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ABSTRACT

Acerola (Malpighia emarginata DC) is the richest natural source of ascorbic acid and also contains a plethora of phytonutrients such as flavonoids, 
anthocyanins, carotenoids, and phenolics. By using the fruits of Malpighia emarginata, are used for the treatment of cancer by inducing effective anti-
tumor immunity through dendritic cells. Dendritic cells (DC) are the heterogeneous population of antigen-presenting cells that invade tumors. They play 
an important role in the priming and maintenance of local immunity, and their major function is diminished by some factors encountered in the local 
environment. For the success of cancer immunotherapy, adequate tumor-specific antigens play a very important role in inducing a tumor-specific immune 
response by effective delivery of these antigens. In this proposal, by using these strategies, mature and immature dendritic cells were obtained in-vitro by 
adding specific cytokines to monocyte cell culture containing Malpighia emarginata fruit extract in the presence of prostate-specific antigen (PSA), and their 
results were compared to those obtained without the presence of Malpighia emarginata fruit extract. In the prostate tumor lineage, the RNA is extracted 
into the cell by electroporation, and the transfection success was measured by immunocytochemistry of the PSA expression level in dendritic cells. For the 
comparative study of in-vitro RNA transcription, this method allows small tumors to be used for dendritic cell vaccine preparation through the activation 
of DC by in the presence and absence of Malpighia emarginata fruit extract and it is a promising approach for the treatment of metastatic prostate cancer.
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INTRODUCTION

In the world, the most commonly diagnosed male malignancies are 
prostate cancer, and it is also the fifth-leading cause of cancer death 
in men [1,2]. The newly diagnosed and death cases, due to prostate 
cancer are 1,414,249 and 375,000 worldwide yearly from this disease 
in 2020 [1-5]. In most of the cases, they did not show any symptoms, 
but lately, they produce symptoms such as fatigue due to anemia, bone 
pain, paralysis from spinal metastases, and renal failure appeared. 
Acerola (Malpighia emarginata DC) also known as Barbados cherry or 
West Indian Cherry, and they come under Malpighiaceae family. The 
fruit of this plant is one of the richest sources of ascorbic acid in the 
world [6]. The evergreen shrub Acerola, which flourishes in warm and 
tropical climates, bears a small trilobite cherry-like fruit [7]. From April 
to November, the tree flowers and the fruit mature in 3–4 weeks after 
flowering. In immature stage, the skin color is green, while at the ripening 
stage, it changes to an orange-red and finally to a bright red color on 
maturation. Malpighia emarginata not only contains an exorbitant 
amount of ascorbic acid but also contains several phytonutrients like 
carotenoids, phenolics, flavonoids, and anthocyanins [7].

DENTRITIC CELLS

Dendritic cells (DC) are said to be professional antigen-presenting 
cells, and they are the sentries of the immune system, which includes 
inducing, sustaining, and regulating T-cell responses [8,9]. During the 
appearance of a tumor, DC circulates through the blood and migrates 
to the tumor tissues, where it interacts with malignant cells and is 
particularly efficient in the uptake of tumor-derived material. And 
the tumor-derived molecules that activate dendritic cell maturation, 
such as heat shock proteins and high-mobility-group box 1 protein, as 
well as pro-inflammatory cytokines are produced by various tumor-
infiltrating immune cells. After maturation, the DC migrates from tumor 
tissue to T-cell-rich areas of secondary lymphoid organs, and then they 
activate the tumor-reactive CD8+ cytotoxic T lymphocytes (CTLs) and 

CD4+ cells. The CD8+ (CTLs) identify effectively and destroy tumors, 
which release peptides and are derived from tumor-associated antigen 
(TAA) in the complex with human leukocyte antigen (HLA) class I 
molecules [10]. Peptides derived from CD4+ T cells in the context of 
HLA class II molecules also play a very important role in anti-tumor 
immunity [11]. And also, CD4+ cells help maintain and regulate the 
expansion of CTLs by secreting cytokines such as interleukins (IL)-2 and 
can destroy tumor cells directly. Due to their various antitumor effects, 
DC is considered a promising candidate for vaccination protocols in 
cancer therapy [12].

