ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

ISSN - 0974-2441

Research Article

ASSOCIATION BETWEEN TRACE ELEMENTS AND METABOLIC SYNDROME AMONG TYPE 2 DIABETES MELLITUS PATIENTS IN GORGAN

ABDOLJALAL MARJANI*, FATEME ALI AKBARI, SAMIRA ESHGHINIA

Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran. Email: abdoljalal@yahoo.com

Received: 08 January 2015, Revised and Accepted: 31 January 2015

ABSTRACT

Objective: Metabolic syndrome changes in different ethnic and age group. Trace elements are associated with metabolic syndrome. The present study was aimed to assess the serum levels of iron, zinc, and copper in Gorgan and their association with the metabolic syndrome components.

Methods: The present study was carried out in the Metabolic Disorders Research Center of Gorgan Faculty of Medicine. There were 152 Type 2 diabetic subjects who were referred to the Department of Diabetes Center in 5th Azar Educational Hospital in Golestan University of Medical Sciences, Iran, 2014.

Results: The mean waist circumference, systolic blood pressure (SBP) and diastolic blood pressure (DBP), total cholesterol, triglyceride, and fasting blood glucose levels were significantly higher in the Type 2 diabetic patients with metabolic syndrome, but the mean HDL-cholesterol was significantly lower (p<0.05). Mean serum level of copper was slightly higher, and mean serum level of zinc and iron were lower in patients with metabolic syndrome than that of subjects without metabolic syndrome. There were significant differences in the mean of SBP and DBP, triglyceride, high-density lipoprotein (HDL)-cholesterol, and fasting blood glucose in men and women with metabolic syndrome when compared with subjects without metabolic syndrome. There were also significant differences in the mean of body mass index and waist circumference in women with metabolic syndrome. Serum zinc positively correlated with HDL-cholesterol level (in all and in women Type 2 diabetic patients), SBP (in all Type 2 diabetic patients), and DBP (in men Type 2 diabetic patients) (p<0.05).

Conclusion: Differences of our results with other studies emphasize further research on trace elements and metabolic syndrome and their relationship with different diseases are necessary.

Keywords: Iron, Copper, Zinc, Metabolic syndrome, Type 2 diabetic patients.

INTRODUCTION

Metabolic syndrome is explained as a cluster of risk factors, which may expose subjects to diabetes and cardiovascular diseases [1]. Differences in genetic diversities, age, and sex influence the prevalence of metabolic syndrome and its components [2]. Studies of Marjani et al. have been shown that metabolic syndrome change in different ethnic and age groups and postmenopausal women [3-7]. The trace elements such as zinc (Zn), copper (Cu), and iron (Fe) are associated with metabolic syndrome [8,9]. It has been shown that zinc level is associated with total cholesterol and low-density lipoprotein (LDL) cholesterol [8]. A study has indicated that metabolic syndrome is associated with the metabolism of zinc [9]. Some other studies have shown that the level of zinc changed in different conditions like obesity and Type 2 diabetic patients as observed in animal and human patterns [10-15]. Zinc as a trace element participates in the metabolism of proteins, carbohydrates, lipids, and nucleic acids [16,17]. Zinc deficiency may cause insulin resistance, hyperglycemia, impaired glucose tolerance [9], and the development of diabetes [18]. Studies have indicated that zinc trigger lipogenesis and glucose transport in adipocytes of rat [19] and glucose uptake in skeletal muscle of mouse [20]. There is a relationship between metabolic syndrome and insulin resistance. Another important trace element is iron. Many studies have shown that there is a link between insulin resistance and hepatic iron overload (elevated serum ferritin level) [21,22]. Some different studies have indicated that there are an association between elevated serum ferritin and serum alanine transaminase, hypertension, and myocardial infarction, respectively [23-25]. Bozzini et al. showed an association between metabolic syndrome and excess of body iron [26]. Evidence shows that the accumulation of body iron is related to the metabolic syndrome and Type 2 diabetes in general populations [27]. Studies on middle-aged or older men and of postmenopausal women have

