 
tamsulosin

5 mg of 
each drug

PHA works as a 
matrix and helps to 
release the drug

Homopolymer, 
Biodegradable, and 
thermoplastic in 
nature

Permeation 
enhancer is needed

ketoprofen 
(nonsteroidal anti-
inflammatory drug,) 
and clonidine (anti-
hypertension drug, 
anionic) as well as 
tamsulosin (selective 
α adrenoceptor 
antagonist)

[114]

Natural 
Rubber

Ketoprofen 23.94 mg Suitable membrane 
to release the drug 
from patch

Biocompatibility, 
flexibility, 
mechanical stability, 
and well permeation 
capabilities are 
present

Swelling can be 
occurred

Analgesic in chronic 
pain conditions and 
for the acute and 
long-term treatment 
of rheumatoid 
arthritis and colonic 
adenocarcinoma

[115]

TDDS: Transdermal drug delivery system, TS: Trolamine salicylate, PHA: Polyhydroxyalkanoates

Table 2: (Continued)

Natural 
polymer

Active 
components

Dose Polymer location/
function

Characteristic Limitations Applications Reference
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Various natural gums and mucilage can be used as a natural polymer in 
biomedical applications, as mentioned in Table 1 and their application 
in the TDDS listed in Table 2.

ENVIRONMENTAL IMPACTS OF BIOPOLYMERS

Engineers are trying to integrate environmental considerations 
directly into material selection processes to increase awareness 
among the people about the necessity of environment in our society 
and its protection issues [116]. Manufacturing of polymeric materials 
through using renewable resources can be performed in two ways. 
First, there are two ways that are available such as natural cycles 
or intentional intervention by humans to replace the utilization of 
feedstocks. The second way is a biodegradable end product produced 
during the manufacturing of biopolymers from renewable feedstocks. 
At last, the biopolymeric materials are sent to the landfills for 
decomposition purposes because the degradation of biopolymers 
can be quickly processed rather than plastic, which is harmful to our 
environment [116].

FUTURE TRENDS

There are various beneficial advantages present for natural polymers 
over synthetic polymers such as natural polymers that are readily 
available, much cheaper than synthetic polymers, biodegradable, and 
chemical modification can be easily performed. Hence, the importance 
of natural polymers is increasing so rapidly in the drug delivery 
system for their beneficial effect rather than synthetic polymers [117]. 
Polymeric drug delivery system has the most exciting factor because 
drugs can be delivered through this process to the bloodstream at 
measured volume [117]. Some important macroscopic, microscopic 
structural, and chemical features are present in the natural polymers. 
Hence, most of the development in the controlled drug delivery system 
is focusing on the production and utilization of biopolymers [117].

Researchers or scientists want to increase the use of biopolymers 
not only in innovative drug delivery systems but also in other various 
sectors such as potential linings for artificial organs using as a substrate 
for cell growth or chemical reactors, as agents in drug targeting and 
immunology testing, also in biomedical adhesives, as separation 
membranes, and as substances in mimic biological systems. Hence, 
these newly modified biomaterials made up of tailor-made copolymers 
with desirable functional groups are rapidly manufactured by the 
researchers [118].

Production of novel supramolecular structures made up of polyethylene 
oxide copolymers and dendrimers is increasing rapidly because of their 
massive importance in the delivery of genes and macromolecules [118]. 
Finding the information about the chemical nature and physical 
structure of these new materials of biopolymers is very beneficial to 
increase the application of novel combinations of polymers in the new 
drug delivery system in the future [118]. The people of society always 
prefer safe materials and suitable processing methods from the initial 
synthesis of raw materials to the final disposal of a product that is very 
important in a product’s life cycle. Hence, a movement is growing among 
scientists and engineers to minimize or slash down the environmental 
impact of polymer composite production [118].

