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Objective: The use of trastuzumab (TZM) in the clinical management of human epidermal growth factor receptor 2 positive metastatic breast and 
gastric cancers, gastro-esophageal adenocarcinoma, and colorectal carcinoma has been limited by its off-target cardiac, hepatic, and renal toxicities 
which till date have no effective therapies in either their prevention or amelioration. Thus, the present study is designed at investigating the protective 
and therapeutic potentials of 400 mg/kg/day Clerodendrum volubile ethanol leaf extract (CVE) and Irvingia gabonensis ethanol seed extract (IGE) 
pretreatments in TZM-intoxicated Wistar rats based on their reported folkloric use in the local management of kidney and liver diseases and the 
previously reported therapeutic potential of these African vegetables in TZM cardiotoxicity.

Methods: Forty-nine male Wistar rats were randomly allotted into seven groups of seven rats per group. Group I rats were treated with 10 ml/kg/day of 
5% dimethyl sulfoxide (DMSO) sterile water p.o. and 1 ml/kg/day 5% DMSO sterile water i.p.; Groups II and III rats were orally pretreated with 
400 mg/kg/day CVE and IGE, respectively, 3 h before 1 ml/kg/day/i.p. 5% DMSO sterile water; Group IV rats were orally pretreated with 10 ml/kg/day 
5% DMSO sterile water 3 h before 2.25 mg/kg/day/i.p. TZM; and Groups V-VII rats were pretreated with 20 mg/kg/day Vit. C, 400 mg/kg/day CVE, 
and 400 mg/kg/day IGE all dissolved in 5% DMSO sterile water, respectively, 3 h before i.p. injections of 2.25 mg/kg/day TZM, all for 7 days. Liver 
function parameters, renal function parameters, oxidative stress markers, and histopathological investigations were the study measuring endpoints.

Results: Oral pretreatment with 20 mg/kg/day Vit. C, 400 mg/kg/day CVE and IGE significantly ameliorated TZM-mediated hepatic and renal 
toxicities by effectively lowering the serum alanine transaminase, aspartate transaminase, alkaline phosphatase, creatinine, and urea levels. CVE and 
IGE pretreatments also significantly reversed TZM-induced decreases in the hepatic and renal tissue catalase, superoxide dismutase, and glutathione-
S-transferase activities and reduced malondialdehyde levels. CVE and IGE pretreatments also improved TZM-induced hepatic and renal histological 
lesions.

Conclusions: Overall, the chemotherapeutic/chemopreventive potentials of CVE and IGE in TZM-induced hepatorenal dysfunction were either wholly 
or partly mediated through free-radical scavenging and antioxidant activities.

Keywords: Trastuzumab hepatorenal toxicity, Liver and renal function parameters, Oxidative stress markers, Clerodendrum volubile ethanol leaf 
extract, Irvingia gabonensis ethanol seed extract, Male Wistar rats.

INTRODUCTION

A number of cytotoxic agents that are metabolized and excreted from 
the body through the hepatic and renal routes may significantly alter 
the functional integrity of liver and kidney due to the toxic nature of 
either their primary or secondary metabolites, although the severity 
and pattern of their toxicity vary according to their respective drug 
targets [1]. These anticancer agents include alkylating cytotoxic agents, 
antibiotic cytotoxics, molecular targeted therapies, radio-diagnostic 
contrast agents as well as bone targeted therapies depending on the 
cancer types and stages [1].

Trastuzumab (TZM) is a humanized mouse IgG kappa monoclonal 
antibody targeted against the subdomain IV of the extracellular 

region of human epidermal growth factor receptor 2 (HER2) 
[2-4] which is widely used in the clinical management of HER2 
overexpressing metastatic solid tumors such as breast and gastric 
cancers [4,5], adenocarcinoma of gastroesophageal junction [2,3,6], 
and advanced HER2-positive salivary duct carcinoma and colorectal 
carcinoma [7]. TZM’s cytotoxic mechanisms are generally believed to 
be multimodal [3,5] and include: Interference with signal transduction 
pathways, impairment of extracellular domain cleavage, inhibition of 
DNA repair, decreased angiogenesis, induction of cell cycle arrest, and 
activation of antibody-dependent cellular cytotoxicity [3,5,8,9]. Despite 
the huge success already recorded with its clinical use, TZM is notorious 
for causing cumulative but reversible off-target organ toxicities such as 
cardiotoxicity [10-12], hepatotoxicity [13,14], nephrotoxicity[4, 15-17], 
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hematotoxicity [18-22], interstitial pneumonitis [23-26], and infusion-
related hypersensitivity reactions [27]. There are reports that prolonged 
TZM administration is associated with renal dysfunctions  [15,28,29] 
that may manifest as acute kidney injury (AKI) (which itself is 
characterized by increased serum creatinine, electrolytes imbalance, 
and impaired glomerular function) [5]. Similarly, TZM has been 
reported to cause hepatotoxicity which is often characterized by marked 
elevation in the serum hepatic enzymes – alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), 
and lactate dehydrogenase (LDH) [9,13,14,30-32]. The dose-dependent 
hepatotoxicity has been reported to be related to increased hepatic 
tissue Kupffer cells recruitment and elevated TNF-α gene expression 
resulting in increased pro-inflammatory cytokines release [31]. Thus, 
the hallmarks of TZM-induced hepatotoxicity are inflammation and/or 
necrosis [33]. Unfortunately, there are no known approved antidotes to 
these off-target toxicities.

