INTRODUCTION

Intussusception as the name indicates is telescoping of one part into another part of bowel involving either the small intestine or large intestine or both. The most common site of involvement is ileoceleal junction while other sites such as ileoileal, jejunojejunal, jejunoileal, ileocolic, and colocolonic are known [1,2]. Among children, ileocolic type is most common with approximately constituting about 80% of the cases and the most common reason for bowel obstruction [2] which usually presents as abdominal emergency in early childhood [3]. Abdominal emergency is basically due to invagination of ileum into cecum which in turn compresses the mesentery leading to venous, lymphatic congestion. It ultimately leads to ischemia, perforation, peritonitis, and significant morbidity [4,5]. In such cases, immediate diagnosis and action become a priority. One more atypical sequence in children would be the absence of typical signs and appearances but also help rule out other conditions mimicking the diagnosis and will decrease the risk for bowel obstruction, perforation, necrosis, and death by aiding in timely surgical intervention.

In remote areas, due to lack of resources, only radiological evaluation using X-ray abdomen is the first step which gives us an indication for pneumoperitoneum, and appendicolith, since typical radiography signs of intussusception cannot be visualized in all cases, necessitating further evaluation by sonography. In general, surgeons use USG for initial diagnosis and later on do air contrast or barium enema for reduction, or immediate operation if the baby appears to be perforated. However, in cases where risk of perforation is higher with longer duration before presentation despite indeterminate ultrasonographic findings, many clinicians prefer that surgical intervention should be considered alternatively. CT scan can be helpful in accurate assessment, but, in remote areas, these facilities are not available to diagnose intussusception and pneumoperitoneum due to perforation.

Ultrasound (USG) would be best modality for initial screening even in remote areas as it has the advantages of being non-invasive, rapid, and not only cost effective but also avoids radiation exposure and easily available even in peripheral set up in today’s era. Moreover, it can be done bedside, even with less experienced readers. Here, in this article, we are discussing the clinic-radiological and intraoperative features of in intussusception in infants, while we were deployed in remote areas of Eastern Africa with limited settings. This article highlights the importance of strong clinical suspicion and timely ultrasonographic evaluation as primary screening modality in suspected cases of intussusception. USG not only confirms the diagnosis with classical signs and appearances but also help rule out other conditions mimicking the diagnosis and will decrease the risk for bowel obstruction, perforation, necrosis, and death by aiding in timely surgical intervention. In addition to this, the lesson learned from various cases is that, assessment of length of segment of bowel telescoping into the other segment will aid in deciding mode of surgical intervention.

Keywords: Intussusception, Infants, Clinical, Radiological.

ABSTRACT

The incidence rate of Intussusception is higher in some developing countries, which leads to a higher rate of complications in those areas especially in children. Plain abdomen radiograph is the initial radiological examination to be done in a case of acute abdomen in a peripheral set up. Ultrasound (USG) would be best modality for initial screening even in remote areas as it has the advantages of being non-invasive, rapid, and not only cost effective but also avoids radiation exposure and easily available even in peripheral set up in today’s era. Moreover, it can be done bedside, even with less experienced readers. Here, in this article, we are discussing the clinic-radiological and intraoperative features of in intussusception in infants, while we were deployed in remote areas of Eastern Africa with limited settings. This article highlights the importance of strong clinical suspicion and timely ultrasonographic evaluation as primary screening modality in suspected cases of intussusception. USG not only confirms the diagnosis with classical signs and appearances but also help rule out other conditions mimicking the diagnosis and will decrease the risk for bowel obstruction, perforation, necrosis, and death by aiding in timely surgical intervention.
Table 1: Clinico-radiological features in corroboration with intraoperative findings of intussusception in infants

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Clinical profile</th>
<th>Radiological findings</th>
<th>Laparotomy findings (intraoperative)</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 months</td>
<td>Male</td>
<td>Pain, abdominal distension, blood and mucus in stools for 3 days</td>
<td>X-ray: Dilated small bowel loops USG-target lesion with crescent in a doughnut and pseudokidney appearance in consistent with ileo-colo-colic intussusception</td>
<td>Long segment ileocolonic and colo-colic intussusception (terminal ileum into ascending colon and ascending colon into transverse colon) up to mid transverse colon and multiple enlarged mesenteric lymph nodes ileocolic intussusception with terminal ileal perforation</td>
<td>Manual reduction by milking of small bowel loops</td>
</tr>
<tr>
<td>5 months</td>
<td>Male</td>
<td>Vomiting, watery diarrhea and abdominal distension for 2 days</td>
<td>X-ray: Dilated small bowel loops with air fluid levels USG-target lesion with crescent in a doughnut and pseudokidney appearance and mesenteric nodes in consistent with ileocolic intussusception</td>
<td>Ileocolic intussusception with terminal ileal perforation</td>
<td>Manual reduction and perforation repair</td>
</tr>
<tr>
<td>9 months</td>
<td>Male</td>
<td>Pain, abdominal distension, blood and mucus in stools for 2 days</td>
<td>X-ray: Dilated small bowel loops with air fluid levels USG: target lesion with crescent in a doughnut and pseudokidney appearance and mesenteric nodes in consistent with ileo-colic intussusception</td>
<td>Ileocolic intussusception with contused bowel segment with ileal perforation</td>
<td>Manual reduction with resection of necrosed bowel with ileostomy and mucus fistula</td>
</tr>
</tbody>
</table>

