PREVALENCE AND ANTIMICROBIAL RESISTANCE IN ENTEROCOCCUS SPECIES

SANIYA OHRI, KANWARDEEP SINGH, SHAILPREET KAUR SIDHU*, LOVEENA OBEROI
Department of Microbiology, Government Medical College, Amritsar, Punjab, India. Email: shail78@hotmail.com

Received: 06 January 2023, Revised and Accepted: 20 February 2023

ABSTRACT

Objectives: The study was conducted to determine the prevalence of vancomycin-resistant Enterococci (VRE) isolated from various clinical samples received from the indoor patients of all age groups admitted in Government Medical College and Hospital, Amritsar.

Methods: A prospective cross-sectional study was conducted in the Department of Microbiology, Government Medical College, Amritsar, for a period of 4 years (July 1, 2018–June 30, 2022). All the samples (pus, urine, blood, body fluids, sputum, etc.) received from the indoor patients of all age groups admitted in Government Medical College and Hospital, Amritsar, were included in the study.

Results: During the study period of 4 years, among the culture positive samples, 1815 (6.62%) isolates were identified as Enterococcus species. Among 1815 isolates, 1089 isolates were Enterococcus faecalis (60%) and 726 were Enterococcus faecium (40%). Both E. faecalis and E. faecium isolates showed the maximum resistance to ciprofloxacin while linezolid, teicoplanin, and quinupristin/dalfopristin showed the maximum sensitivity.

Conclusion: Our study reports the prevalence of Enterococci isolates as well of VRE isolates. To reduce the VRE prevalence worldwide, appropriate use of antibiotics according to antimicrobial susceptibility testing should be encouraged. Efforts should be made to reduce the transmission of VRE isolates.

Keywords: Enterococcus, Vancomycin-resistant Enterococci, Prevalence.

© 2023 The Authors. Published by Innovare Academics Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2023v16i6.47283. Journal homepage: https://innovareacademics.in/journals/index.php/ajpcr

INTRODUCTION

Enterococci are Gram-positive bacteria which are normal inhabitants of the intestinal flora and generally cause infections when host immunity is disrupted. These are Gram-positive bacteria, facultative anaerobic oval cocci arranged singly, in pairs or in short chains. They have the ability to grow at 10°C as well as 45°C, at 9.6 pH, in 6.5% NaCl and also survive at 60°C for 30 min [1]. The genus Enterococci includes Enterococcus faecalis, Enterococcus faecium, E. durans, E. gallinarum, E. italicus, and E. avium. The most common species found worldwide among various clinical samples is E. faecalis followed by E. faecium which also accounts for being the most drug resistant.

The name “enterococque” was first used by Thiercelin in a study from France published in 1899; the name was proposed to emphasize the intestinal origin of this new Gram-positive diplococcus. In the same year, MacCallum and Hastings reported a case of endocarditis caused by an organism; they called Micrococcus zymogenes; later studies suggest that this organism was actually a hemolytic Enterococcus. In 1937, Sherman proposed a classification scheme which separated streptococci into four divisions: pyogenic, viridans, lactic, and Enterococcus. The latter term was used for organisms that grow at 10 and 45°C in 6.5% NaCl, at pH 9.6 and which survived 60°C for 30 min; the ability to split esculin was also noted. Sherman’s classification scheme also correlated with the serological scheme originated by Lancefield in the early 1930s. In that system, the Enterococci reacted with Group D antisera, while the pyogenic streptococci reacted with Groups A, B, C, E, F or G and the viridans streptococci were nongroupable. The proposal to transfer Enterococci to a new genus named Enterococcus had been previously suggested, and it was this genus name that was proposed by Schleifer and Kämpfer-Bals. Shortly thereafter, Collins, Jones, and Farrow, working with Klapper-Bilz and Schleifer, used similar methodology to show that strains called Streptococcus avium, Streptococcus casseliflavus, Streptococcus durans, Streptococcus faecalis subspecies malodoratus, and Streptococcus gallinarum were sufficiently closely related to other members of the genus Enterococcus to be transferred to this genus but sufficiently distinct to be considered separate species. The names proposed were Enterococcus avium, E. casseliflavus, E. durans, E. malodoratus, and E. gallinarum [2].