Irvingia gabonensis, belonging to Irvingiaceae family, is commonly 
called African/bush/wild mango because of it mango-like fruits and is 
abundantly distributed in the West African tropical forest [34]. While 
its fruits are abundantly rich in oil which can be used in the makings 
of bread and other confectioneries, butter, soap, and livestock feeds, 
its fruit kernels are rich source of fat, oil, and protein and making it 
popularly used as soup condiments and thickener [11]. Its sweet pulps 
are also used in the beverage and winery industries [35]. Different part 
extracts of the plant have been reported to have various pharmacological 
values which include anti-obesity and antihyperlipidemic [36-41], 
antihyperglycemic [42,43], analgesic [44,45], antimicrobial [46], and 
antioxidant [47] properties.

Clerodendrum volubile, popularly called the “magic leaf” due to its 
vast array of medicinal uses, is among the common food ingredients 
in Southern Nigeria where it is locally known as “Marugbo” among 
the Ondo and Ilaje people (Southwest Nigeria) and “Obenetete” among 
the Ijaws (Southern Nigeria). In these areas, decoctions made from 
C. volubile are used in the folkloric treatment of diabetes, ulcer, arthritis, 
rheumatism, and dropsy [48,49]. Erukainure et al. [50] reported the 
antioxidant, immunomodulatory, and antiproliferative activities of 
protocatechuic acid and dietary fatty acids isolated from C. volubile 
leaves against human breast cancer [51] and prostate cancer  [52] 
cell lines. Antihyperglycemic and antihyperlipidemic activities of 
5,7,4′-trimethoxykaempferol and 4′-methoxy-5,7-dihydroxy isoflavone 
(biochanin) isolated from C. volubile leaves have also be reported in 
albino Wistar rat [53]. C. volubile leaves have equally been reported 
to inhibit α-amylase, α-glucosidase, and angiotensin-converting 
enzyme [54].

Akolkar et al. [55] have previously reported the role of angiotensin 
converting enzyme inhibitors in the prevention of TZM- and doxorubicin-
induced cardiotoxicities. In addition, ranolazine a new anti-ischemia 
drug and, a specific and potent late sodium current inhibitor, has been 
reported to attenuate TZM-induced cardiac dysfunction which is known 
to mediate its action through inhibition of reactive oxygen species 
(ROS) production [56] and upregulation of antioxidant enzymes [57]. 
Recently, we reported the protective effect of C. volubile ethanol leaf and 
I. gabonensis ethanol seed extracts against TZM-induced cardiotoxicity 
in rats [58]. However, there are no effective antidotes to TZM-mediated 
hepatorenal toxicities reported so far. In view of this, the present study 
is the first study designed to evaluate the possible therapeutic potential 
of C. volubile ethanol leaf extract and I. gabonensis ethanol seed extract 
in acute TZM-induced hepatorenal dysfunction in Wistar rats, being the 
closest phylogenetically to humans.

MATERIALS AND METHODS

Plant materials
Aerial parts of C. volubile and fresh seeds of Irvingia gabonensis were 
purchased from Herbal Vendors in Isikan Market in Akure, Ondo 
State, Nigeria. Samples of the C. volubile plant as well fresh leaves, 

inflorescence, and fruits of I. gabonensis were subjected to botanical 
identification, authentication, and referencing (voucher specimen 
number: UIL/001/2019/1254 and UIL/001/2019/1364, respectively) 
as previously reported by Akinsola [59].

Extraction processes
The extraction processes of the fresh leaves of C. volubile and pulverized 
I. gabonensis seeds and their % yields calculated as described by 
Olorundare et al. [58].

Experimental animals
After an institutional ethical approval (UERC Approval number: UERC/
ASN/2020/2072) was obtained, young adult male Wistar rats (age: 
8–12 weeks old) were procured from the Lagos State University College 
of Medicine Animal House. The rats were processed in accordance with 
international principles guiding the Use and Handling of Experimental 
Animals [60]. Rats were generously placed on standard rat chow and 
potable water and maintained under standard laboratory conditions 
(ambient temperature: 28–30°C, humidity: 55±5%, and natural 
photoperiod: 12/12 h alternating light and dark periodicity).

Body weight measurement
Rat weights were measured on days 1 and 7 of the experiment and 
expressed in grams (g).

Induction of TZM-induced hepatorenal toxicity and other drug 
treatment of rats
Random allotment of rats into the different treatment groups and 
their treatments were as done as previously described by Olorundare 
et al. [58]. Similarly, choice of the therapeutic doses of 400 mg/kg/day 
of C. volubile ethanol leaf extract (CVE) and I. gabonensis ethanol seed 
extract (IGE) was made based on our previous study [59]. Briefly 
described, Group I rats were treated with 10 ml/kg/day sterile water 
p.o. 3 h before 1 ml/kg/day sterile water i.p. injection; Groups  II 
and  III rats were orally pretreated with 400 mg/kg/day CVE and 
IGE, respectively, 3 h before 1 ml/kg/day/i.p. sterile water injection; 
Group IV rats were orally pretreated with 10 ml/kg/day sterile water 3 h 
before 2.25 mg/kg/day/i.p. TZM; and Groups V-VII rats were pretreated 
with 20 mg/kg/day Vit. C, 400 mg/kg/day CVE and 400 mg/kg/day 
IGE, respectively, 3 h before i.p. injections of 2.25 mg/kg/day TZM. All 
treatments were for 7 days.

