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ABSTRACT

Objectives: Exploitation of bacterial endophytes for production of antimicrobial substances has led to the discovery of novel natural metabolites of 
diverse chemical nature. The present study focuses attention toward optimization of cultural conditions for production of antimicrobial compound(s) 
by an endophytic bacterium DL06 followed by its extraction and partial purification.

Methods: The leaf endophytic bacterium Bacillus amyloliquefaciens DL06 (GenBank Accession no. MK696415, Microbial Culture Collection Accession 
no. 4186) isolated from carnivorous plant Drosera burmannii has been identified as a potent producer of antimicrobial metabolite following agar cup 
assay against several test bacterial and fungal strains. Cultural conditions for production of antimicrobials were optimized by “one variable at a time” 
method. The active fraction was isolated and purified partially using solvent extraction, thin-layer chromatography, and high performance liquid 
chromatography (HPLC) analysis.

Results: B. amyloliquefaciens DL06 produced maximum antimicrobial compound in tryptic soy broth and Davis–Mingioli’s medium when grown 
under shake culture. Production of the antimicrobial metabolite has been optimized for the inoculum density, aeration, temperature, pH as well as 
carbon, and nitrogen sources. The antimicrobial metabolite was extracted from the cell-free culture filtrate in butanol and partially purified by silica 
gel column chromatography and HPLC.

Conclusions: The antimicrobial metabolite, tentatively identified as quercetin showed broad spectrum bioactivity affecting several fungi and a 
number of Gram-positive and Gram-negative bacteria.
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INTRODUCTION

The search for new and effective antibiotics and chemotherapeutic 
agents has prompted over the last few decades due to the development 
of multidrug resistance in human pathogenic microorganisms. 
Moreover, due to a number of environmental issues, the use of 
synthetic chemicals demands their replacement by natural substances, 
particularly from microbial sources as an alternative to control human 
and plant pathogens [1].

The enormous diversity of microorganisms harnessed from wide range 
of ecological niches has long been utilized by the mankind for the 
production of huge number of pharmaceuticals including antimicrobial 
substances [2]. Endophytic microorganisms residing inside the plants 
without producing any visible damage to the host plant are relatively 
under explored microbial population [3]. These hidden microbial 
communities have received substantial attention in recent years for 
their ability to produce novel bioactive secondary metabolites which 
are of special importance not only for the benefit of host plant but also 
for human beings as successful source of drugs. Functional metabolites 
produced by the endophytic microbes have a great potential for 
application in agricultural, food, pharmaceutical, and biotechnological 
industries [1,4]. Although many of these endophytic natural products 
have been demonstrated to exert antioxidant, antidiabetic, and 
immunosuppressive effects, a significant portion of them was 
established as antimicrobials [1,5-8].

Carnivorous plants show unique trapping organs for insect prey 
digestion and nutrient uptake. They have attracted the attention of 
the scientific community in the recent past because of distinctive plant 

metabolites and novel products. Species of Nepenthes and Drosera have 
been reported to be used traditionally in India and Southeast Asian 
countries for their therapeutic activity in treatment of gastrointestinal 
and lung ailments [9,10]. Moreover, Buch et al. [11] have demonstrated 
antibacterial activity in the digestive fluid of Nepenthes spp. as well 
as from the fungal endophytes isolated from the fluid. Likewise, 
the endophytic fungi from Nepenthes ampullaria and Nepenthes 
mirabilis showed inhibition against a number of bacterial and fungal 
species  [12,13]. However, the potentials of endophytic bacteria of 
carnivorous plants for production of antimicrobial metabolites have not 
been explored adequately and deserve due attention.

We have made preliminary investigations on the bioactive potentials 
of bacterial endophytes of Drosera burmannii [14,15]. In the present 
study, an attempt has been made to evaluate the production of 
antimicrobial metabolite by Bacillus amyloliquefaciens, a leaf endophyte 
of D. burmannii, and assess the in vitro efficacy of the metabolite against 
selected bacterial and fungal test strains.

METHODS

Source and maintenance of bacterial cultures
The bacterium Bacillus DL06, a leaf endophyte of carnivorous plant 
D. burmannii Vahl., was isolated previously [15] and used throughout 
this study. The bacterium was maintained on slopes of nutrient agar by 
repeated sub-culturing.