CONCLUSION

Biodegradable polymers are essential to delivering a wide range of 
active ingredients at the target site efficiently because biopolymers have 
profound side effects, the cost of production is low, and their potency is 
high in developing a new, advanced and effective drug delivery system. 
There are some upcoming modern mechanical techniques available 
to deliver the active ingredients through the transdermal system at 
the targeted area effectively, for example, X-ray lithography and LIGA 
(lithography, electroplating, and molding), mechanical array, electro 
oration, ultrasound, etc. Several issues found in the use of synthetic 
polymers for making a transdermal patch such as rash, inflammation, 

and crystallization of the active ingredients in the rate-controlling 
membrane during the permeation of drugs through the skin. Thus, 
more investigations are needed to perform on these types of polymers 
before they put out for commercial use. Polymers are the backbone of 
the TDDS, and some care needs to be taken during the production of 
the transdermal patch, such as toxicity determination, compatibility 
interaction studies between the polymer and drug molecule and 
also the degradation pattern before the selection of a polymer in the 
transdermal patch. The extraction, purification, and production of the 
natural polymer are less cost-effective than the synthetic polymer and 
may modify at a time to time. The degradation process of the natural 
polymer has easily occurred in the soil after its use in the transdermal 
patch. This article will help to improvise the knowledge about natural 
polymers used for the TDDS and create interest among the researchers 
to remodify the conventional natural polymers for future aspects.

AUTHORS’ CONTRIBUTIONS

All the authors contributed equally for the manuscript preparation, and 
especially edited and final revised by Mr. Sourav Mohanto.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest, financial, or otherwise.

FUNDING

Not applicable.

REFERENCES

1.	 Beneke CE, Viljoen AM, Hamman JH. Polymeric plant-derived 
excipients in drug delivery. Molecules 2009;14:2602-20.

2.	 Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem 
Biol 2001;5:447-51.

3.	 Ngwuluka NC, Akanbi M, Agboyo I, Uwaezuoke OJ. 
Characterization of gum from Sesamum indicum leaves as a 
suspending agent in a pediatric pharmaceutical suspension. World J 
Pharm Res 2012;1:909-24.

4.	 Sonia TA, Sharma CP. An overview of natural polymers for oral insulin 
delivery. Drug Discov Today 2012;17:784-92.

5.	 Malafaya PB, Silva GA, Reis RL. Natural origin polymers as carriers 
and scaffolds for biomolecules and cell delivery in tissue engineering 
applications. Adv Drug Deli Rev 2007;59:207-33.

6.	 Ngwuluka NC, Kyari J, Taplong J, Uwaezuoke OJ. Application and 
characterization of gum from Bombax buonopozense calyxes as an 
excipient in tablet formulation. Pharmaceutics 2012;4:354-65.

7.	 Hoppel M, Mahrhauser D, Stallinger C, Wagner F. Natural polymer-
stabilized multiple water-in-oil-in-water emulsions: A novel 
dermal drug delivery system for 5-fluorouracil. J Pharm Pharmacol 
2014;66:658-67.

8.	 Nayak AK, Pal D, Pany DR, Mohanty B. Evaluation of Spinacia 
oleracea L. leaves mucilage as an innovative suspending agent. J Adv 
Pharm Technol Res 2010;1:338-41.

9.	 Coviello T, Dentini M, Rambone G, Desideri P, Carafa M, Murtas E, 
et al. A novel co-crosslinked polysaccharide: Studies for a controlled 
delivery matrix. J Control Release 1998;55:57-66.

10.	 Umekar M, Yeole P. Characterization and evaluation of natural copal 
gum-resin as film forming material. Int J Green Pharm 2008;2:37-42.

11.	 Kumar R, Shirwaikar AA, Shirwaikar A, Prabu S, Mahalaxmi R, 
Rajendran K, et al. Studies of disintegrant properties of seed mucilage 
of Ocimum gratissimum. Indian J Pharm Sci 2007;69:753-8.

12.	 Avachat AM, Dash RR, Shrotriya SN. Recent investigations of plant 
based natural gums, mucilages and resins in novel drug delivery 
systems. Ind J Pharm Edu Res 2011;45:86-99.

13.	 Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and 
challenges. Polymer 2008;49:1993-2007.

14.	 Prajapati VD, Jani GK, Moradiya NG, Randeria NP. Pharmaceutical 
applications of various natural gums, mucilages and their modified 
forms. Carbohydr Polym 2013;92:1685-99.

15.	 Wang S, Chen A, Weng L, Chen M, Xie X. Effect of drug-loading 
methods on drug load, encapsulation efficiency and release properties 
of alginate/poly-l-arginine/chitosan ternary complex microcapsules. 
Macromol Biosci 2004;4:27-30.