PLASMACYTOID DENTRIC CELLS (PDC)

In Bone marrow, dendritic cells are considered a multifunctional 
population [13,14] specializing in the production and secretion of type I 
interferons (IFNs). In mice, the pDC are expressed as Siglec-H, B220, 
and Ly6c but with a low amount of CD11c along with a variable amount 
of CD8α and CD4. In mice, the periphery regions of pDC are expressed 
as CC-Chemokine receptor 9, LY49Q, and SCA1 [15,16]. In humans, pDC 
show plasma cell morphology and express CD4, HLA-DR, CD123, and 
blood-derived cell antigen-2 as well as Toll-like receptors (TLR) 7 and 9 
within endosomal compartments, but CD11c is not expressed [15-17]. 
pDCs are found in smaller numbers in T cell areas of the spleen, LNs 
and mucosal-associated tissues, thymus, and liver when they are in 
a homeostatic condition. pDCs secrete a high amount upon TLR7/9 
triggering, such as type I IFN, and produce interleukin-12 (IL-12), IL-6, 
tumor necrosis factor α (TNF-α), and also some other pro-inflammatory 
chemokines. pDCs are much less efficient than conventional dentric 
cells and they can act as antigen-presenting cells so they can induce an 
immunogenic response or tolerance.

CONVENTIONAL DENDRITIC CELLS

In conventional dendritic cells they are divided into two populations 
in both mice and humans: cDC1 and cDC2. cDC1 of the mouse includes 
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most lymphoid-resident CD8+ dc then the tissue-resident and migratory 
CD103+ DC. CD141+DC are considered human cDC1 [18]. Both 
humans and mice have specifically expressed surface markers such as 
Clec9A [19,20] and XCR1 [21,22], for their development, they require 
transcription factors such as Basic Leucine Zipper ATF-like transcription 
Factor 3 (BATF3), IRF8, and ID2 [23]. In mice and humans, the cDC2 
are classified as CD11b+ DC in mice and CD1c+ DC in humans [18] and 
they depend on some transcription factors like IRF4 and zinc finger E 
box binding homeobox 2 (ZEB2) [23,24]. Recently, new dendritic cell 
subsets have been identified, such as AXL and Singlec6, by single-cell 
RNA sequencing and cytometry by time-of-flight [25-27]. cDC is one of 
the most powerful antigen-presenting cells, and as such, they are strong 
inducers of T cell-mediated immune response. In mice cdC1 is highly 
active in antigen cross-presentation and is also a strong producer of IL-
12 that drives the polarisation of activated CD8+ T cells into CTLs [28]. 
Mouse cDC2 are specialized in MHC II presentation and the stimulation 
of CD4+ T cell responses, which include Th1, Th2, and Th17 cells [18]. 
Human cDC1 and cDC2 are equally potent in MHC II presentation and 
priming CD4+ T cells [18], and also human Axl+ DC are the potent 
inducers of CD4+ and CD8+ T cells in allogeneic cultures [25,27].

DENTRIC CELL-BASED IMMUNOTHERAPY FOR PROSTATE CANCER

The induction of innate and adaptive antitumor immune response 
dendritic cells plays a very important role, and they also act as attractive 
candidates for vaccination protocol in cancer therapy. An animal model 
proves that TAA presenting dendritic cells are able to induce protective 
and therapeutic antitumor response [29,30]. In clinical trials, report 
says that B-cell lymphoma or renal cancer patients disclose promising 
immunologic and clinical responses of TAA-loaded DCs which is 
administered as a vaccine against cancer [31-34] (Fig. 1).

DCs have a capacity to induce and regulate T-cell responses and have 
been revealed as promising candidates for vaccination strategies 
in prostate cancer therapy. DC is loaded with the tumor-associated 
antigen are prostate cancer-associated antigen derived peptides, RNA 
or protein and with their high surface expression of HLA-peptide-
complexes and costimulatory molecules, the dendritic cells activate and 
expand CD8+ CTLs and CD4+T cells effectively. From this, CD8+CTLs 
are able to recognize and also destroy tumors. CD4+T cells also increase 
the capacity of DCs to stimulate CTLs through the interaction between 
CD40 on DCs and CD40 ligand on activated CD4+T cells, and they also 
maintain and regulate the expansion of CTLs by secreting cytokines and 
are able to eradicate tumor cells directly [35].

FLAVONOIDS EXTRACTION FROM MALPHIGIA EMARGINATA

Flavonoids are an important secondary metabolite that is a natural 
organic compound that is produced during the long process of natural 

selection. They are mostly found in the root, stems, leaves, flowers, 
and fruits. Malphigia Emerginata fruit contains several important 
phytoconstituents such as carotenoids, phenolics, flavonoids, and 
anthocyanins [7] and possesses numerous biofunctional properties. 
Flavonoids possess various pharmacological activities such as antitumor, 
antibiosis, antivirus, anti-inflammatory, and so on.

