ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH



# AUDIT OF USFDA APPROVALS FOR 2022 FROM THE PERSPECTIVE OF INNOVATION

## RAJESH DASARAJU<sup>1</sup><sup>(b)</sup>, PATIL BAPUGOUDA<sup>2</sup><sup>(b)</sup>, MANOHAR BENDE<sup>3</sup>, ASHUTOSH MANGALGIRI<sup>4</sup>, THEJASWINI MUPPALA<sup>5</sup>\*<sup>(b)</sup>

<sup>1</sup>Department of Pharmacology, Chirayu Medical College and Hospital, Bhopal, Madhya Pradesh, India. <sup>2</sup>Department of Pharmacology, Shri. B.M. Patil Medical College, Hospital and Research Centre, Vijayapura, Karnataka, India. <sup>3</sup>Dean, Chirayu Medical College and Hospital, Bhopal, Madhya Pradesh, India. <sup>4</sup>Medical Director, Chirayu Medical College and Hospital, Bhopal, Madhya Pradesh, India. <sup>5</sup>Central Laboratory Director, Chirayu Medical College and Hospital, Bhopal, Madhya Pradesh, India. Email: drtheja89@gmail.com

# Received: 06 February 2023, Revised and Accepted: 25 March 2023

### ABSTRACT

**Objectives:** The United States of America (USA) is having a unique place in global innovation within the health-care sector due to the presence of a large number of research-oriented biopharmaceutical companies, contract research organizations, and government research agencies. The aim of this study was to analyze the U.S. Food and Drug Administration (USFDA) approvals for 2022 to increase the awareness among health-care professionals for better clinical decisions.

**Methods:** This was an observational study conducted using online database of USFDA which is accessible freely by the public. The USFDA approvals for 2022 were assessed for new molecular entities (NMEs) including their source and therapeutic area, new indications (NIs) of previously approved drugs, new label extensions (NLEs) of previously approved drugs, new routes of administration (NRAs) of previously approved drugs, and new dosage forms (NDFs) of previously approved drugs. The data obtained were arranged in the tabular form using Microsoft Office Excel 2007. Descriptive statistics was used for analysis.

**Results:** Out of 118 USFDA approvals considered for this study, 25.4% of them were given for NMEs, 27.9% approvals were given for NIs, 33.8% approvals were given for NLEs, 6.7% approvals were given for NRAs, and the remaining 5.9% approvals were given for NDFs. 14 out of 30 NMEs were biologicals and 43.3% of NMEs were indicated for different types of cancer.

**Conclusion:** The USFDA continued to adopt several approaches such as Fast Track process, breakthrough therapy process, accelerated approval process, and priority review process to encourage the research-based biopharmaceutical companies involved in the development of therapeutic options for patients suffering from common as well as rare diseases. More emphasis was given to the approvals of anticancer drugs given the limited options available to treat the cancer in advanced or metastatic stages. However, a lack of discovery and development of antimicrobials with novel mechanism of actions to combat resistance is a cause of concern.

Keywords: Innovative research, New Molecular Entities, USFDA, Healthcare Professionals.

© 2023 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2023v16i7.47509. Journal homepage: https://innovareacademics.in/journals/index.php/ajpcr

### INTRODUCTION

Clinical research is a branch of medical science related to the effectiveness and testing of medications, diagnostic products, medical devices, and treatment procedures for human use [1]. Innovative clinical research aims to find a solution to unanswered questions arising in clinical practice and in doing so involves the participation of animals/human beings as the experimental tool [2]. Few examples of innovative clinical research include gene therapy (Etranacogene Dezaparvovec-drlb) for the treatment of adults with hemophilia B and monoclonal antibody (Teplizumab-mzwv) to delay the onset of Stage 3 type 1 diabetes (T1D). [3,4]. Innovative clinical research also implies to clinical trials conducted to find out new indication or new route of administration or new dosage of already permitted drug formulation [2]. An example of this type is development of sublingual film of Dexmedetomidine for acute treatment of schizophrenia or bipolar disorder-associated agitation.

Innovative clinical research is usually carried out by pharmaceutical companies, contract research organizations, and government research agencies. The United States of America (USA) is having a unique place in global innovation within the health-care sector due to the presence of a large number of these establishments. It has a large number of clinical trials registered than any other country in the world [5]. The U.S. Food and Drug Administration (USFDA's) Center for Drug Evaluation and Research (CDER) is responsible for approving new

molecular entities and new therapeutic biological products before selling them by the pharmaceutical companies for their intended use in patients [6]. The Center for Biologics Evaluation and Research (CBER) of USFDA is responsible for approving the vaccines, blood and blood products, plasma derivatives, cellular and gene therapy products, etc. [7].

The CDER and CBER scrutinize everything about the drug from the study design of clinical trials to the safety and finally to the manufacturing practices to make appropriate decisions. They ensure that the medicinal products work correctly and that their health benefits outweigh known risks. These agencies also adopt several approaches such as Fast Track process, Breakthrough Therapy process, Accelerated Approval process, and Priority Review process to expedite the development of drugs that are either intended to treat patients with a life-threatening disease (for which no other therapy exists) or may demonstrate substantial improvement over available therapy [8].