revealed that there is an association between iron metabolism and disorders of glucose metabolism [28,29]. Many studies have indicated that higher iron stores are associated with the progress of diabetes and coronary heart disease while lower iron stores decrease the prevalence of these diseases [30,31]. Some studies have indicated mildly high levels of body iron stores are shown as a risk factor for cardiovascular disease [25,32-35]; whereas other study has shown that there was no relation between iron level and coronary heart disease [35]. It has been reported that there is an association between iron stores and risk of diabetes, hepatic damage, and cardiovascular diseases [36]. Few studies have shown an association of trace element levels in subjects with or without metabolic syndrome in different populations [37,38]. Trace elements take part in metabolism, growth, immunological, and neurological functions [39]. Copper is another essential trace element that catalyzes oxidation - reduction reactions, detoxification, transport, production, and formation reactions [40]. A study has been shown that there is a relationship between copper level and total cholesterol, LDL cholesterol, and triglyceride levels [41]. Epidemiological studies have revealed that there is a positive association between low zinc and copper levels and elevated risk of cardiovascular disease [42]. Another study has shown an association of copper, zinc, and iron levels and scope of myocardial damage [43]. The present study was aimed to assess the serum levels of zinc, iron, and copper in Gorgan (South East of Caspian Sea) and their association with the metabolic syndrome components Type 2 diabetic patients.

METHODS

The present study was carried out in the Metabolic Disorders Research Center of Gorgan Faculty of Medicine, Iran in 2014. There were 152 Type 2 diabetic subjects. All diabetic patients, aged 56.35±3.94 years who were referred to the Department of Diabetes Center (the only

Diabetes Center in Gorgan) in 5th Azar Educational Hospital in Golestan University of Medical Sciences participated in this study, 2014. Subjects with chronic liver disease, chronic renal disease, chronic and acute infections, recent acute illness, cirrhosis, hyperthyroidism, recent blood donation or transfusion, and recent intake of iron therapy were excluded. A ten ml venous blood sample was collected from all subjects after 12 hrs overnight fast. The serum fasting blood glucose, triglycerides, LDL-cholesterol, and high-density lipoprotein (HDL)-cholesterol levels were measured by commercial kit using spectrophotometer techniques (Model JENWAY 6105 UV/VIS) in the Metabolic Disorders Research Center. Weight was measured, while subjects were minimally clothed without shoes, using digital scales. Height was measured in standing position using tape meter while the shoulder was in a normal position. Body mass index (BMI) was defined as weight in kilograms divided by height in meters squared. Overweight was defined as BMI 25.0-29.9 kg/m² and obese as BMI \geq 30 kg/m² [44]. Waist circumferences were measured at the point halfway between the lower border of ribs and the iliac crest in a horizontal plane [45]. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured in sitting position on the right hand. Metabolic syndrome identified if Type 2 diabetic subjects had any three or more of the following criteria, according to the adult treatment Panel III [46]: (1) Abdominal obesity: Waist circumference >102 cm in males and >88 cm in females, (2) hypertriglyceridemia: Serum triglycerides level \geq 150 mg/dl, (3) Low HDL-cholesterol: < 40 mg/dl in males and < 50 mg/dl in females, (4) High blood pressure: SBP ≥ 130 mmHg and/or DBP ≥ 85 mmHg or on treatment for hypertension, and (5) High fasting glucose: Serum glucose level ≥110 mg/dl or on treatment for diabetes. Serum copper, iron, and zinc were determined by flame atomic absorption spectrometry (Perkin Elmer 560, Norwalk, CT, USA). The results are shown as means and standard deviations and percentages. All statistical analysis was calculated with SPSS - 16 version software. The results were evaluated by using independent sample t-test and Associations between parameters were evaluated by Spearman correlation coefficients. A p<0.05 was considered as statistically significant.

RESULTS

A total of 152 Type-2 diabetic patients were studied. The mean age of the subjects was 56.36±3.94 years. The mean duration of diabetes was 4.09±1.75 years. Table 1 shows the clinical and biochemical data of the subjects with and without the metabolic syndrome in Type 2 diabetic patients. The mean waist circumference, SBP and DBP, total cholesterol, triglyceride, and fasting blood glucose levels were significantly higher in the Type 2 diabetic patients with metabolic syndrome, but the mean HDL-cholesterol was significantly lower as (p<0.05). Mean serum level of copper was slightly higher, and mean serum level of zinc and iron were lower in patients with metabolic syndrome than that of subjects without metabolic syndrome. Table 2 shows clinical and biochemical data of Type 2 diabetic men and women with and without metabolic syndrome. There were significant differences in the mean of SBP and DBP, triglyceride, HDL-cholesterol, and fasting blood glucose in men and women with metabolic syndrome when compared with subjects without metabolic syndrome. There were also significant differences in the mean of BMI and waist circumference in women with metabolic syndrome. Mean serum level of trace elements in men and women with metabolic syndrome were not significant when compared with that of subjects without metabolic syndrome. Correlation between serum iron, zinc, and copper levels and characteristics of study subjects in Type 2 diabetic patients, in men and women with the metabolic syndrome, are summarized in Tables 3 and 4. Serum zinc positively correlated with HDL-cholesterol level (in all and in women Type 2 diabetic patients), SBP (in all Type 2 diabetic patients), and DBP (in men Type 2 diabetic patients) (p<0.05). There was no significant correlation between copper or iron and components of the metabolic syndrome and other subjects.