Collection of blood samples
Treated rats were humanely sacrificed under light inhaled diethyl ether 
anesthesia after an overnight fast. Whole blood samples were obtained 
directly from the heart with fine 21G needle and 5 ml syringe into plain 
blood sample bottles.

Measurement of liver and kidney weights
Rat livers and kidneys were carefully identified, freed from adjoining 
supporting tissues, harvested en bloc, and weighed.

Biochemical assays
Following blood samples collection, blood samples were allowed to clot 
at room temperature for 6 h after which they were then centrifuged 
at 5000 rpm for 15 min to separate out clear sera. Sera obtained were 
analyzed for the serum liver function parameters (liver enzymes [ALT, 
AST, and ALP], proteins [TP and ALB], lipids [TG, TC, HDL-c, LDL-c, and 
VLDL-c] and TB), and renal function parameters (electrolytes [Na+, K+, 
Cl‑, and HCO3

‑], urea, and creatinine) using standard procedures. Serum 
lipids were assayed using methods of Tietz et al. [61], while serum liver 
enzyme activities and proteins were estimated using standard bioassay 
procedures [62].

Determination of the rat hepatic and renal tissue antioxidant 
activities
Following sacrifice of treated rats humanely under light inhalational 
diethyl ether, liver and kidneys were identified, freed of adjoining 
connective tissue, dissected out en bloc, and briskly rinsed in normal 
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saline water. The left and middle lobes of the liver were dissected out 
carefully with a new surgical blade and the left kidney was briskly 
rinsed in ice cold 1.15% KCl solution to preserve the oxidative enzyme 
activities of the liver and kidney before being frozen up on ice packs. 
Hepatic and renal tissue superoxide dismutase (SOD), catalase (CAT), 
glutathione peroxidase (GPx), and glutathione-S-transferase (GST) 
activities as well as reduced glutathione and malonialdehyde levels 
were determined as described by Olorundare et al. [58].

Histopathological evaluation of hepatic and renal tissues
In conducting histopathological evaluation of livers and kidneys of 
treated rats, the dissected right lobe of the liver and right kidney of 
the treated rats were processed for histopathological evaluation using 
procedures described by Slaoui and Fiette [63]. Prepared thick sections 
of the processed tissues were that the tissues were subsequently stained 
with hematoxylin-eosin stain and examined under a photomicroscope 
coupled with a host computer.

Statistical analysis
Data were presented as mean±S.D. and mean±S.E.M. of seven samples 
for the body weight and biochemical parameters, respectively. Data 
were analyzed using two-way analysis of variance followed by Student-
Newman-Keuls test as the post hoc test, on GraphPad Prism Version 5. 
Statistical significance were considered at p<0.05, p<0.01, and p<0.001.

RESULTS

Extraction process and calculation of %yield
%Yield calculated following the complete extraction of the pulverized 
C. volubile dried leaves was 8.39% with a resultant dark color, sticky 
and jelly-like, and sweet-smelling solid residue which was completely 
insoluble in water but completely soluble in methanol and ethanol. 
Similarly, complete extraction of I. gabonensis ethanol seed extract in 
absolute ethanol resulted in a dark brown, oily, and aromatic residue 
that was only soluble in methanol and ethanol with a yield of 4.31%.

Effect of CVE and IGE on the body weight changes and relative 
organ weights of treated rats
Table  1 depicts the effects of repeated daily intraperitoneal injection 
with 2.25 mg/kg of TZM and oral pretreatments with 20 mg/kg/day 
of Vitamin C and 400 mg/kg/day of CVE and IGE, respectively, on the 
average body weight on days 1 and 7 and percentage weight change 
(%∆wt.). TZM treatment had no significant (p>0.05) effect on the weight 
gain pattern and relative liver and kidney weights. Same results were 
recorded for CVE-pretreated (Group II), IGE-pretreated (Group III), and 
vit. C-pretreated (Group V) (Table 1). However, TZM treatment caused 
a significant (p<0.05) increase in RLW and RKW relative to normal 
control (Groups I) and CVE-only pretreated (Group II) values (Table 1) 
while there were profound (p<0.05) decreases in the RLW and RKW 
values with CVE and IGE pretreatments relative to TZM-intoxicated 
group (Group IV) (Table  1). However, Vit. C pretreatment caused 
no significant (p>0.05) changes in the RLW and RKW values when 
compared to TZM-treated values (Table 1).

Effect of oral pretreatments of 400 mg/kg/day of CVE and IGE on 
serum liver function and lipids in TZM-intoxicated rats
Repeated intraperitoneal treatments with 2.25 mg/kg TZM resulted in 
significant (p<0.001) elevations in the serum liver enzymes (ALT, AST, 
and ALP) while causing significant (p<0.0001) reductions in the serum 
proteins (TP and ALB) but had no effect on the serum TB (Table  2). 
Similarly, TZM treatment caused no significant (p>0.05) alterations in 
the serum lipids (Table 3). However, oral 400 mg/kg/day of CVE and 
IGE pretreatments resulted in significantly (p<0.001 and p<0.0001) 
attenuated reductions in the serum liver enzymes and proteins. 
Furthermore, CVE and IGE pretreatments did not significantly (p>0.05) 
serum levels of TB and lipids (Tables 2 and 3).