Nosocomial infections, also called as Hospital Acquired Infections (HAIs), are the infections which are acquired in health-care setting which first appear at 48 h or more after hospital admission or within 30 days after the discharge of the patient [3]. ESKAPE (E. faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens are majorly responsible for nosocomial infections. Enterococci have become the major cause of HAIs which include nosocomial urinary tract, wound infections, and bacteremia [1]. They also cause endocarditis, neonatal sepsis, and in rare cases, meningitis as well.

Over the past two decades, Enterococci have been identified as the agents of nosocomial infection with increasing frequency. Enterococci are primarily opportunistic pathogens. The use of various intravascular access devices, implanted prosthetic devices, cytotoxic chemotherapy, and immunosuppression has magnified the impact of organisms of relatively low virulence, such as Enterococci and intensive use of broad-spectrum antibiotics in the hospital, which provides selective pressure favoring the growth of intrinsically drug-resistant Gram-positive organisms such as Enterococci. These organisms have survived in the hospital environment due to their intrinsic resistance to several commonly used antibiotics and more importantly their ability to acquire resistance to all currently available antibiotics, either by mutation or by receipt of foreign genetic material through the transfer of plasmids and transposons [4].

Another reason of Enterococci emergence in the past two decades is due to their resistance to many frequently used antimicrobial agents such as aminoglycosides, cephalosporins, aztreonam, semisynthetic penicillins, trimethoprim-sulfamethoxazole and along with this, their ability to attain and transfer-resistant genes, thus giving rise to Enterococci with high-level aminoglycoside resistance (HLAR).
β-lactamase production [5]. After the emergence of resistance to these many antibiotics, vancomycin was the main drug of choice in various nosocomial infections caused by Enterococci.

However, due to over and misuse of vancomycin in Enterococcal infections, vancomycin-resistant Enterococci (VRE) were first reported in 1986 in Europe [6]. Nowadays, VRE is well-known cause of multidrug-resistant Enterococcus spp. in health-care settings. Mechanism of VRE is due to acquisition of van gene clusters which occurs probably from the environmental organisms. VanA being the most frequent gene cluster is usually located in a Tn3-family transposon (Tn1546) which is found in conjugative and non-conjugative plasmids [6].

Objectives
The objectives of the study are to determine the prevalence of VRE isolated from various clinical samples received from the indoor patients of all age groups admitted in Government Medical College and Hospital, Amritsar, North India.

METHODS
A prospective cross-sectional study was conducted in the Department of Microbiology, Government Medical College, Amritsar, for a period of 4 years (July 1st, 2018 to June 30th, 2022). All the samples (pus, urine, blood, body fluids, sputum, etc.) received from the indoor patients of all age groups admitted in Government Medical College and Hospital, Amritsar, were included in the study.

The samples were then inoculated on Blood Agar and MacConkey’s Agar and incubated for 24 h aerobically at 37°C. Enterococci were identified based on the colony characteristics, gram staining, motility and by using standard microbiological techniques [7]. Kirby-Bauer disc diffusion method was performed after inoculum for antimicrobial susceptibility testing was standardized to 0.5 McFarland standards for various Enterococci isolates as per the CLSI guidelines [8].

The antibiotics which were tested were penicillin (10 µg), ampicillin (10 µg), ciprofloxacin (5 µg), tetracycline (30 µg), erythromycin (15 µg), vancomycin (30 µg), high-level gentamycin (120 µg), and high-level streptomycin (300 µg). Enterococci isolates with vancomycin zone size ≤14 mm were further tested with linezolid (30 µg), teicoplanin (30 µg), and quinupristin-dalfopristin (15 µg). Minimum inhibitory concentration to vancomycin of these isolates was also assessed as per the CLSI guidelines [9].

The study was conducted after the approval from the institutional ethical committee which stated. An informed consent as well as official permission was obtained from the hospital as well as the participating subjects of the present study. The confidentiality of the information was maintained.