EXTRACTION

For the extraction of flavonoids from Malphigia Emarginata fruit, 
ethanol and methanol are widely used, and the common methods of 
extraction include dipping, percolation, reflux, and so on. An alcohol of 
high concentration (90-95%) is applied to extract free flavonoids.

VACCINATION WITH EX-VIVO PULSED DENDRITIC CELLS (DC) AND 
THEIR HISTORY

Although DCs are general presence in most tissues, their total 
number is low. An ex vivo derivation of dendritic cells improves, and 
multiple prelusion cells can be used to prepare dendritic cells, such 
as nonproliferative and proliferative in this nonproliferative CD14+ 
monocytes from Peripheral blood and the proliferative CD34+ cells 
from bone marrow and umbilical blood [36,37]. CD14+ monocytes 
develop ~10% of peripheral blood mononuclear cells, and the 
dendritic cells derived from peripheral blood monocytes (MoDCs) 
have been broadly studied and applied. In 1994, Sallusto and Romani 
developed a method for the induction of dendritic cells from monocytes 
by granulocyte-macrophage colony-stimulating factor (GM-CSF) 
and IL-4. GM-CSF helps to promote the subsequent development of 
dentric cells, while IL-4 suppresses the rapid increase of macrophages 
and granulocytes and also prevents the differentiation of monocytes 
towards macrophages [38,39]. After 2 years later, Romani and Zhou 
made an improved protocol study by in which they obtained the 
immature dendritic cells after induction for 6–7 days with GM-CSF and 
IL-4 and then developed the mature dendritic cells after induction for 
3 days with an activating factor such as TNF-α. This method is one of the 
first successful efforts to replace Bovine Serum with human plasma in 
culture, which laid the foundation for the clinical application of ex vivo-
derived dentric cells [40,41]. But now-a-days they have explored more 
ex vivo derivation protocols of MoDCs, such as replacing IL-4 with IL-15 
r IFN-α in the presence of GM-CSF to support the activation potency 
of DCs [42-44]. MoDCs cannot be generated ex vivo as a result, their 
application is something limited. CD34+ Hematopoietic Stem Progenitor 
Cells (HSPC) can be used to synthesize DCs in large amounts ex vivo. This 
CD34+ is superior to MoDCs in that it stimulates a more potent T-cell 
immune response against cancer, and these are produced by upregulating 
the expression of tumor necrosis factor-relevant apoptosis-stimulating 
ligand and enhancing cytotoxicity [45,46]. Derivation of strong CD34+ 
was typically successfully achieved in a cytokine milieu but it differs 
as compared to MoDC derivation. The first documented combinations 
of formulations include as fm-relevant tyrosine kinase 3ligand (flt3L), 
thrombopoietin (TPO), and stem cell factor (SCF). Before switching to 
culture in the presence of Flt3L, TPO, and SCF for 1 week, they were 
alternatively culturing in the presence of Flt3L, SCF, IL-3, and IL-6 for 
3 weeks, which worked similarly well [47]. The inclusion of Notch ligand 
Delta-like 1 (DLL1) in the original combination of formulation that is 
GM-CSF, Flt3L, SCF significantly improved the stimulation of type 1 
conventional cDC1s because they specialize in priming CD8+ CTLs from 
CD34+HSPC is recently reported [48].

IDEAL DENDRITIC CELL VACCINATION

Preclinical and clinical studies have shown that for optimal stimulation 
of tumor-specific T cells, DC Vaccine should express three major 
qualities. First is the ability to migrate to lymph nodes; which organize 
an optimal environment for T-cell activation, second is longevity; for 
activation and expansion of a tumor-specific T-cell response, the DC 
must maintain its nature phenotype in the lymph node for sufficient 
time, and this response is able to eliminate tumor, third is that dendritic 
cell must steadily present TAA, and this process may be easier to achieve 
with vector-transduced or transfected DC.Fig. 1: DC-based immunotherapy strategies for prostate cancer
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MATURATION

During DC maturation, they are characterized phenotypically by the high 
expression of membrane-bound co-inducing molecules: CD80, CD86, 
CD83, and MHC class II molecules and half-lives of peptide-MHC complexes, 
secretions of T-cell inducing chemokines and cytokines [49] and these 
complex processes occur at a time when proinflammatory cytokines and 
pathogen-associated molecular patterns are produced based on microbial 
structure or cellular stress. If the dendritic cell is not appropriately matured, 
their activity may induce tolerance rather than immunity. DCs in their 
immature state are highly phagocytic, and they are retained in their tissues 
in a resting state, where they present only healthy self-proteins and are 
tolerogenic. When the immature DCs are administered by subcutaneous 
injection, they elicit antigen-specific suppressive responses [50].