Effect of 400 mg/kg/day of CVE and IGE on the serum renal function 
in TZM-intoxicated rats
Repeated intraperitoneal treatments with 2.25 mg/kg of TZM resulted 
in significant (p<0.0001) reductions in the serum Na+, Cl−, and HCO3

− 
while causing significant (p<0.001 and p<0.0001) increases in the 
serum K+, urea, and creatinine (Table 4). With 400 mg/kg/day of CVE 
and IGE pretreatments, there was significant attenuation (p<0.0001) in 
the reductions of the serum Na+, Cl−, and HCO3

− while elevations in the 
serum K+, urea, and creatinine were significantly attenuated (p<0.001 
and p<0.0001) (Table 4).

Effect of CVE and IGE on the hepatic tissue oxidative stress markers 
(GSH, GST, GPx, SOD, CAT, and MDA) of TZM-treated rats
Repeated TZM treatments resulted in significant attenuation (p<0.05 
and p<0.0001) in SOD, CAT, GST activities, and GSH levels while there 
were significant increases (p<0.001) in the GPx and MDA activities 
(Table  5). However, CVE and IGE pretreatments significantly (p<0.05, 
p<0.0001) attenuated alterations in the activities of these enzyme 
markers in the cardiac tissue restoring their activities to normal as 
recorded for Groups I-III values. These values were also comparable to 
Vit. C-treated (Group V) values (Table 5).

Effect of CVE and IGE on the renal tissue oxidative stress markers 
(GSH, GST, GPx, SOD, CAT, and MDA) of TZM-treated rats
TZM treatment resulted in significant attenuation (p<0.05 and 
p<0.0001) in SOD, CAT, GST activities, and GSH levels while there were 
significant increases (p<0.001) in the GPx and MDA activities (Table 6). 
However, repeated oral treatments with 400 mg/kg/day of CVE and 
IGE significantly (p<0.05 and p<0.0001) attenuated alterations in the 
activities of these enzyme markers in the treated hepatic and renal 
tissues restoring their activities to normal as recorded for Groups I-III 
values. These values were also comparable to those of Vit. C-treated 
group (Table 6).

Histopathological assessment of CVE and IGE on TZM-treated 
hepatic tissues
Rat livers repeatedly injected with 2.25 mg/kg/day of TZM through the 
intraperitoneal route were characterized by marked dilated hepatic 
sinusoids with vascular congestion, and marked periportal neutrophilic 
infiltrations (Fig. 1) while those of Groups I-III showed no remarkable 
hepatic histoarchitectural changes (Figs. 2-4). However, repeated oral 

Table 1: Effect of repeated oral pretreatments with 400 mg/kg/day of CVE and IGE on the average body weights on days 1 and 7, 
percentage change in weight (% ∆wt.) and relative liver (RLW), and kidney weight (RKW) of TZM-treated rats

Group Day 1 bwt. (g) Day 7 bwt. (g) % ∆wt. RLW RKW
I 175.80±25.18 183.90±20.45 05.12±04.92 02.69 ± 0.15 00.56±0.05
II 178.20±27.90 189.90±34.42 06.24±05.05 02.92 ± 0.10 00.60±0.04
III 183.40±37.69 190.00±39.87 03.54±02.93 03.09 ± 0.15 00.64±0.02
IV 177.10±20.37 188.50±23.61 06.37±02.60 03.36 ± 0.10a 00.72±0.04a

V 176.20±20.46 185.00±23.47 05.95±05.43 03.25 ± 0.17a 00.68±0.02
VI 171.50±17.73 178.40±17.17 04.15±04.11 03.16 ± 0.08a 00.74±0.04a

VII 171.50±21.40 180.70±22.94 03.99±03.24 03.01 ± 0.15a 00.66±0.02a

aRepresents a significant increase at p<0.05 when compared to Groups I and II values while a-Represents a significant decrease at p<0.05 when compared to Group IV 
values
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pretreatments with 400 mg/kg/day of CVE (Fig. 5) and 400 mg/kg/day 
of IGE (Fig. 6) significantly improved these TZM-induced hepatic lesions 
while oral pretreatment with 20 mg/kg/day of Vit. C showed no 
remarkable improvements in the TZM-induced hepatic lesions (Fig. 7).

Histopathological effect of CVE and IGE on TZM-treated renal tissue
Rat kidneys repeatedly injected with 2.25 mg/kg/day of TZM through 
the intraperitoneal route were characterized by marked vascular 
congestion, hyaline arteriosclerosis with focal neutrophilic infiltrations 

Table 3: Effect of 400 mg/kg/day of CVE and IGE on serum lipid profile of TZM-treated rats

Groups Serum lipids

TG (mmol/l) TC (mmol/l) HDL-c (mmol/l) LDL-c (mmol/l) VLDC-c (mmol/l)
I 1.00±0.11 1.37±0.11 0.40±0.03 0.51±0.10 0.45±0.05
II 0.79±0.06 1.41±0.13 0.41±0.04 0.64±0.08 0.36±0.04
III 0.79±0.09 1.47±0.12 0.44±0.04 0.67±0.09 0.36±0.04
IV 0.96±0.05 1.53±0.09 0.44±0.02 0.66±0.09 0.43±0.02
V 0.94±0.10 1.51±0.10 0.44±0.02 0.64±0.07 0.43±0.04
VI 0.86±0.09 1.40±0.13 0.40±0.03 0.62±0.07 0.39±0.04
VII 0.80±0.06 1.45±0.08 0.42±0.03 0.67±0.04 0.36±0.03
CVE: Clerodendrum volubile ethanol leaf extract, IGE: Irvingia gabonensis ethanol seed extract