DISCUSSION

The aim of this study was to assess the association between metabolic syndrome and trace elements in Type 2 diabetics. Among Type 2

diabetic patients with metabolic syndrome, the mean BMI was in the range of obesity (BMI>30 kg/m²), the mean triglyceride (209 mg/dl), fasting blood glucose (181 mg/dl), and waist circumference (100 cm) were above the normal range, and the mean HDL was low (33 mg/dl). Serum triglycerides are as risk factors for ischemic heart disease [26]. It is one of the components of metabolic syndrome. We found no significant association between serum iron concentration and metabolic syndrome components. Mean fasting serum iron and zinc levels were found to be slightly lower whereas copper level was higher in Type 2 diabetic patients with metabolic syndrome than that of without metabolic syndrome. A role of iron was for the 1st time described by Sullivan in 1981. Iron stores were shown to be decreased in women after menopause in comparison with premenopausal iron stores [47]. According to our results, all subjects and women with metabolic syndrome show lower serum iron level (not significant) when compared to those without metabolic syndrome. Serum iron level was higher in men. Elevated body iron may show an important role in the development of diabetic complications. Increased body iron may cause to metabolic abnormalities, which may increase free radicals formation. These radicals can take part in oxidative damage and lead to diabetic complications development [29,31,48].

Some studies have shown that increased iron level could affect insulin synthesis and secretion in the pancreas [49,50]. Increased iron also could elevate lipid peroxidation (especially have an effect on free fatty acids) which decrease glucose consumption and activate gluconeogenesis pathway in the liver. These lead to the development of insulin resistance [49,50]. Our study demonstrates that increased serum iron in men were not significantly associated with metabolic syndrome components in Type 2 diabetic patients. Studies have shown that progressive iron accumulation in the pancreatic cell is a disorder of glucose tolerance in patients with iron overload [51]. It has been also shown that iron metabolism is related to the component of the metabolic syndrome [30] which is not in agreement with our results. There was significant no correlation between iron and the component of the metabolic syndrome, however, a significant correlation was observed between zinc and metabolic syndrome components. Many studies revealed that metabolic syndrome is associated with elevated body iron stores in Western and Eastern countries [27,30,52,53]. Recent studies on healthy Chinese women have shown that higher iron stores were associated with Type 2 diabetes [54]. Several studies have reported the association between iron stores and component of metabolic syndrome, including hypertension [25], dyslipidemia [55,56], elevated fasting insulin and blood glucose [28], and central obesity [57]. No one of these parameters was in line with our findings. Acute zinc deficiency is not frequent in diabetic patients while some studies have shown that there is a zinc deficiency in Type 2 diabetes [58-61] but some other studies were not found significant differences with healthy subjects [62,63]. Recent studies indicated decreased levels of zinc in obese, insulin-resistant subjects [64]. A decreased zinc level seems to have a relationship with elevated risk for coronary artery disease [61] and mortality [65]. Some of these studies are in agreement with our results [58-61,64]. Copper and zinc are cofactors of different antioxidant enzymes. Many studies have revealed that there are conflicting results in these trace element levels in subjects with or without metabolic syndrome [38,39,65-67]. The present study showed that serum zinc was associated with the components of metabolic syndrome. A study in Europe indicated that zinc was negatively associated with metabolic syndrome components [68]. The association between zinc and metabolic syndrome in our study are in agreement with the results of other study [68]. Serum copper was not associated with the components of metabolic syndrome in our findings. The study showed that copper was negatively associated with metabolic syndrome components [68]. The lack of association between copper and metabolic syndrome in our study subjects are in agreement with the results of other study [38,39]. Studies on Chinese men with metabolic syndrome have shown that serum zinc levels were higher in subjects with metabolic syndrome than in control group, which was different to subjects with metabolic syndrome in Western