The test organisms used for assessment of antimicrobial activity 
include Acinetobacter baumannii MTCC 1425, Bacillus cereus MTCC 
1272, Bacillus subtilis MTCC 441, Escherichia coli MTCC 1687, Klebsiella 
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pneumoniae MTCC 530, Proteus vulgaris MTCC 426, Pseudomonas 
aeruginosa MTCC 1638, Pseudomonas cepacia MTCC 4684, Salmonella 
typhimurium MTCC 3224, Staphylococcus aureus MTCC 2943, 
Staphylococcus epidermidis MTCC 3383, Staphylococcus haemolyticus 
MTCC 435, Vibrio cholerae O139; Alternaria solani MTCC 2101, 
Aspergillus niger MTCC 281, Curvularia lunata MTCC 2030, Fusarium 
oxysporum MTCC 1755, Penicillium citrinum MTCC 1256, Rhizoctonia 
solani MTCC 4633, Saccharomyces cerevisiae MTCC 170, Saccharomyces 
boulardii CNCM I-745, Sclerotium rolfsii, and Trichoderma viride. While 
the bacterial and fungal cultures were maintained on nutrient agar and 
Czapek Dox agar, respectively, yeast extract peptone dextrose agar was 
used for Saccharomyces only.

Characterization and identification of the endophytic bacterial 
isolate
The bacterium DL06 was characterized morphologically and physio-
biochemically according to standard microbiological methods [16]. 
Exponentially growing bacterial cells in nutrient broth was used for 
scanning electron microscopy (Carl Zeiss Zeiss Evo 18). Antibiotic 
sensitivity pattern was determined following the Kirby–Bauer disc 
diffusion method [17]. The diameter of inhibition zones was measured 
to the nearest mm and the organism was categorized as resistant, 
intermediate, and sensitive following DIFCO Manual 10th edition [18].

The 16S rRNA gene sequence analysis was carried out using two 
universal primer sets 8F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492R 
(5’-CGGTTACCTTGTTACGACTT-3’). Consensus sequence of 16S rDNA 
was generated and compared with closely related neighbor sequences 
retrieved from the NCBI database using BLAST search. Phylogenetic 
analysis was performed using the software package MEGA 6.0 after 
obtaining multiple alignments of the data available from the public 
databases by Thompson et al. [19].

Time-course of growth and production of antimicrobials
Erlenmeyer flasks (250 ml) containing 50 ml of mineral salts medium 
were inoculated with overnight grown culture and incubated at 
32°C under continuous shaking (120 rpm) for 144 h. Samples were 
withdrawn at regular interval for determination of growth and 
antimicrobial activity. Growth was measured by estimating the cell 
dry weight and expressed as g/L. Antimicrobial activity of the cell-
free culture filtrate was assessed by agar cup assay following passage 
through membrane filter (0.2 µm) and freshly grown cultures of E. coli 
and A. niger were used as test organisms.

Determination of optimum conditions for production of 
antimicrobial metabolites
To determine the optimum conditions for production of antimicrobial 
metabolite, one variable at a time method was used and variations 
were made in the composition of growth media, inoculum density, 
aeration, temperature, pH, carbon, and nitrogen sources. Growth and 
antimicrobial activity were assessed following the method described 
above.

Isolation and partial purification of the antimicrobials
The bacterium was grown in mineral salts medium under optimized 
cultural conditions. The antimicrobial metabolite was obtained from 
the cell-free culture filtrate following solvent extraction procedure 
using petroleum ether, benzene, diethyl ether, dichloromethane, ethyl 
acetate, dimethyl sulfoxide, chloroform, and butanol. Individual solvent 
fractions were evaporated to dryness under reduced pressure, dissolved 
in sterile distilled water, and assayed for antimicrobial activity by agar 
cup assay. Preparative thin-layer chromatography (TLC) of the active 
solvent fraction was performed using a number of solvent systems, 
spots were detected under ultraviolet light, and bioactivity was assayed 
as described above.

Butanol extraction was carried out from 1 L of cell-free culture 
filtrate and concentrated to 30 ml. For column chromatography, 
the concentrated butanol fraction (30 ml) was loaded in a silica gel 

column (mesh size 60–120, 20 mm×350 mm) pre-equilibrated with 
chloroform:methanol (1:3) mixture. The metabolites were eluted 
with chloroform:methanol (1:3) as the solvent system at a flow rate of 
1 ml/min and fractions of 5 ml each were collected. Individual fractions 
were assayed for antimicrobial activity following evaporation and 
dissolution in sterile distilled water.