16.	 Ochoa M, Mousoulis C, Ziaie B. Polymeric microdevices for 



19

Asian J Pharm Clin Res, Vol 13, Issue 7, 2020, 10-20
	 Biswas et al.	

transdermal and subcutaneous drug delivery. Adv Drug Deliv Rev 
2012;64:1603-16.

17.	 Nesseem DI, Eid SF, E-Houseny SS. Development of novel transdermal 
self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci 
2011;89:430-8.

18.	 Shingade GM, Aamer Q, Sabale PM, Grampurohit ND, Gadhave MV. 
Review on: Recent trend on transdermal drug delivery system. J Drug 
Del Ther 2012;2:66-75.

19.	 Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, 
Stinchcomb AL. Challenges and opportunities in dermal/transdermal 
delivery. Ther Denliv 2010;1:109-31.

20.	 Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 
2008;26:1261-8.

21.	 Vishwakarma SK, Niranjan SK, Irchhaiya R, Kumar N, Akhtar AA. 
Novel transdermal drug delivery system. Int J Res Pharm 2012;3:39-
44.

22.	 Shingade GM, Aamer Q, Sabale PM, Gramprohit ND, Gadhave MV, 
Jadhav SL, et al. Review on: Recent trend on transdermal drug delivery 
system. J Drug Deliv Ther 2012;2:66-75.

23.	 Sethi B, Mazumder R. Comparative evaluation of selected polymers 
and plasticizer on transdermal drug delivery system. Int J App Pharm 
2018;10:67-73.

24.	 Jayaprakash R, Hameed J, Anupriya A. An overview of transdermal 
delivery system. Asian J Pharm Clin Res 2017;10:36-40.

25.	 Arunachalam A, Karthikeyan M, Kumar VD, Prathap M, Sethuraman S, 
Manidipa S, et al. Transdermal drug delivery system: A review. Curr 
Pharm Res 2010;1:70-81.

26.	 Kapoor D, Patel M, Singhal M. Innovations in transdermal drug 
delivery system. Int Pharm Sci 2011;1:54-61.

27.	 Deb J, Das M, Das A. Excellency of natural polymer in drug delivery 
system: A review. Int J Pharm Biol Sci Arch 2017;5:17-22.

28.	 Ahuja M, Kumar S, Yadav M. Evaluation of mimosa seed mucilage as 
bucoadhesive polymer. Yakugaku Zasshi 2010;130:937-44.

29.	 Vinod VT, Sashidhar RB, Suresh KI, Rao R, Suresh B. Morphological, 
physico-chemical and structural characterization of gum kondagogu 
(Cochlospermum gossypium): A tree gum from India. Food Hydrocoll 
2008;22:899-915.

30.	 Goh KK, Matia-Merino L, Pinder DN, Saavedra C, Singh H. Molecular 
characteristics of a novel water-soluble polysaccharide from the 
New Zealand black tree fern (Cyathea medullaris). Food Hydrocoll 
2011;25:286-92.

31.	 Saeedi M, Morteza-Semnani K, Ansoroudi F, Fallah S, Amin G. 
Evaluation of binding properties of Plantago psyllium seed mucilage. 
Acta Pharm 2010;60:339-48.

32.	 Rao MR, Sadaphule P, Khembete M, Lunawat H, Thanki K, Gabhe N. 
Characterization of psyllium (Plantago ovata) polysaccharide and its 
use as a binder in tablets. Ind J Pharm Educ Res 2013;47:154-9.

33.	 Gowthamarajan K, Kumar GK, Gaikwad NB, Suresh B. Preliminary 
study of Anacardium occidentale gum as binder in formulation of 
paracetamol tablets. Carbohydr Polym 2011;83:506-11.

34.	 Deore S, Khadabadi S. Standardisation and pharmaceutical 
evaluation of Chlorophytum borivilianum mucilage. Rasayan J Chem 
2008;1:887-92.

35.	 Ghule B, Jain D, Darwhekar G, Yeole P. Evaluation of binding 
properties of Eulophia campestris wall mucilage. Ind J Pharm Sci 
2006;68:566-9.