Table 4: Effect of 400 mg/kg/day of CVE and IGE on renal function parameters of TZM-treated rats

Group Serum electrolytes, urea, and creatinine

Na+ (mmol/L) K+ (mmol/L) Cl− (mmol/L) HCO3
−

 (mmol/L) Urea (mmol/L) Crea (mmol/L)
I 137.00±0.44 06.00±0.30 102.10±0.55 19.57±0.57 06.79±0.16 52.10±1.37
II 138.30±0.18 06.30±0.38 104.00±0.22 17.29±0.47 06.80±0.36 54.61±1.25
III 139.40±0.57 06.97±0.38 103.40±0.43 17.86±0.59 06.60±0.52 54.76±1.71
IV 125.90±1.20f 09.13±0.38c 83.29±2.58f 10.86±0.96f 11.09±0.33c 82.04±1.60c

V 139.90±0.46f+ 07.51±0.53c- 100.40±0.69f+ 16.71±0.68f+ 07.74±0.22c- 62.86±1.12c

VI 137.90±0.91f+ 07.40±0.70c- 100.30±1.02f+ 17.29±1.38f+ 07.29±0.36c- 57.73±2.53c

VII 140.00±0.76f+ 06.90±0.63b- 99.57±1.02f+ 18.00±1.33f+ 07.77±0.53c- 63.26±1.68c

cRepresents a significant increase at p<0.0001 when compared to Groups I-III values while band cRepresent significant decreases at p<0.001 and p<0.0001 when 
compared to Group IV values; fRepresents a significant decrease at p<0.0001 when compared to Groups I-III values while f+Represent a significant increase at p<0.0001 
when compared to Group IV values. CVE: Clerodendrum volubile ethanol leaf extract, IGE: Irvingia gabonensis ethanol seed extract

Table 5: Antioxidant activities of 400 mg/kg/day of CVE and IGE in TZM-intoxicated rat hepatic tissue

Groups Antioxidant parameters

GSH (µmol/ml) GST (µmol/ml) GPx (µmol/ml) SOD (µmol/ml/min/mg pro) CAT (µmol/ml) MDA (µmol/ml)
I 50.99±4.89 35.55±0.34 52.16±5.15 02.37±0.14 12.78±0.90 05.96±0.61
II 51.93±1.33 37.10±0.64 56.92±1.74 01.93±0.23 14.35±0.95 07.15±0.23
III 55.02±6.29 34.53±0.56 60.53±7.22 01.98±0.26 16.70±0.48 06.00±0.93
IV 35.79±4.47f 25.46±0.77f 79.56±3.67c 01.08±0.04a 06.17±0.45f 16.36±0.60c

V 60.30±1.88f+ 35.23±0.67d+ 43.99±0.67c- 02.08±0.04b+ 16.08±1.17f+ 04.41±0.30c-

VI 61.01±2.15f+ 37.88±1.39d+ 49.47±1.12c- 02.76±0.20c+ 15.49±0.98f+ 01.04±0.07c-

VII 60.36±1.22f+ 54.95±4.00f+ 41.63±2.78c- 02.69±0.11c+ 13.43±0.18f+ 0.83±0.05c-

fRepresents a significant decrease at p<0.0001 when compared to Groups I-III (controls) values while f+Represents a significant increases at p<0.0001 when compared to 
Group IV values; a and cRepresent significant increases at p<0.05 and p<0.0001, respectively, when compared to Groups I-III values while b+ and c+Represents significant 
decreases at p<0.001 and p<0.0001, respectively when compared to untreated positive control (TZM treated only, Group IV). CVE: Clerodendrum volubile ethanol leaf 
extract, IGE: Irvingia gabonensis ethanol seed extract, SOD: Superoxide dismutase, CAT: Catalase, GPx: Glutathione peroxidase, GST: Glutathione-S-transferase

Table 2: Effect of 400 mg/kg/day of CVE and IGE on serum liver enzymes (ALT, AST, and ALP), proteins (TP and ALB) and total bilirubin 
(TB) in TZM-treated rats

Groups Serum liver function parameters

ALT (U/L) AST (U/L) ALP (U/L) TP (g/L) ALB (g/L) TB (mg/dL)
I 73.4±04.7 400.7±48.9 115.4±16.4 74.3±02.1 26.3±0.9 00.20±0.00
II 78.9±09.5 419.9±46.3 127.1±21.1 73.4±01.4 27.3±01.3 00.20±0.00
III 77.7±08.9 403.3±58.8 97.6±13.8 75.1±01.5 28.3±01.4 00.20±0.00
IV 162.1±08.9b 606.0±91.9b 231.4±26.3b 63.6±01.7f 21.0±01.1f 00.20±0.00
V 125.0±32.2a- 373.7±84.9a- 173.1±20.6a- 77.7±02.2e+ 29.0±01.1e+ 00.20±0.00
VI 105.9±12.2c- 256.1±20.7b- 157.9±17.7a- 83.1±01.8f+ 35.3±01.1f+ 00.20±0.00
VII 95.7±12.6c- 197.7±34.3c- 139.9±16.1b- 83.9±02.1f+ 37.1±01.44f+ 00.20±0.00
bRepresents a significant increase at p<0.001 when compared to Group I-III values while a-and b-Represent significant decreases at p<0.05 and p<0.001, respectively, 
when compared to Group IV values; fRepresents a significant decrease at p<0.0001 when compared to controls (Groups I-III) values while e+ and f+ represent significant 
increases at p<0.001 and p<0.0001, respectively, when compared to Group IV values. CVE: Clerodendrum volubile ethanol leaf extract, IGE: Irvingia gabonensis ethanol 
seed extract, ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, ALP: Alkaline phosphatase
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(Fig.  8) while those of Groups I-III were of no remarkable renal 
histoarchitectural changes that were orally treated with 10 ml/kg/day 