The pooled active fractions obtained from the silica gel column were 
evaporated to dryness, dissolved in 2 ml sterile distilled water, and 
subjected to high performance liquid chromatography (HPLC) using 
Agilent1290 Infinity II with pump model G1328 C and detector model 
G 7115 A. The C18 column (4.6 mm×250 mm) was used and peaks 
were detected at 280 nm. Phosphoric acid (0.5%) and methanol (90%) 
were used as mobile phases for gradient run of 15 min at a flow rate of 
2 ml/min and injection volume of 100 µl. The fractions were collected 
with Agilent Infinity II Open LAB Chemstation Workstation model 
M830IAA and checked for antimicrobial activity following the usual 
agar cup assay. 

RESULTS

Characterization and identification of isolate DL06
The endophytic isolate DL06 formed rough, white colonies on nutrient 
agar. Bacterium DL06 is Gram-positive, aerobic, motile rod (Fig.  1), 
forming endospores, and produced intra- and extracellular enzymes 
such as catalase, oxidase, amylase, nitrate reductase, pectinase, and 
protease. The optimum temperature and pH for growth were 32°C and 
7, respectively. It tolerates a maximum concentration of 3% NaCl. The 
isolate could utilize as well as ferment a number of carbon sources. It 
showed resistance to polymyxin B, vancomycin, and chloramphenicol 
but was sensitive to erythromycin, ampicillin, ciprofloxacin, rifampicin, 
gentamycin, trimethoprim, tetracycline, chlortetracycline, novobiocin, 
and norfloxacin (Table 1). These morphological and physio-biochemical 
features of the isolate DL06 were compared with the standard 
descriptions available in the Bergey’s Manual of Determinative 
Bacteriology [20] and was assigned to the genus Bacillus.

The nucleotide sequence of the 16S rRNA gene (1456 bp) of the bacterium 
DL06 was found to have 99% similarity with B. amyloliquefaciens and 
designated as B. amyloliquefaciens DL06. The nucleotide sequence of 
16S rRNA gene of the strain DL06 has been submitted to the GenBank 
database of NCBI with an accession number of MK 696415 and the live 
culture has been deposited to the Microbial Culture Collection (MCC) 
and National Centre for Microbial Resource, Pune, India, under the 
accession number MCC 4186 (Fig. 2).

Time-course of growth and production of antimicrobials
The growth-associated production of antimicrobial metabolite from 
B.  amyloliquefaciens DL06 was evaluated by growing bacterium in 

Fig. 1: Scanning electron micrograph showing morphology of cells 
of bacterial isolate DL06
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mineral salts medium under shake-flask culture and bioactivity was 
assessed following agar cup assay against E. coli and A. niger. Production 
of antimicrobial metabolite was found to initiate during the active phase 
of growth which attained its highest titer (diameter of inhibition zone 
33 mm against A. niger) during the late stationary phase (120 h) (Fig. 3).

Spectrum of bioactivity of B. amyloliquefaciens DL06
The cell-free culture filtrate from B. amyloliquefaciens DL06 was 
evaluated for antimicrobial spectrum determination following agar cup 
assay using test bacterial and fungal strains (Table 2). The metabolite 
showed broad spectrum of activity affecting B. cereus, S. haemolyticus, 
S.  epidermidis, P. aeruginosa, and K. pneumoniae among the bacteria 
and A. solani, C. lunata, S. rolfsii, R. solani, F. oxysporum, T. viride, and 
S. boulardii among the fungi.

Optimization of cultural conditions
During the present study, a number of cultural conditions affecting 
growth and production of antimicrobial metabolites were optimized 
using one variable at a time. The variables include culture media of 
different composition, inoculum density, aeration, temperature, pH, 
carbon, and nitrogen sources. Among different complex and synthetic 
media tested, bioactivity against A. niger was found to be high in tryptic 
soy broth and Davis–Mingioli’s medium followed by mineral salts 
medium (MSM), Straw infusion medium (SI), and Gause’s synthetic 
medium (GSM) (Fig. 4).