0.001

0.005

0.074

0.001

0.001

0.007

0.001

0.044

0.001

0.225

0.001

0.443

0.506

0.147

90.68±9.63

71.00±12.23

25.36±3.17

120.0±1.48

73.44±0.97

43.51±9.55

 1.08 ± 0.62

0.96±0.21

1.26±0.34

82.44±37.93

129.34±57.81

144.68±35.51

159.37±37.16

167±0.09

Parameters Total number of subjects with Type 2 diabetes		Type 2 diabetic subjects with metabolic syndrome	Type 2 diabetic subjects without metabolic syndrome	P-value
Number of patients (%)	152 (100)	28 (18.42)	124 (81.58)	0.842
Age (years)	56.36±3.94	56.38±3.83	56.20±4.45	

100.36±11.07

75.72±13.65

30.10±13.83

133.33±1.96

176.65±53.11

33.15±9.94

1.01±0.37

0.93±0.22

 1.37 ± 0.38

92.65±48.95

181.79±77.47

79.35±1.22 209.99±87.40

160±0.12

Table 1: Clinical and biochemical data of T	vpe 2 diabetic subjects	s with and without metabolic syndrome

HDL: High-density lipoprotein, LDL: Low-density lipoprotein, BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure

Table 2: Clinical and biochemical data of Type 2 diabetic men and women with and without metabolic syndro	ome

Parameters Total number of subjects with Type 2 diabetes		Type 2 diabetic subjects with metabolic syndrome	Type 2 diabetic subjects without metabolic syndrome	p-value
Men				
Number of patients (%)	53 (100)	35 (66)	18 (34)	
Age (years)	57.33±4.31	57.33±4.31	55.81±3.64	0.869
Waist circumference (cm)	96.90±9.69	99.90±9.69	96.41±12.23	0.229
Height (cm)	170±0.08	170±0.08	157±0.11	0.562
Weight (kg)	78.20±13.49	78.20±13.49	72.98±13.18	0.272
BMI (kg/m ²)	26.77±3.62	30.77±3.62	26.53±15.37	0.084
SBP (mmHg)	133.8±1.94	133.8±1.94	129.0±1.93	0.011
DBP (mmHg)	80.1±1.09	80.1±1.09	77.1±1.25	0.040
Triglyceride (mg/dl)	189.12±79.07	202.12±79.07	189.24±86.76	0.006
Cholesterol (mg/dl)	169.61±42.43	175.61±42.43	169.43±54.96	0.258
HDL-cholesterol (mg/dl)	34.61±10.87	34.61±10.87	35.39±10.57	0.01
LDL-cholesterol (mg/dl)	87.44±44.48	92.44±44.48	87.51±48.63	0.836
Glucose (mg/dl)	182.87±81.01	182.87±81.01	165.84±74.13	0.003
Fe (mg/L)	1.03±0.38	1.07±0.38	1.02±0.67	0.745
Zn (mg/L)	0.91±0.16	0.90±0.16	0.98±0.24	0.491
Cu (mg/L)	1.17±0.29	1.27±0.29	1.49±0.41	0.844
Women				
Number of patients (%)	99 (100)	89 (89.9)	10 (10.10)	
Age (years)	55.81±3.64	56.04±3.69	53.80±2.44	0.749
Waist circumference (cm)	99.41±12.23	101.25±11.14	83.00±9.06	0.001
Height (cm)	157±0.11	157±0.11	158±0.06	0.579
Weight (kg)	72.98±13.18	74.20±13.06	62.20±8.94	0.002
BMI (kg/m ²)	30.53±15.37	31.18±16.05	24.75±3.39	0.002
SBP (mmHg)	129.0±1.93	131.3±1.89	109.0±0.99	0.001
DBP (mmHg)	77.1±1.25	78.2±1.24	68.0±0.91	0.007
Triglyceride (mg/dl)	202.24±86.76	209.79±88.14	135.00±20.52	0.009
Cholesterol (mg/dl)	175.43±54.96	177.55±56.66	156.60±32.59	0.098
HDL-cholesterol (mg/dl)	35.39±10.57	34.49±10.44	43.40±8.54	0.010
LDL-cholesterol (mg/dl)	92.51±48.63	94.37±49.92	76.10±32.63	0.137
Glucose (mg/dl)	165.84±74.13	172.22±73.77	109.10±51.48	0.004
Fe (mg/L)	1.02±0.67	1.01±0.69	1.10±0.41	0.422
Zn (mg/L)	0.95±0.24	0.99±0.23	1.11±0.25	0.073
Cu (mg/L)	1.39±0.41	1.41±0.42	1.34±0.24	0.141

HDL: High-density lipoprotein, LDL: Low-density lipoprotein, BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure

countries [69]. The same study showed that serum Zn and Zn/Cu were elevated in metabolic syndrome when compared to subjects without metabolic syndrome.