of sterile water, 400 mg/kg/day of CVE, and 400 mg/kg/day of IGE 
only, respectively (Figs. 9-11). However, these marked histological 
lesions induced by TZM were markedly improved by repeated oral 
pretreatments with 400 mg/kg/day of CVE (Fig. 12) and 400 mg/kg/day 

Table 6: Antioxidant activities of 400 mg/kg/day of CVE and IGE in TZM-intoxicated rat kidney tissue

Groups Antioxidant parameters

GSH (µmol/ml) GST (µmol/ml) GPx (µmol/ml) SOD (µmol/ml/min/mg pro) CAT (µmol/ml) MDA (µmol/ml)
I 78.50±4.06 37.29±1.11 68.76±2.34 04.72±0.37 19.64±1.00 01.06±0.20
II 61.85±6.17 38.65±1.71 63.36±3.48 03.97±0.27 19.48±1.92 01.01±0.20
III 56.78±5.84 34.61±0.47 59.29±5.24 04.06±0.18 21.84±1.98 00.91±0.20
IV 27.15±1.56f 24.98±1.27f 83.92±2.65c 02.83±0.27f 09.93±1.10f 09.25±0.81c

V 53.56±5.89f+ 37.50±0.98f+ 52.60±0.74a- 05.79±0.84d+ 12.99±0.70e+ 00.69±0.21b−

VI 50.21±2.90f+ 34.29±0.28f+ 34.01±2.66b- 05.28±0.57d+ 15.67±1.00f+ 00.77±0.20b−

VII 52.43±2.10f+ 38.95±1.37f+ 24.01±2.15c- 18.37±0.80f+ 12.67±0.13e+ 00.42±0.07c-

fRepresents a significant decreases at p<0.0001 when compared to Groups I-III (controls) values while d+ and f+Represent significant increases at p<0.05 and p<0.0001, 
respectively, when compared to Group IV values; cRepresents a significant increase at p<0.0001 when compared to Groups I-III values while b− and c−Represent significant 
decreases at p<0.05 and p<0.0001, respectively, when compared to untreated positive control (TZM treated only, Group IV). CVE: Clerodendrum volubile ethanol leaf 
extract, IGE: Irvingia gabonensis ethanol seed extract, SOD: Superoxide dismutase, CAT: Catalase, GPx: Glutathione peroxidase, GST: Glutathione-S-transferase

Fig. 1: A cross-sectional representative of the trastuzumab (TZM)-
intoxicated rat liver treated with 2.25 mg/kg/day/i.p. route of 

TZM dissolved in sterile water and pretreated with 10 ml/kg/day/
p.o. of dissolved in 5% dimethyl sulfoxide sterile water showing 
dilated hepatic sinusoids, vascular congestion (indicated by the 
blue arrow), and interstitial neutrophilic infiltration (indicated 

by the red arrow) (×400, Hematoxylin-Eosin stain)

Fig. 2: A cross-sectional representative of the normal rat liver 
treated with 10 ml/kg/day/p.o. route of dissolved in 5% dimethyl 
sulfoxide sterile water and 1 ml/kg/day/i.p. route of sterile water 

showing normal hepatic histoarchitecture (×400, Hematoxylin-
Eosin stain)

Fig. 3: A cross-sectional representative of the rat liver treated 
with 400 mg/kg/day/p.o. route of Clerodendrum volubile ethanol 
leaf extract dissolved in 5% dimethyl sulfoxide sterile water and 
1 ml/kg/day/i.p. route of sterile water showing normal hepatic 

histoarchitecture (×400 magnification, Hematoxylin-Eosin stain)

Fig. 4: A cross-sectional representative of the rat liver treated 
with 400 mg/kg/day/p.o. route of Irvingia gabonensis ethanol 

seed extract dissolved in 5% dimethyl sulfoxide sterile water and 
1 ml/kg/day/i.p. route of sterile water showing normal hepatic 

histo-architecture (×400, Hematoxylin-Eosin stain)
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of IGE (Fig.  13) with 20 mg/kg/day of Vit. C showing no remarkable 
improvements in the TZM-induced renal vascular congestion, and 
hyaline arteriosclerosis (Fig. 14).

DISCUSSION

Herbal remedy as an important therapeutic approach either alone 
or in combination with the well-established orthodox medicines is a 
viable tool for the provision of adequate and robust health care [64-66]. 
Identifiable factors encouraging inclusion of herbal regimen in health-
care management in both developed and developing countries include 
affordability, easy availability, and accessibility [67,68]. In addition, the 
field of traditional, complementary, and alternative medicines supports 
the use of phytomedicinal plants and nutraceuticals as therapeutic/
chemopreventive agents and for use in combating resistance and 
ameliorating the toxic side effects several chemotherapeutic agents, 
due to scientific reports confirming their efficacy in preclinical and 
clinical models [69].