Starting from suggesting various screening tests to detect health problems to follow-up management of chronic conditions such as asthma, hypertension, diabetes, and depression, primary care physician acts as a point of first contact for any medical problem that is not an emergency [9]. Due to their significant contribution in health-care sector, knowledge of recent drug approvals and new indications of the already approved drugs is necessary to make better clinical care decisions.

Given the context, this study has been taken to analyze the USFDA approvals for 2022 to increase the awareness among health-care professionals.

### METHODS

It is an observational study based on the data collected from online database of USFDA which is available freely to the public [6,7]. The USFDA approvals for 2022 were assessed for,

- New Molecular Entities (NMEs) including their source and therapeutic area
- 2. New Indications (NIs) of previously approved drugs
- 3. New Label Extensions (NLEs) of previously approved drugs
- 4. New Routes of Administration (NRAs) of previously approved drugs
- 5. New Dosage Forms (NDFs) of previously approved drugs

### **Exclusion criteria**

- 1. Approvals received from other countries before USFDA
- 2. Vaccines, plasma-derived biologics, and diagnostic agents approved by the USFDA
- 3. NMEs receiving emergency use authorization (EUA) from the USFDA

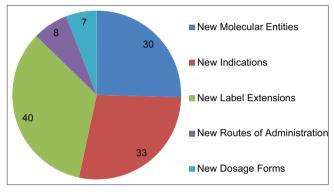



Fig. 1: Different types of USFDA approvals in 2022

### Statistical analysis

Microsoft Office Excel 2007 was used for tabulation and analysis. Descriptive statistics was used for analysis.

### RESULTS

A total of 118 different types of USFDA approvals for the year 2022 were considered for this study based on the predetermined methodology. Out of these, 25.4% of the approvals were given for NMEs, 27.9% approvals were given for NIs, 33.8% approvals were given for NLEs, 6.7% approvals were given for NRAs, and the remaining 5.9% approvals were given for NDFs (Fig. 1 and Tables 1-5).

Whereas out of 30 new molecular entities approved during 2022, 14 were biological and the remaining 16 were synthetic drugs. Considering the therapeutic area of approved new molecular entities, 43.3% were indicated for different types of cancer, 13.3% for neurological disorders, 10% for hematological disorders, 10% for dermatological disorders, 6.6% for endocrine disorders, and 6.6% for infectious diseases. With 3.3% each, NMEs for cardiovascular, ophthalmic, and cosmetic problems were least in number (Table 1).

### DISCUSSION

The increasing trend of biopharmaceutical companies focusing on the discovery, development, and commercialization of biologics is clearly seen based on our analysis. The year 2022 has witnessed the authorization of a large number of novel drugs, similar to previous years [10-12]. Noted breakthroughs for 2022 include gene therapies for the management of bladder cancer (Nadofaragene Firadenovec-vncg), relapsed or refractory multiple myeloma (Ciltacabtagene Autoleucel) and hemophilia B (Etranacogene Dezaparvovec-drlb). Among them, gene therapy for hemophilia B is considered a significant milestone as it allows patients to produce their own factor IX, which can lower the risk of bleeding, and thereby replacing the present lifelong infusion schedules of exogenous factor IX [3]. Another groundbreaking drug approved in