36.	 Singh B, Chauhan N. Modification of psyllium polysaccharides for use 
in oral insulin delivery. Food Hydrocoll 2009;23:928-35.

37.	 Singh B, Chauhan GS, Sharma DK, Kant A, Gupta I, Chauhan 
N. The release dynamics of model drugs from the psyllium and 
N-hydroxymethyl acrylamide based hydrogels. Int J Pharm 
2006;325:15-25.

38.	 Singh B, Kumar S. Synthesis and characterization of psyllium-
NVP based drug delivery system through radiation crosslinking 
polymerization. Nucl Instrum Methods Phys Res Sect B Beam Interact 
Mater Atoms 2008;266:3417-30.

39.	 Singh B, Sharma N. Modification of sterculia gum with methacrylic 
acid to prepare a novel drug delivery system. Int J Biol Macromol 
2008;43:142-50.

40.	 Singh B, Sharma N. Development of novel hydrogels by 
functionalization of Sterculia gum for use in anti-ulcer drug delivery. 
Carbohydr Polym 2008;74:489-97.

41.	 Bharaniraja B, Jayaram KK, Prasad CM, Sen AK. Different approaches 
of katira gum formulations for colon targeting. Int J Biol Macromol 
2011;49:305-10.

42.	 Bharaniraja B, Jayaram KK, Prasad CM, Sen AK. Modified katira gum 
for colon targeted drug delivery. J Appl Polym Sci 2011;119:2644-51.

43.	 Gliko-Kabir I, Yagen B, Penhasi A, Rubinstein A. Phosphated 
crosslinked guar for colon-specific drug delivery: I. Preparation and 
physicochemical characterization. J Control Release 2000;63:121-7.

44.	 Silva DA, Feitosa JP, Maciel JS, Paulab HC, de Paulaa RC. 
Characterization of crosslinked cashew gum derivatives. Carbohydr 
Polym 2006;66:16-26.

45.	 Verraest DL, Peters JA, Batelaan JG, van Bekkum H. 
Carboxymethylation of inulin. Carbohydr Res 1995;271:101-12.

46.	 Silva DA, de Paula RC, Feitosa JP, de Brito AC, Maciela JS, Paulab 
HC. Carboxymethylation of cashew tree exudate polysaccharide. 
Carbohydr Polym 2004;58:163-71.

47.	 Goyal P, Kumar V, Sharma P. Carboxymethylation of tamarind kernel 
powder. Carbohydr Polym 2007;69:251-5.

48.	 Dey P, Sa B, Maiti S. Carboxymethyl ethers of locust bean gum-a 
review. Int J Pharm Pharm Sci 2011;3:4-7.

49.	 Sen G, Pal S. A novel polymeric biomaterial based on carboxymethyl 
starch and its application in controlled drug release. J Appl Polym Sci 
2009;114:2798-805.

50.	 Ren J, Sun R, Peng F. Carboxymethylation of hemicelluloses isolated 
from sugarcane bagasse. Polym Degrad Stab 2008;93:786-93.

51.	 Kobayashi S, Tsujihata S, Hibi N, Tsukamoto Y. Preparation and 
rheological characterization of carboxymethyl konjac glucomannan. 
Food Hydrocoll 2002;16:289-94.

52.	 Petzold K, Schwikal K, Günther W, Heinze T. Carboxymethyl xylan-
control of properties by synthesis. Macromol Symp 2005;232:27-36.

53.	 Parvathy KS, Susheelamma NS, Tharanathan RN, Gaonkar 
AK. A simple non-aqueous method for carboxymethylation of 
galactomannans. Carbohydr Polym 2005;62:137-41.

54.	 Gupta S, Sharma P, Soni PL. Chemical modification of Cassia 
occidentalis seed gum: Carbamoylethylation. Carbohydr Polym 
2005;59:501-6.

55.	 Sharma BR, Kumar V, Soni PL. Carbamoylethylation of Cassia tora 
gum. Carbohydr Polym 2003;54:143-7.

56.	 Sharma BR, Kumar V, Soni PL. Cyanoethylation of Cassia tora gum. 
Starch 2003;55:38-42.

57.	 Goyal P, Kumar V, Sharma P. Cyanoethylation of tamarind kernel 
powder. Starch 2008;60:41-7.

58.	 Deshmukh V, Jadhav J, Masirkar V, Sakarkar D. Formulation, 
optimization and evaluation of controlled release alginate microspheres 
using synergy gum blends. Res J Pharm Technol 2009;2:324-7.