RESULTS
During the study period of 4 years, a total of 68,575 samples were received in Department of Microbiology, Government Medical College and Hospital, Amritsar, from various indoor patients admitted in various wards of Government Medical College and Hospital, Amritsar. Out of total clinical samples, 27,430 (40%) were found to be culture positive. Among the culture-positive samples, 1815 (6.62%) isolates were identified as Enterococci (Fig. 1).

Amongst 1815 isolates, 1089 isolates were E. faecalis (60%) and 726 were E. faecium (40%) (Fig. 2).

Enterococci isolates were maximum isolated from urine samples followed by pus and body fluids and blood as shown in the Fig. 3.

The results of antimicrobial susceptibility testing of E. faecalis and E. faecium isolates are depicted in the Table 1 below. Both E. faecalis and E. faecium isolates showed the maximum resistance to ciprofloxacin while linezolid, teicoplanin, and quinupristin/dalfopristin showed the maximum sensitivity. The prevalence of vancomycin resistance in E. faecalis is 2.94% while in E. faecium is 29.89% with overall prevalence of 13.72% (Table 1 and Fig. 4).

DISCUSSION
The rapid emergence of antimicrobial resistance is an important public health issue which has gained importance worldwide. Assessing the
Table 1: Resistance pattern toward different antimicrobials

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>E. faecalis (n=1089), n (%)</th>
<th>E. faecium (n=726), n (%)</th>
<th>Total isolates (n=1815), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Resistant (562 (51.61))</td>
<td>Resistant (512 (70.52))</td>
<td>Resistant (1074 (59.17))</td>
</tr>
<tr>
<td>Penicillin</td>
<td>512 (70.52)</td>
<td>1074 (59.17)</td>
<td>1686 (90.31)</td>
</tr>
<tr>
<td>Gentamicin (high dose)</td>
<td>560 (51.42)</td>
<td>1082 (59.61)</td>
<td>1642 (91.07)</td>
</tr>
<tr>
<td>Streptomycin (high dose)</td>
<td>560 (51.42)</td>
<td>1082 (59.61)</td>
<td>1642 (91.07)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>326 (29.94)</td>
<td>468 (64.46)</td>
<td>794 (43.75)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>774 (71.07)</td>
<td>621 (85.54)</td>
<td>1395 (76.86)</td>
</tr>
<tr>
<td>Norfloxacin (urine isolates)</td>
<td>101, out of 144 (70.14)</td>
<td>51, out of 56 (91.07)</td>
<td>152 (76)</td>
</tr>
<tr>
<td>Nitrofurantoin (urine isolates)</td>
<td>0, 13, out of 56 (23.21)</td>
<td>601 (82.78)</td>
<td>1045 (57.58)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>444 (40.77)</td>
<td>217 (29.89)</td>
<td>249 (13.72)</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>32 (2.94)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Linezolid</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Quinupristin/dalfopristin (for E. faecium)</td>
<td>NA</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NA: Not available, E. faecalis: Enterococcus faecalis, E. faecium: Enterococcus faecium

Vancomycin resistance in E. faecalis was observed to be 2.94% and 29.89% in case of E. faecium with overall VRE to be 13.72% in our study in contrast to 30.1% VRE in a study conducted in 2019 [17] and 0.64% in a study conducted by Nisara in Gujarat in 2016 [19]. Similar results were found to be in a study conducted by Shrestha et al. in 2021 [20]. In our study, there was 100% susceptibility to linezolid, teicoplanin, and quinupristin/dalfopristin. Similar results were found to be in a study conducted by Mukherjee in Kolkata in 2013 [21] and Chitnis et al. in Central India in 2013 [22].

Our study reports the prevalence of Enterococci isolates as well of VRE isolates. To reduce the VRE prevalence worldwide, appropriate use of antibiotics according to antimicrobial susceptibility testing should be encouraged. Efforts should be made to reduce the transmission of VRE isolates. Delayed identification of VRE carriers leads to increase in nosocomial transmission of VRE. Strict infection contact precautions should be taken to effectively decrease nosocomial transmission.

CONFLICT OF INTEREST
None.

SOURCE OF FUNDING
Nil.

REFERENCES