Waist circumference (cm)

Height (cm)

Weight (kg)

BMI (kg/m²)

SBP (mmHg)

DBP (mmHg)

Triglyceride (mg/dl)

Cholesterol (mg/dl)

Glucose (mg/dl)

Fe (mg/L)

Zn (mg/L)

Cu (mg/L)

HDL-cholesterol (mg/dl)

LDL-cholesterol (mg/dl)

98.52±11.43

162±0.11

74.83±0.38

29.20±12.65

130.78±19.48

78.23±12.03

197.61±84.10

173.37±50.82

35.11±10.65

90.71±47.11

1.03±0.58

0.94±0.22

 1.35 ± 0.38

171.85±76.80

Serum Zn levels were positively correlated with SBP and DBP [69]. Another study has indicated that Zn and Zn/Cu were increased in study model of a rat with hypertension and low level of serum Cu [70]. On the other hand, their conclusion showed that an increased Zn and decreased Cu may be involved in higher blood pressure. Some studies have shown that there were no association between copper or zinc and metabolic syndrome in both genders [67,71]. Our findings showed that serum levels of zinc decreased in all, men and women Type 2 diabetic patients, which are in agreement with other studies [69-71]. In our study, the correlation between serum copper and metabolic syndrome components was not seen to reach significant value. In inconsistent to our study, a study indicated that the level of serum copper correlated negatively with total and LDL cholesterol [72]. Studies have shown that small weight loss normalizes the plasma zinc and decreases risk factors

Table 3: Correlation between serum iron, zinc, and copper levels
and components of metabolic syndrome

Parameters	Iron		Zinc		Copper	
	r	Р	r	Р	r	Р
Glucose	-0.131	0.148	-0.024	0.789	-0.026	0.778
Triglyceride	-0.111	0.221	0.058	0.525	-0.125	0.167
Cholesterol	0.010	0.915	-0.048	0.597	0.013	0.889
HDL-cholesterol	-0.137	0.128	0.236	0.008	-0.034	0.708
LDL-cholesterol	0.068	0.456	-0.069	0.446	0.048	0.595
Waist	0.054	0.555	-0.076	0.399	0.116	0.201
circumference						
SBP	0.073	0.422	0.184	0.041	0.071	0.431
DBP	0.068	0.454	0.112	0.216	-0.063	0.484
BMI	0.024	0.788	-0.052	0.563	0.026	0.777

HDL: High-density lipoprotein, LDL: Low-density lipoprotein, BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure

Table 4: Correlation between serum iron, zinc, and copper levels and characteristics of study subjects in men and women with metabolic syndrome

Parameters	Iron		Zinc		Copper	
	r	р	r	р	r	р
Men						
Glucose	-0.258	0.135	-0.119	0.496	0.052	0.768
Triglyceride	-0.264	0.125	0.138	0.430	-0.327	0.055
Cholesterol	-0.127	0.467	0.106	0.544	0.039	0.825
HDL-cholesterol	-0.092	0.600	0.105	0.547	-0.262	0.128
LDL-cholesterol	-0.048	0.782	0.099	0.570	0.161	0.354
Waist circumference	-0.053	0.763	-0.088	0.617	0.138	0.428
SBP	0.134	0.441	0.307	0.073	0.319	0.062
DBP	0.199	0.251	0.408	0.015	0.175	0.314
BMI	0.071	0.686	-0.144	0.408	0.099	0.570
Women						
Glucose	-0.110	0.306	0.011	0.919	-0.006	0.958
Triglyceride	-0.080	0.458	0.037	0.733	-0.089	0.408
Cholesterol	0.033	0.756	-0.081	0.448	0.004	0.971
HDL-cholesterol	-0.148	0.167	0.262	0.013	-0.041	0.706
LDL-cholesterol	0.094	0.382	-0.116	0.283	0.018	0.870
Waist circumference	0.079	0.461	-0.079	0.459	0.093	0.388
SBP	0.061	0.573	0.160	0.134	0.053	0.623
DBP	0.042	0.695	0.045	0.677	-0.083	0.438
BMI	0.023	0.827	-0.053	0.624	0.002	0.982

HDL: High-density lipoprotein, LDL: Low-density lipoprotein, BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure

for metabolic syndrome. [73]. Low plasma zinc levels were indicated in obese [62,63], Type 2 diabetic [18], and obese-Type 2 diabetic subjects [15,70]. A study found that there was no statistical correlation between plasma zinc and metabolic syndrome components [74]. In this study, decrease in serum zinc in patients with metabolic syndrome was shown to be negatively correlated with HDL and blood pressure.