59.	 Odeku OA, Okunlola A, Lamprecht A. Microbead design for 
sustained drug release using four natural gums. Int J Biol Macromol 
2013;58:113-20.

60.	 Ngwuluka NC, Choonara YE, Modi G, du Toit LC, Kumar P, 
Ndesendo MK. Design of an interpolyelectrolyte gastroretentive matrix 
for the site-specific zero-order delivery of levodopa in Parkinson’s 
disease. AAPS PharmSciTech 2013;14:1-15.

61.	 Yang L, Zhang L. Chemical structural and chain conformational 
characterization of some bioactive polysaccharides isolated from 
natural sources. Carbohydr Polym 2009;76:349-61.

62.	 Shekunov BY, York P. Crystallization processes in pharmaceutical 
technology and drug delivery design. J Cryst Growth 2000;211:122-
36.

63.	 Harding SE, Varum K, Stokke BT, Smidsrod O. Molecular weight 
determination of polysaccharides. Adv Carbohydr Anal 1991;1:63-
144.

64.	 Zhang M, Zhang L, Cheung PC, Dong J. Fractionation and 
characterization of a polysaccharide from the sclerotia of pleurotus 
tuber-regium by preparative size-exclusion chromatography. J 
Biochem Biophys Methods 2003;56:281-9.

65.	 Summers M, O’Leary M. High speed, high resolution analysis 
of low molecular weight polymers using the advanced polymer 
chromatography (APC) system. Polym Anal Appl 2013;5:9-12.

66.	 Champion JA, Katare YK, Mitragotri S. Particle shape: A new design 
parameter for micro and nanoscale drug delivery carriers. J Control 
Release 2007;121:3-9.

67.	 Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: 
Incorporating size, shape and triggered release into nanoscale drug 
carriers. Expert Opin Drug Deliv 2010;7:479-95.

68.	 Eronen P, Osterberg M, Jaaskelainen A. Effect of alkaline treatment 
on cellulose supramolecular structure studied with combined confocal 
Raman spectroscopy and atomic force microscopy. Cellulose 
2009;16:167-78.

69.	 Di Lorenzo ML. The crystallization and melting processes of poly 
(L-lactic acid). Macromol Symp 2006;234:176-83.

70.	 Omelczuk MO, McGinity JW. The influence of polymer glass 
transition temperature and molecular weight on drug release from 



20

Asian J Pharm Clin Res, Vol 13, Issue 7, 2020, 10-20
	 Biswas et al.	

tablets containing poly (DL-lactic acid). Pharm Res 1992;9:26-32.
71.	 Dong Y, Ruan Y, Wang H, Zhao Y, Bi D. Studies on glass transition 

temperature of chitosan with four techniques. J Appl Polym Sci 
2004;93:1553-8.

72.	 Jones DS, Woolfson AD, Brown AF. Textural, viscoelastic and 
mucoadhesive properties of pharmaceutical gels composed of cellulose 
polymers. Int J Pharm 1997;151:223-33.

73.	 Alur HH, Pather SI, Mitra AK, Johnston TP. Transmucosal sustained-
delivery of chlorpheniramine maleate in rabbits using a novel, natural 
mucoadhesive gum as an excipient in buccal tablets. Int J Pharm 
1999;188:1-10.

74.	 Ramakrishnan A, Pandit N, Badgujar M, Bhaskar C, Rao M. 
Encapsulation of endoglucanase using a biopolymer gum Arabic for its 
controlled release. Bioresour Technol 2007;98:368-72.

75.	 Nishi KK, Antony M, Mohanan PV, Anilkumar TV, Loiseau PM, 
Jayakrishnan A. Amphotericin B-Gum Arabic conjugates: Synthesis, 
toxicity, bioavailability, and activities against Leishmania and fungi. 
Pharm Res 2007;24:971-80.

76.	 Lu EX, Jiang ZQ, Zhang QZ, Jiang XG. A water-insoluble drug 
monolithic osmotic tablet system utilizing gum arabic as an osmotic, 
suspending and expanding agent. J Control Release 2003;92:375-82.