Table 1: Morphological and physio-biochemical characteristics of the endophytic bacterial isolate DL06

Character Response Character Response
Colony Rough, white Fermentation and utilization of Fermentation Utilization
Cell Rods, 2.5–3 µm×1.2–1.6 µm Glucose + +
Gram nature Gram +ve Maltose − +
Motility + Sucrose − +
Endospore formation +, central Mannitol + +
Production of catalase + Sorbitol + +
Caseinase + Fructose + +
Oxidase + Galactose + +
Amylase + Lactose + −
Gelatinase + Rhamnose − −
Pectinase + Raffinose − +
Urease − Arabinose + +
Nitrate reductase + Aldonitol − −
Cellulase - Dulcitol − -
Lipase − Trehalose − +
Indole production − Inositol − −
Citrate utilization - Mannose − +
Optimum growth temp. 32°C
Optimum growth pH
Maximum NaCl% tolerance

7
3%

Antibiotic susceptibility Pbr, Cr, Es, Amps, Cips, Rifs, Gens, 
Tris, Vanr, Tets, Cts, Novs, Nors

Antibiotics: E: Erythromycin, Pen: Penicillin G, C: Chloramphenicol, Amp: Ampicillin, Cip: Ciprofloxacin, Rif: Rifampicin, Gen: Gentamycin, Tri: Trimethoprim, Van: Vancomycin, 
Tet: Tetracycline, Ct: Chlortetracycline, Nov: Novobiocin, Nor: Norfloxacin, s: Sensitive, r: Resistant, + indicates positive response, − indicates negative response

Fig. 2: Phylogenetic relationship of the endophytic bacterial isolate DL06 with other closely related species based on 16S rRNA gene 
sequence analysis

Fig. 3: Time course of growth and production of antimicrobial 
metabolite by Bacillus amyloliquefaciens DL06
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Maximum growth and production of antimicrobial metabolite 
occurred at an inoculum dose of 1.5% (v/v) and at culture 
volume:flask volume ratio (CVF) of 1:5. The optimum temperature 
and pH for antimicrobial activity were recorded at 32°C and 6.6, 
respectively. Among the 12 different carbon sources tested, glucose 
at a concentration of 2.2% (w/v) was found to be most effective for 
production of antimicrobial metabolite. Likewise, tryptone was the 
best utilized nitrogen source for bioactivity and maximum growth 
as well as antimicrobial activity was observed at a concentration of 
1.2 g/L (Table 3).

Isolation and partial purification of the antimicrobials
The antimicrobial metabolites produced by B. amyloliquefaciens DL06 
in mineral salts medium was extracted from the cell-free culture filtrate 
using a number of solvents. The antimicrobial metabolite was best 
extracted in butanol; however, dichloromethane and ethyl acetate as 
extractants were not that efficient (Table 4).

The butanolic extract when subjected to TLC using a number of 
solvent systems, maximum number of spots was detected in the 
chloroform:methanol (1:3) mixture. Preparative TLC revealed that the 
third spot (C3) with Rf value of 0.84 was having bioactivity. The second 
spot (C2) with more or less identical Rf value (0.87) as detected in 
ethanol:water:chloroform (4:4:2) mixture also showed a comparatively 
lesser degree of inhibition (Table 5).

Further, the concentrated butanolic extract of the cell-free culture 
filtrate was subjected to column chromatography (silica gel, 60–120 
mesh size) using chloroform:methanol (1:3) mixture as the solvent 
system. Fractions, 5 ml each were collected, evaporated to dryness and 
assayed for antimicrobial activity after dissolving in sterile water.

Bioactivity obtained in fractions 7 and 8 were pooled and subjected 
to HPLC (Agilent1290 Infinity II) analysis. Six distinct peaks with 
retention time were visualized in the chromatogram (Fig.  5). The 
compound with retention time 12.5 min showing antimicrobial 
activity against E. coli and A. niger was tentatively identified as 
quercetin.

DISCUSSION

The increasing demand for discovery of new antimicrobials has led 
the scientific community to explore the vast diversity of endophytic 
microorganisms in plants as potential bioresource for bioactive 
metabolites [1]. Several studies have reported the isolation of large 
number of chemically diverse group of antimicrobials from endophytes 
of different plant sources [13,21-23].