CONCLUSION

The results of the study show that only the concentration of zinc affected by HDL, SBP, and DBP as components of the metabolic syndrome, respectively. There is no relationship between copper and iron concentration and metabolic syndrome components. Differences of our results with other studies emphasize on further researches on trace elements and metabolic syndrome and their relationship with different diseases.

ACKNOWLEDGMENTS

We thank to the Research Deputy of Golestan University of Medical Sciences and type 2 diabetic patients for doing the present study possible.

REFERENCES

- Day C. Metabolic syndrome, or what you will: Definitions and epidemiology. Diab Vasc Dis Res 2007;4(1):32-8.
- Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: Prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004;33(2):351-75.
- Marjani A, Hezarkhani S, Shahini N. Prevalence of metabolic syndrome among fars ethnic Women in north east of Iran. World J Med Sci 2012;7(1):17-22.
- Shahini N, Shahini I, Marjani A. Prevalence of metabolic syndrome in Turkmen ethnic groups in gorgan. J Clin Diagn Res 2013;7(9):1849-51.
- Marjani A, Shahini N, AghAtabay O, GhiyasTabari R. Prevalence of metabolic syndrome among sistance ethnic women. Adv Stud Biol 2012;8(4):363-72.
- Marjani A, Shahini N. Age related metabolic syndrome among Fars ethnic women in Gorgan, Iran. J Pharm Biomed Sci 2013;30(30):929-35.
- 7. Marjani A, Moghasemi S. The Metabolic Syndrome among Postmenopausal Women in Gorgan. Int J Endocrinol 2012;2012:953627.
- Aguilar MV, Saavedra P, Arrieta FJ, Mateos CJ, González MJ, Meseguer I, *et al.* Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndrome. Ann Nutr Metab 2007;51(5):402-6.
- Song CH, Choi WS, Oh HJ, Kim KS. Associations of serum minerals with body mass index in adult women. Eur J Clin Nutr 2007;61(5):682-5.
- Hughes S, Samman S. The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J Am Coll Nutr 2006;25(4):285-91.
- Tallman DL, Taylor CG. Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice. J Nutr Biochem 2003;14(1):17-23.
- Chen MD, Lin PY, Cheng V, Lin WH. Zinc supplementation aggravates body fat accumulation in genetically obese mice and dietary-obese mice. Biol Trace Elem Res 1996;52(2):125-32.
- Blonstein-Fujji A, DiSilvestro R, Frid D, Katz C, Malarkey W. Shortterm zinc plasma 5'-nucleosidase activities, insulin-like growth factor1 concentrations and lipoprotein oxidation rates *in vitro*. Am J Clin Nutr 1997;66:639-42.
- Simon SF, Taylor CG. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood) 2001;226(1):43-51.
- Konukoglu D, Turhan MS, Ercan M, Serin O. Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patients. J Nutr Biochem 2004;15(12):757-60.
- Di Toro A, Marotta A, Todisco N, Ponticiello E, Collini R, Di Lascio R, et al. Unchanged iron and copper and increased zinc in the blood of obese children after two hypocaloric diets. Biol Trace Elem Res 1997;57(2):97-104.
- Marreiro DN, Fisberg M, Cozzolino SM. Zinc nutritional status and its relationships with hyperinsulinemia in obese children and adolescents. Biol Trace Elem Res 2004;100(2):137-49.
- Song Y, Wang J, Li XK, Cai L. Zinc and the diabetic heart. Biometals 2005;18(4):325-32.
- Kechrid Z, Bouzerna N. Effect of zinc deficiency and experimental diabetes on glutamate oxaloacetate, glutamate pyruvate aminotransferases and alkaline phosphatase activities in rats. Int J Diabetes Metab 2004;12(1-2):14-8.
- Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: Insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 2002;295(1):102-6.
- Miranda ER, Dey CS. Effect of chromium and zinc on insulin signaling in skeletal muscle cells. Biol Trace Elem Res 2004;101(1):19-36.
- Dandona P, Hussain MA, Varghese Z, Politis D, Flynn DM, Hoffbrand AV. Insulin resistance and iron overload. Ann Clin Biochem 1983:20:77-9.
- Piperno A. Classification and diagnosis of iron overload. Haematologica 1998;83(5):447-55.
- Ford ES, Cogswell ME. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 1999;22(12):1978-83.
- Piperno A, Trombini P, Gelosa M, Mauri V, Pecci V, Vergani A, *et al.* Increased serum ferritin is common in men with essential hypertension. J Hypertens 2002;20(8):1513-8.
- 26. Salonen JT, Nyyssönen K, Korpela H, Tuomilehto J, Seppänen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 1992;86(3):803-11.