USG: Ultrasound

Fig. 1: X-ray, ultrasound, and intraoperative findings of case 1

Fig. 2: X-ray, ultrasound, and intraoperative findings of case 2

Fig. 3: X-ray, ultrasound, and intraoperative findings of case 3
6 months–3 years in developing countries. Ileocolic intussusception is the most common finding in the published literature. The classical triad of red currant jelly stool, vomiting, and intermittent severe abdominal pain is seen in approximately 20% of the cases. There is always need of a strong clinical suspicion with rapid radiological evaluation for confirming the diagnosis as timely intervention is the utmost priority to prevent morbidity and mortality. Delay in diagnosis may result into perforation peritonitis leading to difficult invasive management and subsequently prolonged hospital stay in critical care and may prove fatal in many cases. Plain radiographs and ultrasonography are available at most of the places in peripheral set up in today’s era. Utilizing ultrasonography as primary screening modality in such cases and abdominal radiography in cases of suspected perforation will reduce the decision time and give the treating physician necessary information required to decide further intervention and course of action decreasing the morbidity and mortality in pediatric population.

Abdominal radiography will not always lead to the conclusive diagnosis of intussusception; however, it is a useful screening tool to look for the signs of bowel obstruction with air fluid levels and dilated loops and paucity of the gas shadows in the right iliac fossa. Sometimes, a mass can be seen in the right upper quadrant with meniscus appearance of bowel. Appendicolith and right lower lobe consolidation mimicking the diagnosis may be identified in some cases. Ultrasonography is an accurate real-time examination which is non-invasive, without radiation hazard, readily available round the clock at most of the places and in experienced hands has been proven very useful not only for the diagnosis but also for guided reduction depending on the clinical condition of the patient and decision of treating physician.

In our case series study, all the three cases revealed classical USG appearances of pseudokidney appearance on oblique longitudinal scans and crescent in a doughnut on transverse scan. Abdominal lymphadenopathy was observed along with mesenteric crescent. In experienced hands, as per our case series pointing toward novelty, length of segment of bowel telescoping into the other segment can also be assessed, further aiding the surgeon in deciding mode of treatment. In addition to this, predictors of perforation peritonitis such as trapped ascitic fluid and pathological lead points such as duplication cysts, appendix, Meckel’s diverticulum, tumors, and lymphadenopathy can be assessed with USG. The review of literature showed that many authors have used USG to maximum extent in intussusception cases like Bartocci et al. [14] in their study found out that the USG examination was positive in 16/18 patients with a final diagnosis of intussusception. Dallani et al. [15] concluded in their study that the use of ultrasonography in cases with intussusception has proven to be a reliable and accurate method for diagnosing intussusception. Kim [16] enumerated in their study, the typical and atypical USG features of intussusception. Chukwubuike [17] did a correlation study of USG reports and intraoperative findings and concluded USG to be a reliable and accurate diagnostic modality in childhood intussusception. Chang et al. [18] found out that emergency physicians with USG training have higher diagnostic sensitivity for pediatric intussusception.

The clinico-radiological findings were corroborated with the intraoperative findings which were consistent and helped the surgeon in deciding the approach and mode of treatment. Bai et al., [19] reported USG-guided hydrostatic reduction in 52/10 cases where the success rate was 95.5% with 0.17% perforation rate. Flaxm et al. [20] in their case series discussed USG-guided hydrostatic reduction of intussusception with low complication rate (1 in 270 cases). Gondek et al. [21] discussed the predictive model to detect the success of hydrostatic reduction with approximate success rate of 77%. Menke and Kihl [22], in their study, found out that radiation-free sonography-guided hydrostatic reduction has a good success rate in children with ileocolic intussusception. Pineda and Hardamsalmani [23], in their case series, showed that contrast enemas (barium, water-soluble, and air) are diagnostic and therapeutic techniques, with reduction rates of 70–90%. Air enema is now considered the gold standard treatment of intussusception in children [3]. Surgical intervention is needed only in unstable patients with non-operative reduction contraindications or in prior unsuccessful reduction attempts [24–26]. Limchareon and Boonyarit [27]. In their case series, discussed the importance and success rate of hydrostatic reduction as primary modality of treatment. However, in our case series, hydrostatic reduction with normal saline was also tried twice in our Case 1. As there were long segments of intussusceptum of terminal ileum telescoping into the ascending colon and further into the transverse colon, hydrostatic reduction was not successful. Based on that experience and with the help of ultrasonographic assessment of long segment length of intussusceptum, exploratory laparotomy was performed to avoid the risk of perforation and further deterioration of patient condition in a peripheral set up with limited resources. The length of intussusceptum segment can be measured approximately on the USG based on the mesenteric crescent from base of intussusception up to the apex (on oblique longitudinal scans), as the mesenteric crescent is not seen at the level of apex (assessment on transverse scan) of intussusception.

CONCLUSION
This article highlights the importance of strong clinical suspicion and timely ultrasonographic evaluation as primary screening modality in suspected cases of intussusception. USG not only confirms the diagnosis with classical signs and appearances but also help rule out other conditions mimicking the diagnosis and will decrease the risk for bowel obstruction, perforation, necrosis, and death by aiding in timely surgical intervention. In addition to this, the lesson learned from this case series is that, assessment of length of segment of bowel telescoping into the other segment will aid in deciding mode of surgical intervention.

ACKNOWLEDGMENTS
Nil.

AUTHORS CONTRIBUTION
All authors have contributed to the manuscript.

CONFLICTS OF INTEREST
Nil.

AUTHORS FUNDING
Nil.

REFERENCES

9
2004;14 Suppl 4:146-54. doi: 10.1007/s00330-003-2033-2, PMID 14752570