Association of microbial communities in the internal environment of 
carnivorous or insectivorous plants has received attention only in the 
last few decades. Both culture dependent and culture independent 
studies have established the occurrence of endophytic bacteria and 
fungi in these spectacular plants [24-28]. While preliminary reports 

Table 3: Optimization of cultural conditions for growth and production of antimicrobial metabolite by Bacillus amyloliquefaciens DL06

Parameter Test range Optimum 
condition

Growth, 
CDW (g/L)

Diameter of inhibition zone (mm)

Test organism

Escherichia coli Aspergillus niger
Inoculum dose (%, v/v) 0.5–2 1.5 0.58±0.11 21.5±0.71 34.5±0.71
Aeration (CVF) 1:10, 1:5, 2:5, 3:5, 4:5 1:5 0.7±0.08 21.5±0.71 34±1.41
Temperature (°C) 28–42 32 0.75±0.11 20.5±0.71 34.5±0.71
pH 5–10.6 6.6 0.81±0.08 23.5±0.71 34.5±0.71
Carbon source Glu, fru, gal, lac, mal, suc, mann, raff, sor, ara, ino, man Glu 0.5±0.11 20.5±0.71 34.5±0.71
Glucose (%, w/v) 1.6–2.4 2.2 0.56±0.02 22.5±0.71 35±1.41
Nitrogen source Pep, Tryp, Cas, YE, NH4Cl, (NH4)2SO4, NaNO3, NH4NO3 Tryp 0.69±0.11 21±1.41 35±1.41
Tryptone (g/L, w/v) 0.6–1.4 1.2 1.02±0.03 22.5±0.71 36.5±0.71
Values represent mean of triplicate experiments±standard deviation; CVF: Culture volume by flask volume ratio; glu – glucose, gal – galactose, suc – sucrose, 
ara – arabinose, fru – fructose, tre – trehalose, sor – sorbitol, man – mannose, mann – mannitol; Pep – peptone, Cas – casamino acid, Tryp – tryptone, YE – Yeast extract

Table 2: Antimicrobial spectrum of the cell-free culture filtrate 
of Bacillus amyloliquefaciens DL06

Test organism Diameter of inhibition 
zone (mm)

Bacteria
Acinetobacter baumannii MTCC 1425 NI
Bacillus cereus MTCC 1272 14.5±0.71
Bacillus subtilis MTCC 441 14.0±1.41
Burkholderia cepacia MTCC 4684 NI
Escherichia coli MTCC 1687 17.5±0.71
Klebsiella pneumoniae MTCC 530 12.5±0.71
Proteus vulgaris MTCC 426 NI
Pseudomonas aeruginosa MTCC 1688 14.5±0.71
Salmonella typhimurium MTTC 3224 NI
Staphylococcus aureus MTCC 2943 13.0±2.82
Staphylococcus epidermidis MTCC 3383 14.5±0.52
Staphylococcus haemolyticus MTCC 435 13.5±0.55
Vibrio cholerae O139 NI

Fungi
Alternaria solani MTCC 2101 31.5±0.55
Aspergillus niger MTCC 281 32.5±0.71
Curvularia lunata MTCC 2030 32.5±0.71
Fusarium oxysporum MTCC 1755 15.5±0.71
Penicillium citrinum MTCC 1256 NI
Rhizoctonia solani MTCC 4633 24.5±0.71
Saccharomyces boulardii CNCM I-745 10.5±0.52
Saccharomyces cerevisiae MTCC 170 24.0±1.41
Sclerotium rolfsii 20.0±0.71
Trichoderma viride 22.5±0.52

aAntimicrobial activity was determined following standard agar cup assay method. 
NI: No inhibition, Values represent mean of triplicates±standard deviation

Fig. 4: Effect of different culture media on growth and production of 
antimicrobial metabolite by Bacillus amyloliquefaciens DL06. TSB: 
Tryptic soy broth, PYG: Peptone yeast extract glucose broth, CGP: 

Casamino acid glucose peptone broth, SMG: Soybean meal glucose 
medium, SI: Straw infusion medium, MSM: Mineral salts medium, 

LBS: Lindenbein synthetic medium, DM: Davis–Mingioli’s medium, 
ISG: Inorganic salt glucose medium, GSM: Gause’s synthetic medium
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on antimicrobial activities of fungal endophytes of N. mirabilis and 
N. ampullaris [12] and the bacterial endophytes of Drosera and 
Utricularia [14,15] have recently been published, no in depth studies 
on their metabolites have been undertaken so far. The present study 
is based on the production, partial characterization, and optimization 
of antimicrobial metabolite from a leaf endophytic bacterium Bacillus 
DL06 from D. burmannii. The Gram-positive, endospore forming motile 
rod-shaped bacterium was identified as Bacillus amyloliquefaciens 
DL06 (GenBank Accession number MK696415; MCC Accession no. 
4186) based on phenotypic features and 16S rRNA gene sequence 

analysis (Fig. 1 and 2 and Table 1). Occurrence of B. amyloliquefaciens 
as endophyte is not new and has already been reported from different 
plant sources (Table 6).