Fig. 5: A cross-sectional representative of the trastuzumab-
intoxicated rat liver orally pretreated with 400 mg/kg/day/p.o. 
route of Clerodendrum volubile ethanol leaf extract dissolved in 
5% dimethyl sulfoxide sterile water showing moderate hepatic 
vascular congestion and sinusoidal dilatation (indicated by the 

blue arrow) (×400, Hematoxylin-Eosin stain)

Fig. 6: A cross-sectional representative of the trastuzumab-
intoxicated rat liver orally pretreated with 400 mg/kg/day/p.o. 

route of Irvingia gabonensis ethanol seed extract dissolved in 5% 
dimethyl sulfoxide sterile water showing mild hepatic vascular 

congestion and sinusoidal dilatation (indicated by the blue 
arrow) (×400, Hematoxylin-Eosin stain)

Fig. 7: A cross-sectional representative of the trastuzumab 
-intoxicated rat liver orally pretreated with 20 mg/kg/day/p.o. 
route of Vit. C dissolved in dissolved in 5% dimethyl sulfoxide 

sterile water showing dilated hepatic sinusoids and hepatic 
vascular congestion (indicated by the blue arrows) (×400, 

Hematoxylin-Eosin stain)

Fig. 8: A cross-sectional representative of the trastuzumab (TZM)-
intoxicated rat kidney treated with 2.25 mg/kg/day/i.p. route of 

TZM dissolved in sterile water and pretreated with 10 ml/kg/day/
p.o. of dissolved in 5% dimethyl sulfoxide sterile water showing 
renal vascular congestion (indicated by the blue arrow), hyaline 
arteriosclerosis with focal neutrophilic infiltration (indicated by 
the red arrows) and acute tubulointerstitial nephritis (indicated 

by the yellow arrow) (×400, Hematoxylin-Eosin stain)

In the present study, chemotherapeutic potentials of 400 mg/kg/day of 
CVE and IGE were investigated in TZM-mediated hepatorenal toxicities 
using measuring outcome endpoints such as the hepatic function 
parameters, renal function parameters, oxidative stress markers, and 
histopathological endpoints.

TZM-induced hepatotoxicity is reported to be characterized by marked 
dose-related elevations in the serum liver enzyme markers such 
as ALT, AST, and ALP [13,30,32,70]. ALT and AST are found within 
the hepatocytes and are only released when there is liver damage 
although the cardiac muscles equally contain certain quantity of AST, 
while ALP is found in the cell lining of the hepatic biliary duct and 
released in large amount when there is hepatic biliary duct injury 
or obstruction  [71-74]. ALP may also be profoundly elevated in 
metastatic hepatic carcinoma and metastatic colon carcinoma [75,76], 
lymphoma [77-82], osteosarcoma  [83,84], or infiltrative diseases 
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such as sarcoidosis [85-87]. Thus, elevations in circulating ALT and 
AST levels are regarded as reliable markers of intrahepatic injury, 
including acute hepatotoxicity while elevations in the circulating 
ALP is indicative of extrahepatic biliary injury, which is more often 
extrahepatic cholestatic obstruction [88,89]. The fact that these liver 
enzyme markers were markedly elevated following repeated TZM 
injections in this study is indicative that TZM-induced hepatotoxicity 
was fully established. Oral pretreatments with 400 mg/kg/day of CVE 
and IGE profoundly attenuated increases in the serum levels of these 
enzyme markers and reflecting their protective activities against TZM-
mediated hepatotoxicity. Apart from liver enzymes, other biochemical 
parameters, such as the serum proteins (TP and ALB), lipids, and TB are 
considered corollary biomarkers of liver functions and their alterations 
are known to provide insight into liver function integrity  [90-92]. In 
liver diseases including drug-induced hepatotoxicity, the circulating 
levels of these corollary liver function parameters which are synthesized 
de novo in the liver are decreased except for TB that may either be 
elevated or unaffected depending on whether the cause of the liver 
disease/injury is pre-hepatic, hepatic, or post-hepatic [93-95]. Aside 
liver enzymes, TZM is also known to induce profound elevations in 

the serum total bilirubin, prothrombin time/international normalized 
ratio [13], decrease serum ALB and LDH levels [96], and serum lipids 
and other metabolomics profile [97]. Contrary to other reports, TZM, in 
this study, caused unremarkable alterations in the serum TB and serum 
lipid levels. However, the fact that CVE and IGE oral pretreatments 
profoundly attenuated decreases in the serum protein levels strongly 
lends support to the protective activity of these extracts against TZM-
induced hepatotoxicity. These remarkable alterations in the hepatic 
enzymes and other hepatic function parameters were corroborated by 
hepatic histopathological lesions of dilated sinusoidal congestion and 
neutrophilic infiltrations which were improved remarkably by CVE and 
IGE oral pretreatments.