MIGRATION

When stimulation occurs, such as with TLR ligands or cytokine 
cocktails, the maturation process is started, and the DC downregulate 
the expression of chemokine receptors such as CCR6 and CCR2 
which direct them to sites of inflammation, and rapidly up-regulate 
the regulation of CCR7 [51,52] which direct the migration of mature 
DCs into the lymph node through its ligands CCL19 and CCL21 [53]. 
Hence, mature antigen-presenting DC encounter resting nave and 
memory T-cells that also produce CCR7 and circulate through lymph 
nodes, where they replace CCL19-producing mature DCs. These results 
produce specific T-cell proliferation and the initiation of that adaptive 
immune response [54,55]. Both clinical and preclinical studies report 
that the magnitude of T-cell response relates with the ability of DC to 
migrate to the lymph node and to the maturation state [56-58].

DENDRITIC CELL VACCINE PREPARATION

Clinical data from monocyte-derived DC vaccines
For dendritic cell vaccination, Mo-DCs are the important source of DC, 
which are generated from ex vivo allogeneic CD14+ monocytes [59]. 
Leukemia-associated antigens (LAAs) are loaded in Mo-DCs [60]. For 
LAAs loading in Mo-DC, there are three antigens used, such as Wilms 
Tumor 1 (WT1), Preferentially Expressed Antigen of Melanoma 
(PRRAME), and Human Tolerance Reverse Transcriptase (PRAME), 
and Human Telomerase Reverse Transcriptase (HTERT) [59,61]. They 
are loaded with whole apoptotic leukemic cells, leukemia lysates 
or leukemic cell-derived mRNAs [59,62,63]. These antigen-loading 
Mo-DCs are re-administered to acute myeloid leukemia (AML) patients 
in Intradermal or intravenous DC vaccination [59,61]. Due to several 
blood draws occurring some variability within the same individual, and 
this can be avoided by using cryopreservation of Mo-DC can be a good 
method o preserve the cells before use in immunotherapy [64] (Fig. 2).

CLINICAL DATA FROM LEUKEMIA-DERIVED DC VACCINES

In AML and MDS (Myelodysplastic Syndrome), the DC can be produced 
directly from DCleu (leukemia-derived DC) after culture with different 
combinations of modifiers [65-67]. For the generation of DCleu different 
protocols have been developed [68], and their morphology is similar 
to that of typical DCs. Unique characteristics of DCleu include stronger 
antigen-presenting capability, stronger ex vivo antileukemia immune 
response, and increased costimulatory molecule expression [69]. The 
ex vivo production of DCleu and Mo-DC from leukemic blood cells for 
vaccination is a challenging process. In the generated DCleu, their 
confirmation methods include western blot, immunophenotyping, 
and fluorescence in situ hybridization with chromosome-specific 
DNA probes to detect leukemia-specific numeric or structural 
chromosomal abbreviations [70,71], and also a special method such 
as flow cytometric gating strategy has been developed. After DCleu 
production can be detected, patient-specific blast staining antibodies 
are incorporated with some specific dendritic cell staining antibodies, 
and some specific antigens that are expressed on leukemic blasts, and 
this is only applicable when DCleu generation can be detected. After 
the DC populations are cultured, they are further divided into different 
subpopulations, such as leukemia-derived dendritic cells, nonleukemia-
derived DC and nonconverted blasts [71]. This report demonstrated 
that only mature DCleu can activate immune reactive cells, and these 
express chemokine receptor 7 (CCR7), which is important for the 
migratory capacity of DCleu [69,72], and also that the mature DCleu 
also express CD83 and secrete IL-12 [73].