Cell-free culture filtrate of Bacillus DL06 was found to inhibit the 
growth of B. cereus, S. haemolyticus, S. epidermidis, P. aeruginosa, and 
K. pneumoniae among the bacteria tested and A. solani and C. lunatas 
among the fungi (Table 2). Comparison of antimicrobial activities of 
the present isolate DL06 with those of endophytic B. amyloliquefaciens 
reported previously [29-34] was carried out (Table  6). While the 
metabolites produced by B. amyloliquefaciens BZ6-1, Blu-v-2, August 
M-1, M-2, and Halycon1 showed antifungal activities against variety 
of phytopathogens [29,30], B. amyloliquefaciens PEBA-20 endophytic 
to poplar exhibited both antifungal and antibacterial activities [31]. 
Leaf endophyte B. amyloliquefaciens HY-10 from Hyptis suaveolens 
demonstrated activity against clinical pathogens including Shigella 
dysenteriae and Candida spp. [32]. Bhoonobtong et al. [34] 
reported isolation and purification of antibacterial metabolites 
from B.  amyloliquefaciens UD25 that inhibited several bacterial 
test strains including S. aureus (MRSA). A novel antimicrobial 
protein was reported from endophytic B. amyloliquefaciens that 
showed biocontrol of Fusarium chlamydosporum [35]. Recently, 
Wang and Wang [33] showed that resistance of sweet potato was 
elicited against two fungal pathogens due to in vitro occurrence of 
endophytic B. amyloliquefaciens YTB1407.

Time-course studies for growth and production of antimicrobial 
metabolite were carried out (Fig. 3). Suitable media for production of 
the metabolite by B. amyloliquefaciens DL06 (Fig. 4) and the optimum 
cultural conditions were determined (Table 3). The bioactive compound 

Table 5: Preparative thin-layer chromatography of the butanol fraction of cell-free culture filtrate of Bacillus amyloliquefaciens DL06a

Solvent system No. of spots Rf value Diameter of inhibition zone (mm)

Test organism

Escherichia coli Aspergillus niger
Ethanol:water:chloroform 
(4:4:2)

C1
C2

0.27
0.87

NI NI
18.5±0.71 30.5±0.71

Chloroform:methanol (1:3) C1
C2
C3
C4

0.69
0.77
0.84
0.91

NI NI
NI NI
23.5±0.71 36.5±0.71
NI NI

Benzene:ethyl acetate (1:9) C1
C2

0.25
0.34

NI NI
NI NI

aIndividual spots were eluted and antimicrobial activity assayed against test organisms following agar cup method. NI: No inhibition, Values 
represent mean of triplicates±standard deviation

Table 4: Solvent extraction of antimicrobial substance produced 
by Bacillus amyloliquefaciens DL06a

Solvent Diameter of inhibition zone (mm)

Test organism

Escherichia coli Aspergillus niger
Petroleum ether NI NI
Benzene NI NI
Diethyl ether NI NI
Dichloromethane 12.5±0.71 14.5±0.71
Ethyl acetate 14.5±2.82 15.5±0.71
Dimethyl sulfoxide NI NI
Chloroform NI NI
Butanol 21.5±0.71 35.5±2.81
aAntimicrobial metabolite was extracted from the culture filtrate of the isolate 
after 120 h of growth and assayed against test organisms following agar cup 
method. NI: No inhibition, Values represent mean of triplicates±standard 
deviation

Fig. 5: High performance liquid chromatography chromatogram of the antimicrobial metabolites produced by 
Bacillus amyloliquefaciens DL06 
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Table 6: Comparison of Bacillus amyloliquefaciens DL06 with other endophytic strains with respect to their source, antimicrobial 
metabolites, and activities