- Bozzini C, Girelli D, Olivieri O, Martinelli N, Bassi A, De Matteis G, et al. Prevalence of body iron excess in the metabolic syndrome. Diabetes Care 2005;28(8):2061-3.
- Tuomainen TP, Nyyssönen K, Salonen R, Tervahauta A, Korpela H, Lakka T, *et al.* Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. Diabetes Care 1997;20(3):426-8.
- 29. Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes 2002;51(8):2348-54.
- Jehn M, Clark JM, Guallar E. Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 2004;27(10):2422-8.
- Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988;5(2):113-24.
- Sullivan JL. Iron therapy and cardiovascular disease. Kidney Int Suppl 1999;69:S135-7.
- Kiechl S, Willeit J, Egger G, Poewe W, Oberhollenzer F. Body iron stores and the risk of carotid atherosclerosis: Prospective results from the Bruneck study. Circulation 1997;96(10):3300-7.
- Tuomainen TP, Punnonen K, Nyyssönen K, Salonen JT. Association between body iron stores and the risk of acute myocardial infarction in men. Circulation 1998;97(15):1461-6.
- Reunanen A, Takkunen H, Knekt P, Seppänen R, Aromaa A. Body iron stores, dietary iron intake and coronary heart disease mortality. J Intern Med 1995;238(3):223-30.
- Danesh J, Appleby P. Coronary heart disease and iron status: Metaanalyses of prospective studies. Circulation 1999;99(7):852-4.
- Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: A promising therapeutic target. J Hepatol 2011;55(4):920-32.
- Czernichow S, Vergnaud AC, Galan P, Arnaud J, Favier A, Faure H, et al. Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. Am J Clin Nutr 2009;90(2):329-35.
- 39. Ghayour-Mobarhan M, Shapouri-Moghaddam A, Azimi-Nezhad M, Esmaeili H, Parizadeh SM, Safarian M, *et al.* The relationship between established coronary risk factors and serum copper and zinc concentrations in a large Persian cohort. J Trace Elem Med Biol 2009;23(3):167-75.
- Castillo-Durán C, Cassorla F. Trace minerals in human growth and development. J Pediatr Endocrinol Metab 1999;12 5 Suppl 2:589-601.
- Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans. Am J Clin Nutr 1998;67 5 Suppl:952S-59.
- 42. Abiaka C, Olusi S, Al-Awadhi A. Reference ranges of copper and zinc and the prevalence of their deficiencies in an Arab population aged 15-80 years. Biol Trace Elem Res 2003;91(1):33-43.
- Reunanen A, Knekt P, Marniemi J, Mäki J, Maatela J, Aromaa A. Serum calcium, magnesium, copper and zinc and risk of cardiovascular death. Eur J Clin Nutr 1996;50(7):431-7.
- 44. Altekin E, Coker C, Sisman AR, Onvural B, Kuralay F, Kirimli O. The relationship between trace elements and cardiac markers in acute coronary syndromes. J Trace Elem Med Biol 2005;18(3):235-42.
- Organization WH. Preventing and Managing the Global Epidemic Report of a WHO Consultation on Obesity. Geneva: World Health Organization; 1997.
- 46. D'Agostino RB Sr, Grundy S, Sullivan LM, Wilson P, CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001;286(2):180-7.
- Sullivan JL. Iron and the sex difference in heart disease risk. Lancet 1981 13;1:1293-4.
- Wolff SP. Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 1993;49(3):642-52.
- Felber JP, Ferrannini E, Golay A, Meyer HU, Theibaud D, Curchod B, et al. Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes 1987;36(11):1341-50.
- DeFronzo RA. Lilly lecture 1987. The triumvirate: Beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988;37(6):667-87.
- Dymock IW, Cassar J, Pyke DA, Oakley WG, Williams R. Observations on the pathogenesis, complications and treatment of diabetes in 115 cases of haemochromatosis. Am J Med 1972;52(2):203-10.
- Wrede CE, Buettner R, Bollheimer LC, Schölmerich J, Palitzsch KD, Hellerbrand C. Association between serum ferritin and the insulin resistance syndrome in a representative population. Eur J Endocrinol 2006;154(2):333-40.
- 53. Kim CH, Kim HK, Bae SJ, Park JY, Lee KU. Association of elevated serum ferritin concentration with insulin resistance and impaired

glucose metabolism in Korean men and women. Metabolism 2011;60(3):414-20.

- Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 2004;291(6):711-7.
- Halle M, König D, Berg A, Keul J, Baumstark MW. Relationship of serum ferritin concentrations with metabolic cardiovascular risk factors in men without evidence for coronary artery disease. Atherosclerosis 1997;128(2):235-40.
- Williams MJ, Poulton R, Williams S. Relationship of serum ferritin with cardiovascular risk factors and inflammation in young men and women. Atherosclerosis 2002;165(1):179-84.
- 57. Gillum RF. Association of serum ferritin and indices of body fat distribution and obesity in Mexican American men – The third National health and nutrition examination survey. Int J Obes Relat Metab Disord 2001;25(5):639-45.
- Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, et al. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 2008;122(1):1-18.
- Afridi HI, Kazi TG, Kazi N, Baig JA, Jamali MK, Arain MB, et al. Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet 2009;280(3):415-23.
- 60. Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr 1998;17(6):564-70.
- Viktorínová A, Toserová E, Krizko M, Duracková Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism 2009;58(10):1477-82.
- 62. Serdar MA, Bakir F, Hasimi A, Celik T, Akin O, Kenar L, *et al.* Trace and toxic element patterns in nonsmoker patients with noninsulindependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Ctries 2009;29(1):35-40.
- 63. Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, et al. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J 1998;74(877):665-8.
- 64. Suliburska J, Bogdanski P, Pupek-Musialik D, Krejpcio Z. Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res 2011;139(2):137-50.
- Soinio M, Marniemi J, Laakso M, Pyörälä K, Lehto S, Rönnemaa T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 2007;30(3):523-8.
- Ford ES, Mokdad AH, Giles WH, Brown DW. The metabolic syndrome and antioxidant concentrations: Findings from the Third National Health and Nutrition Examination Survey. Diabetes 2003;52(9):2346-52.
- 67. Ghayour-Mobarhan M, Taylor A, Lanham-New S, Lamb DJ, Nezhad MA, Kazemi-Bajestani SM, *et al.* Serum selenium and glutathione peroxidase in patients with obesity and metabolic syndrome. Pak J Nutr 2008;7(1):112-7.
- Arnaud J, de Lorgeril M, Akbaraly T, Salen P, Arnout J, Cappuccio FP, et al. Gender differences in copper, zinc and selenium status in diabeticfree metabolic syndrome European population - the IMMIDIET study. Nutr Metab Cardiovasc Dis 2012;22(6):517-24.
- 69. Yu Y, Cai Z, Zheng J, Chen J, Zhang X, Huang XF, et al. Serum levels of polyunsaturated fatty acids are low in Chinese men with metabolic syndrome, whereas serum levels of saturated fatty acids, zinc, and magnesium are high. Nutr Res 2012;32(2):71-7.
- Loyke HF. Copper and zinc in experimental hypertension. Biol Trace Elem Res 1991;29(1):45-9.
- Díaz Romero C, Henríquez Sánchez P, López Blanco F, Rodríguez Rodríguez E, Serra Majem L. Serum copper and zinc concentrations in a representative sample of the Canarian population. J Trace Elem Med Biol 2002;16(2):75-81.
- Lima SC, Arrais RF, Sales CH, Almeida MG, de Sena KC, Oliveira VT, et al. Assessment of copper and lipid profile in obese children and adolescents. Biol Trace Elem Res 2006;114(1-3):19-29.
- 73. Voruganti VS, Cai G, Klohe DM, Jordan KC, Lane MA, Freeland-Graves JH. Short-term weight loss in overweight/obese low-income women improves plasma zinc and metabolic syndrome risk factors. J Trace Elem Med Biol 2010;24(4):271-6.
- 74. Obeid O, Elfakhani M, Hlais S, Iskandar M, Batal M, Mouneimne Y, *et al.* Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res 2008;123(1-3):58-65.