77.	 Anderson DM, Stoddart JF. Studies on uronic acid materials: Part XV. 
The use of molecular-sieve chromatography in studies on acacia 
Senegal gum (gum arabic). Carbohy Res 1996;2:104-14.

78.	 Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 22nd ed. India: 
Nirali Prakashan; 2003. p. 133-66.

79.	 Chandramouli Y, Manchanda R. Tamarind seed polysaccharide (tsp)-
an adaptable excipient for novel drug delivery systems. Int J Pharm 
Pract Drug Res 2012;2:57-63.

80.	 Panda DS. Studies on gum of Moringa oleifera for its emulsifying 
properties. J Pharm Bioallied Sci 2014;6:92-6.

81.	 Thombare N, Jha U, Mishra S, Siddiqui MZ. Guar gum as a promising 
starting material for diverse applications: A review. Int J Biol Macromol 
2016;88:361-72.

82.	 Zare EN, Makvandi P, Tay FR. Recent progress in the industrial and 
biomedical applications of tragacanth gum: A review. Carbohydr 
Polym 2019;212:450-67.

83.	 Barak S, Mudgil D. Locust bean gum: Processing, properties and food 
applications--a review. Int J Biol Macromol 2014;66:74-80.

84.	 Sabale V, Paranjape A, Patel V, Sabale P. Characterization of natural 
polymers from jackfruit pulp, calendula flowers and Tara seeds as 
mucoadhesive and controlled release components in buccal tablets. Int 
J Biol Macromol 2017;95:321-30.

85.	 Kumar S, Gupta SK. Rosin: A naturally derived excipient in drug 
delivery systems. Polim Med 2013;43:45-8.

86.	 Mundada AS, Avari JG. In vitro and in vivo characterization of 
novel biomaterial for transdermal application. Curr Drug Deliv 
2011;8:517-25.

87.	 Fulbandhe VM, Jobanputra CR, Wadher KJ, Umekar MJ, Bhoyar GS. 
Evaluation of release retarding property of gum damar and gum copal 
in combination with hydroxypropyl methylcellulose. Indian J Pharm 
Sci 2012;74:189-94.

88.	 Sriamornsak P. Application of pectin in oral drug delivery. Expert Opin 
Drug Deliv 2011;8:1009-23.

89.	 Zhang W, Mahuta KM, Mikulski BA, Harvestine JN, Crouse JZ, 
Lee  JC, et al. Novel pectin-based carriers for colonic drug delivery. 
Pharm Dev Technol 2016;21:127-30.

90.	 Jain D, Bar-Shalom D. Alginate drug delivery systems: Application 
in context of pharmaceutical and biomedical research. Drug Dev Ind 
Pharm 2014;40:1576-84.

91.	 Li H, Jiang F, Ye S, Wu Y, Zhu K, Wang D. Bioactive apatite 
incorporated alginate microspheres with sustained drug-delivery for 
bone regeneration application. Mater Sci Eng C Mater Biol Appl 
2016;62:779-86.

92.	 Kumar A, Rao KM, Han SS. Application of xanthan gum as 
polysaccharide in tissue engineering: A review. Carbohydr Polym 
2018;180:128-44.

93.	 Petri DF. Xanthan gum: A versatile biopolymer for biomedical and 
technological applications. J Appl Polym Sci 2015;132:42035.

94.	 Sharma K, Singh V, Arora A. Natural biodegradable polymers as 
matrices in transdermal drug delivery. Int J Drug Develop Res 

2011;3:85-103.
95.	 Banerjee S, Singh S, Chattopadhyay P. Evaluation of the mutagenic 

potential of a combinational prophylactic transdermal patch by Ames 
test. Immuno Anal Biol Spéc 2013;28:322-6.

96.	 Duangjit S, Buacheen P, Priebprom P, Limpanichkul S. Development 
and evaluation of tamarind seed xyloglucan for transdermal patch of 
clindamycin. Adv Mater Res 2014;1060:21-4.

97.	 Katti S, Suryavanshi S, Bhirud R. Formulation and development of 
transdermal patch of tizanidine hydrochloride. Asian J Res Chem 
Pharm Sci 2017;5:69-75.