Bacillus 
amyloliquefaciens 
strains

Source of 
endophyte

Isolation 
medium

Antimicrobial spectrum Test method 
used

Metabolite 
identified/
chemical nature

Reference

Bacteria Fungus

PEBA 20 Stem of Populus 
tomentosa

Nutrient 
agar

Bacillus subtilis, 
Bacillus cereus, 
Bacillus 
megaterium

Saccharomyces 
cerevisiae, 
Xanthomonas 
campestris, Ralstonia 
solanacearum, 
Botryosphaeria 
dothidea

Disc diffusion 
and agar-well 
diffusion assay

NR [31]

BZ6-1 Peanut stem Luria-
Bertani 
agar

NR Ralstonia 
solanacearum

Agar-well 
diffusion assay

Homologue of 
surfactin and 
fengycin A

[30]

UD25 Medicinal plant 
Memecylon edule

Nutrient 
agar

Staphylococcus 
aureus (MRSA), 
Pseudomonas 
aeruginosa, Bacillus 
cereus, Escherichia 
coli

NR Agar-well 
diffusion assay

Presence of 
carboxylic 
acids, esters, 
anthraquinone, 
alkaloids, 
carbonyl, thiol, 
organohalogen

[34]

Blu-v2, August-M1, 
August-M2, 
Halycon1 

Seed of 
ornamental 
plants

Trypticase 
soy agar

NR Alternaria 
alternata, 
Fusarium 
oxysporum, 
Colletotrichum 
crassipes

Cross-streak 
method

Isoforms of 
surfactins, iturins, 
and fengycins

[29]

HY-10 Hyptis suaveolens Nutrient 
agar

Escherichia coli, 
Bacillus subtilis, 
Staphylococcus 
aureus, Shigella 
dysenteriae

Candida spp. Disc diffusion 
assay

Absorbance at 254 
nm (ƛmax=1.541)

[32]

YTB1407 Ipomoea batatas NR NR Fusarium solani, 
Ceratocystis 
fimbriata

In vitro and 
pot trial 
assays

Expression of SA-
responsive NPR 1 
and PR 1 genes in 
the host

[33]

DL06 Leaf of Drosera 
burmannii

Nutrient 
agar

B. subtilis, E. coli, 
Staphylococcus 
aureus, 
Staphylococcus 
haemolyticus, 
Staphylococcus 
epidermidis, 
Pseudomonas 
aeruginosa, 
Klebsiella 
pneumoniae

Aspergillus niger, 
Saccharomyces 
cerevisiae, Alternaria 
solani, Sclerotium 
rolfsii, Rhizoctonia 
solani, Curvularia 
lunata, Fusarium 
oxysporum

Agar cup 
diffusion assay

Tentatively 
quercetin

Present 
study

NR: Not reported

was extracted in butanol (Table  4), preparative TLC was performed 
(Table  5) followed by HPLC analysis (Fig.  5), and the active fraction 
was determined tentatively as quercetin. The plant flavonol quercetin 
belongs to the flavonoid group of polyphenols. Inhibitory action of 
quercetin has been observed against S. aureus, P. aeruginosa, P. vulgaris, 
and E. coli [36,37]. Quercetin also showed antifungal effects against 
Cryptococcus spp. and Candida spp. [38-40]. Several reports document 
the production of different flavonoids from microbial endophytes. 
Quercetin was detected in secondary metabolites of endophytic 
bacteria of Cosmos caudatus leaf which showed anticancer and 
antimicrobial properties [41]. Endophytic fungi from Pinus roxburghii 
produce flavonoids having antimicrobial properties [42]. Flavonoids 
having bioactive potentials were identified from endophytic fungi of the 
medicinal plant Tragia involucrata which included vanillin, quercetin, 
caffeic acid, and ferulic acid [43]. As of now, Lee et al. [12] have shown 

antimicrobial properties of the fungi endophytic to Nepenthes spp. It 
had inhibitory activities against Streptococcus pyogenes, Enterococcus 
faecalis, and Ganoderma boninense.

CONCLUSIONS

The present study reports on the production of antifungal and 
antibacterial compound by a leaf endophyte B. amyloliquefaciens 
isolated from the carnivorous plant D. burmannii Vahl. Production of 
antimicrobial compound by the endophytic bacterial isolate was further 
optimized. The antimicrobial compound was purified and chemical 
nature of the active fraction was tentatively determined as quercetin. 
The research deserves special attention for application of bacterial 
endophtes from carnivorous plants in the field of pharmaceutical 
biotechnology. 
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