TZM is also known to mediate deleterious effects of the renal function 
which may manifest as AKI and electrolyte imbalance [5,98,99]. 
AKI may manifest as profound increases in the serum creatinine 
and urea, hypomagnesemia, hypokalemia, hypophosphatemia, 
hypocalcemia [5,100], as well as metabolic acidosis [101]. In this study, 

Fig. 9: A cross-sectional representative of the normal rat kidney 
treated with 10 ml/kg/day/p.o. route of dissolved in 5% dimethyl 
sulfoxide sterile water and 1 ml/kg/day/i.p. route of sterile water 

showing normal renal histoarchitecture (×400, Hematoxylin-
Eosin stain)

Fig. 10: A cross-sectional representative of the rat kidney treated 
with 400 mg/kg/day/p.o. route of Clerodendrum volubile ethanol 
leaf extract dissolved in 5% dimethyl sulfoxide sterile water and 

1 ml/kg/day/i.p. route of sterile water showing normal renal 
histoarchitecture (×400, Hematoxylin-Eosin stain)

Fig. 11: A cross-sectional representative of the rat kidney treated 
with 400 mg/kg/day/p.o. route of Irvingia gabonensis ethanol 

seed extract dissolved in 5% dimethyl sulfoxide sterile water and 
1 ml/kg/day/i.p. route of sterile water showing normal renal 

histoarchitecture (×400, Hematoxylin-Eosin stain)

Fig. 12: A cross-sectional representative of the trastuzumab-
intoxicated rat kidney orally pretreated with 400 mg/kg/day/p.o. 

route of Clerodendrum volubile ethanol leaf extract dissolved in 
dissolved in 5% dimethyl sulfoxide sterile water showing renal 
vascular congestion (blue arrow), hyaline arteriosclerosis with 
mild interstitial neutrophilic infiltration (indicated by the red 

arrow) (×400, Hematoxylin-Eosin stain)
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acute TZM treatment was associated with hyponatremia, hypochloremia, 
metabolic acidosis, hyperuremia, and hypercreatininemia which 
are in line with previous studies [5,101-103]. TZM is reported to 
cause hypokalemia, but hyperkalemia was observed in the current 
study. This variance could probably be due to acute and/or chronic 
oliguric kidney which often precedes long-term onset of TZM-related 
hypokalemia [104]. However, these abnormal alterations in the serum 
electrolytes, urea, and creatinine induced by TZM treatment were 
profoundly improved with CVE and IGE pretreatments indicating the 
potential benefits of these extracts in TZM-mediated renal dysfunction. 
Apart from TZM-mediated renal function parameter alterations, TZM 
also induced marked vascular congestion, hyaline arteriosclerosis with 
focal neutrophilic infiltrations, and acute tubulointerstitial nephritis 
which is similar to that previously reported [17]. However, these TZM-
induced hepatic histological lesions were remarkably improved by CVE 
and IGE oral pretreatments.

Oxidative and nitrative stress have been implicated in the biopathology 
of TZM-mediated hepatorenal toxicities through generation of highly 
toxic ROS and nitrative species by interfering with HER-2 signaling and 
inhibiting tissue pro-survival effects [30,103-105]. TZM is known to 
interfere with mitochondrial functionality and causing mitochondrial 
dysfunction, ATP depletion and inhibiting AMPK and PI3K/Akt 
pathways [105,106]. TZM activates proapoptotic pathway proteins such 
as Bax and can induce the opening of mPTP, consequently resulting in 
mitochondrial dysfunction and ROS accumulation [107]. Similarly, TZM 
also binds to HER-2 and increases proapoptotic Bcl-xS expression while 
it decreases antiapoptotic Bcl-xL expression [108]. These results in 
overwhelming ROS production and reduced ROS scavenging activities 
leading to markedly reduced SOD, CAT, GST activities, and GSH levels and 
enhanced GPx activities and MDA levels in TZM-treated tissues [109] 
which results of this present study are strongly in line with. However, 
with CVE and IGE pretreatments, there were profound improvements 
in the oxidative stress markers in both TZM-treated hepatic and renal 
tissues, indicating the protective role of CVE and IGE in TZM-induced 
tissue oxidative stress.

Secondary metabolites such as terpenoids, alkaloids, and polyphenols 
(including stilbenes, phenolic acids, coumarins, flavonoids, 
anthraquinones, and tannins) have been documented to elicit powerful 
free radicals scavenging and antioxidant activities [110]. CVE and IGE 
have been reported to be rich sources of flavonoids (quercetin and 
kaempferol), ellagic acid, mono-, di-, and tri-O-methyl-ellagic acid, 
and their glycosides which are potent antioxidants [49,58,111-113]. 
The presence of these secondary metabolites in CVE and IGE which 
previously have been reported to elicit antioxidant activities [47,49,58], 
including TZM-induced cardiotoxicity [113], was responsible for the 
significant free radical scavenging and antioxidant activities recorded 
for CVE and IGE in this study.

CONCLUSION

Overall, findings of this study highlight the promising therapeutic 
potential of CVE and IGE against TZM-induced hepatorenal dysfunction, 
partly mediated through hepatic and renal oxidative stress inhibition.
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Fig. 13: A cross-sectional representative of the trastuzumab-
intoxicated rat kidney orally pretreated with 400 mg/kg/day/p.o. 

route of Clerodendrum volubile ethanol leaf extract dissolved 
in dissolved in 5% dimethyl sulfoxide sterile water showing 
very mild vascular congestion (indicated by the blue arrow) 
and hyaline arteriosclerosis with no interstitial neutrophilic 

infiltration (×400, Hematoxylin-Eosin stain)

Fig. 14: A cross-sectional representative of the trastuzumab-
intoxicated rat kidney orally pretreated with 20 mg/kg/day/p.o. 

route of Vit. C dissolved in dissolved in 5% dimethyl sulfoxide 
sterile water showing renal vascular congestion (indicated by the 

blue arrow), hyaline arteriosclerosis with moderate interstitial 
neutrophilic infiltration (indicated by the red arrow) (×400, 

Hematoxylin-Eosin stain)
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