98.	 Karemore M, Dandare M, Belgamwar A. Design and evaluation of 
carvedilol transdermal patch using natural polymers. J Pharm Res 
2012;5:4947-9.

99.	 Singh B, Varshney L, Francis S. Synthesis and characterization of 
tragacanth gum-based hydrogels by radiation method for use in wound 
dressing application. Radia Phys Chem 2017;1:94-105.

100.	Kaur R, Sharma A, Puri V. Preparation and characterization of 
biocomposite films of carrageenan/locust bean gum/montmorrillonite 
for transdermal delivery of curcumin. BioImpacts 2019;9:37-43.

101.	Bhoyar V, Dixit G, Upadhye K. Fabrication and in-vitro characterisation 
of transdermal patch using jackfruit mucilage as natural polymer. 
Pharmacophore 2015;6:267-80.

102.	Satturwar P, Fulzele S, Dorle A. Evaluation of polymerized rosin for 
the formulation and development of transdermal drug delivery system: 
A technical note. AAPS PharmSciTech 2005;6:E649-54.

103.	Mundada A, Avari J. Evaluation of gum copal as rate controlling 
membrane for transdermal application: Effect of plasticizers. Acta 
Pharm Sci 2010;52:31-8.

104.	Mundada A, Avari J. Damar Batu as a novel matrix former for the 
transdermal drug delivery: In vitro evaluation. Drug Dev Ind Pharm 
2009;35:1147-52.

105.	Bhatnagar S, Chawla S, Kulkarni O. Zein microneedles for 
transcutaneous vaccine delivery: Fabrication, characterization, and 
in vivo evaluation using ovalbumin as the model antigen. ACS Omega 
2017;2:1321-32.

106.	Suksaeree J, Prasomkij J, Panrat K. Comparison of pectin layers for 
nicotine transdermal patch preparation. Adv Pharm Bull 2018;8:401-10.

107.	Rajesh N, Siddaramaiah. Feasibility of xanthan gum sodium alginate 
as a transdermal drug delivery system for domperidone. J Mater Sci 
Mater Med 2009;20:2085-9.

108.	Betageri S, Dev D, Thirumaleshwar S. Development and evaluation 
of transdermal films loaded with propranolol. Indo Am J Pharm Res 
2015;5:197-205.

109.	Saboktakin M, Akhyari S. Synthesis and characterization of modified 
starch/polybutadiene asnovel transdermal drug delivery system. Int J 
Biol Macromol 2014;69:442-6.

110.	Pairatwachapun S, Paradee N, Sirivat A. Controlled release of 
acetylsalicylic acid from polythiophene/carrageenan hydrogel via 
electrical stimulation. Carbohydr Polym 2015;137:214-21.

111.	Knepp V, Hinz R, Szoka F. Controlled drug release from a novel 
liposomal delivery system-investigation of transdermal potential. J 
Control Release 1988;5:211-21.

112.	Patel D, Setty C, Mistry G. Development and evaluation of ethyl 
cellulose-based transdermal films of furosemide for improved in vitro 
skin permeation. AAPS PharmSciTech 2009;10:437-42.

113.	Kim Y, Banga A. Design and evaluation of a poly (lactide-co-
glycolide)-based in situ film-forming system for topical delivery of 
trolamine salicylate. Pharmaceutics 2019;11:E409.

114.	Wang Z, Itoh Y, Hosaka Y. Mechanism of enhancement 
effect of dendrimer on transdermal drug permeation through 
polyhydroxyalkanoate matrix. J Biosci Bioeng 2003;96:537-40.

115.	Floriano J, Barros N, Cinman J. Ketoprofen loaded in natural rubber 
latex transdermal patch for tendinitis treatment. J Polym Environ 
2017;26:2281-9.

116.	Rehman M, Madni A, Webster TJ. The era of biofunctional biomaterials 
in orthopedics: What does the future hold? Expert Rev Med Devices 
2018;15:193-204.

117.	Mari CE, del Burgo LS, Jose LP, Orive G. Gelatin as biomaterial for 
tissue engineering. Curr Pharm Des 2017;23:3567-84.

118.	Linshu L, Marshall L, Fishman B. Pectinin controlled drug delivery a 
review. J Control Release 2007;14:15-24.