DC VACCINES IN NONLEUKEMIA MALIGNANCIES

Prostate cancer
Patients who have high-risk prostate cancer can experience relapse, 
which produces a noncurative disease. In clinical trials, vaccines 
targeting TAA have been applied for prostate cancer treatment. There 
are different types of vaccines, including DC based (e.g. Sipuleucel-T), 
and peptide or gene-based (e.g. DNA/RNA) that have been applied as 
auxiliary therapy in patients with prostate cancer [74]. Although the 
initial success with Sipuleucel-T and further dendritic cells vaccines 
failed to progress. To improve the efficacy of vaccination, developing 
antigen loading and presentation technologies, such as nanoparticles, 
antibody-antigen conjugates, and virus codelivery systems [75]. In 
the phase I trial it was shown that an antigen-loading autologous 
dendritic cell-based vaccine for advanced prostate cancer produced by 
in vivo activation of inducible CD40 that produces immune upregulation 
and antitumor activity decreases the prostate-specific antigen 
(PSA), objective tumor regression, and has strong efficacy for post-trial 
therapy [76].

Fig. 2: Procedure for dendritic cell vaccine preparation for hematological malignancy
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METHODS FOR VACCINE DELIVERY

A kind variety of methods to deliver DC-based vaccines to patients 
such as intravenous [77-79], Intradermal [80,81], and less usage of 
Intranodal [77,82] and Intratumoral routes [83-86] as well as dendritic 
cell induction [69] by in vivo. For effective sensitizing T cells, currently, 
there is no consistency as to which route of administration is best. 
Depending upon the route of administration, the antigen-loaded DC can 
prime T cell immunity, but the quality of the response and induction 
of antigen-specific antibodies may be different [84]. Antigen-pulsed DC 
are administered intravenously, and subcutaneous administration of 
immature DC has been considered an effective method for generating 
sensitized T cells [87,88]. In the mouse model, the comparisons of 
subcutaneous or intravenous immunization, with Intranodal injection 
of peptide-pulsed DCs showed that the latter effectively induced 
greater expansion of antigen-specific TT lymphocytes in the spleen 
and also a stronger antigen-specific Th1-type response, as a result, 
Intranodal administration of DC vaccination was an effective and 
feasible method [89]. In advanced melanoma patients, the vaccination 
by Intranodal administration of semimature DCs produces a strong, 
long-lasting CD4+ T cell response with a Th1-type cytokine profile [90].

CHALLENGES OF DC VACCINES

Despite the fact that much improvement has been made in the 
field of DC vaccines, there are still several challenges to a wider 
application of leukemic DC vaccines. In a previous experiment report, 
it was noted that failure to generate enough qualified AML-DCs was 
the most common reason [91], and another reason was the high cost 
of stimulants required to differentiate leukemic DC [92]. A critical 
lesson was learned, however, due to the immunosuppressive effect of 
GM-CSF, which produces insufficient therapeutic efficacy of vaccination 
using genetically modified GM-CSF-secreting leukemia DC [93]. Due 
to the immunosuppressive effect of phosphatidylserine produces 
a lack of immunogenicity of the whole leukemia cell vaccine causing 
inactivated immune-responsive T cells [94]. Immunosuppressive 
effects from malignant cells can inhibit the function of both DC and 
T  cells and inhibit the vaccine-generated protective immune response. 
These factors bring additional challenges and highlight the systemic 
immunosuppression and malfunction of DC [95]. Many studies reported 
that different mechanisms of weak immunogenicity of DCs, including 
failure to stimulate or activate the NK cells [42,96-98], failure to inhibit 
the immunosuppressive action, and undesirable effects of Tregs and 
MDSCs [99,100].

CONCLUSIONS AND FUTURE DIRECTIONS

The development and success of DC-based immunotherapies have 
been affected by several factors, such as the immunosuppressive 
effect produced in the tumor microenvironment, the limited capacity 
of systemically administered DC, and the low cupidity of TAA-specific 
T cells. The rapidly enhancing knowledge about dendritic cell subsets 
and the tumor-stimulated suppressive effect must be exploited to 
design novel and improved vaccine therapy in cancer. These limitations 
also include weak cellular immune response, not economic and also 
time-consuming process. The DC vaccine will certainly confide on 
combination therapies. In addition to DC vaccination will combined with 
Malphigia Emarginata fruit extract of flavonoids compound, systemic 
monoclonal antibody, and immune checkpoint blockades can enhance 
DC-mediated activation of NK cells and prevent the stimulation of Tregs. 
In this study, we believed that the use of carefully designed dendritic 
cell vaccination with Malphigia Emarginata fruit extract of flavonoids 
compound can enhance the DC activation because these fruits are rich 
in antioxidants and these adjuvant antioxidants can further improve 
DC vaccination and this strategy may produce a promising approach in 
patient have prostate cancer.
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