#### Table 1: New molecular entities approved in 2022

| Trade name  | Active ingredient                      | Indications                                             | Source     | Therapeutic area    |
|-------------|----------------------------------------|---------------------------------------------------------|------------|---------------------|
| Adstiladrin | Nadofaragene Firadenovec-vncg          | Bladder cancer                                          | Biological | Oncology            |
| Amvuttra    | Vutrisiran                             | Amyloidosis                                             | Synthetic  | Neurology           |
| Briumvi     | Ublituximab-xiiy                       | Relapsed multiple sclerosis                             | Biological | Neurology           |
| Camzyos     | Mavacamten                             | Obstructive hypertrophic cardiomyopathy                 | Synthetic  | Cardiology          |
| Carvykti    | Ciltacabtagene autoleucel              | Relapsed or refractory multiple myeloma                 | Biological | Oncology            |
| Daxxify     | DaxibotulinumtoxinA-lanm               | Glabellar lines                                         | Biological | Cosmetology         |
| Elahere     | Mirvetuximab soravtansine-gynx         | Platinum-resistant ovarian cancer                       | Biological | Oncology            |
| Enjaymo     | Sutimlimab-jome                        | Cold agglutinin disease                                 | Biological | Hematology          |
| Hemgenix    | Etranacogene dezaparvovec-drlb         | Hemophilia B                                            | Biological | Hematology          |
| Imjudo      | Tremelimumab                           | Unresectable hepatocellular carcinoma                   | Biological | Oncology            |
| Kimmtrak    | Tebentafusp-tebn                       | Metastatic uveal melanoma                               | Synthetic  | Oncology            |
| Krazati     | Adagrasib                              | Metastatic nonsmall cell lung cancer                    | Synthetic  | Oncology            |
| Lunsumio    | Mosunetuzumab-axgb                     | Relapsed or refractory follicular lymphoma              | Biological | Oncology            |
| Lytgobi     | Futibatinib                            | Metastatic cholangiocarcinoma                           | Synthetic  | Oncology            |
| Mounjaro    | Tirzepatide                            | Type 2 diabetes                                         | Synthetic  | Endocrinology       |
| Opdualag    | Relatlimab-rmbw                        | Metastatic melanoma                                     | Biological | Oncology            |
| Pluvicto    | Lutetium (177Lu) vipivotide tetraxetan | Metastatic prostatic cancer                             | Synthetic  | Oncology            |
| Pyrukynd    | Mitapivat                              | Pyruvate kinase deficiency                              | Synthetic  | Hematology          |
| Quviviq     | Daridorexant                           | Insomnia                                                | Synthetic  | Neurology           |
| Rebyota     | Fecal microbiota, live-jslm            | Reduce recurrence of Clostridioides difficile infection | Biological | Infectious diseases |
| Rezlidhia   | Olutasidenib                           | Relapsed or refractory acute myeloid leukemia           | Synthetic  | Oncology            |
| Rolvedon    | Eflapegrastim                          | Chemotherapy induced neutropenia                        | Synthetic  | Oncology            |
| Sotyktu     | Deucravacitinib                        | Plaque psoriasis                                        | Synthetic  | Dermatology         |
| Spevigo     | Spesolimab-sbzo                        | Pustular psoriasis                                      | Biological | Dermatology         |
| Tzield      | Teplizumab-mzwv                        | Type 1 diabetes                                         | Biological | Endocrinology       |
| Vabysmo     | Faricimab-svoa                         | Wet age-related macular                                 | Biological | Ophthalmology       |
|             |                                        | degeneration and diabetic macular oedema                |            |                     |
| Vivjoa      | Oteseconazole                          | Reduce recurrence of vulvovaginal candidiasis           | Synthetic  | Infectious diseases |
| Vonjo       | Pacritinib                             | Myelofibrosis                                           | Synthetic  | Oncology            |
| Vtama       | Tapinarof                              | Plaque psoriasis                                        | Synthetic  | Dermatology         |
| Ztalmy      | Ganaxolone                             | Cyclin-dependent kinase-like 5 deficiency disorder      | Synthetic  | Neurology           |

| Trade name | Active ingredient                             | New indications                                                             |
|------------|-----------------------------------------------|-----------------------------------------------------------------------------|
| Actemra    | Tocilizumab                                   | Hospitalized COVID-19 patients                                              |
| Auvelity   | Dextromethorphan + bupropion                  | Major depressive disorder                                                   |
| Beovu      | Brolucizumab                                  | Diabetic macular edema                                                      |
| Dupixent   | Dupilumab                                     | Eosinophilic esophagitis                                                    |
|            |                                               | Prurigo nodularis                                                           |
| Enhertu    | Trastuzumab deruxtecan                        | HER2-mutant metastatic nonsmall cell lung cancer                            |
| Fintepla   | Fenfluramine                                  | Lennox-gastaut syndrome                                                     |
| Imfinzi    | Durvalumab                                    | Advanced biliary tract cancer in combination with gemcitabine and cisplatin |
|            |                                               | Unresectable hepatocellular carcinoma in combination with tremelimumab      |
| Keytruda   | Pembrolizumab                                 | Advanced endometrial carcinoma                                              |
| Krystexxa  | Pegloticase                                   | Uncontrolled gout in combination with methotrexate                          |
| Kymriah    | Tisagenlecleucel                              | Relapsed or refractory follicular lymphoma                                  |
| Linparza   | Olaparib                                      | Germline BRCA-mutated HER2-negative high-risk early breast cancer           |
| Libtayo    | Cemiplimab-rwlc                               | Advanced nonsmall cell lung cancer                                          |
| Myfembree  | Relugolix + estradiol + norethindrone acetate | Moderate to severe pain associated with endometriosis                       |
| Olumiant   | Baricitinib                                   | Hospitalized COVID-19 patients                                              |
|            |                                               | Alopecia areata                                                             |
| Opdivo     | Nivolumab                                     | Resectable nonsmall cell lung cancer                                        |
| Opzelura   | Ruxolitinib                                   | Vitiligo                                                                    |
| Pedmark    | Sodium thiosulfate                            | Cisplatin induced ototoxicity                                               |
| Pemazyre   | Pemigatinib                                   | Myeloid/lymphoid neoplasms with FGFR1 rearrangement                         |
| Retevmo    | Selpercatinib                                 | Metastatic solid tumors with RET gene fusion                                |
| Rinvoq     | Upadacitinib                                  | Moderate to severe atopic dermatitis                                        |
|            |                                               | Moderate to severe ulcerative colitis                                       |
|            |                                               | Active ankylosing spondylitis                                               |
| Skyrizi    | Risankizumab                                  | Moderate to severe crohn's disease                                          |
| Tafinlar   | Dabrafenib                                    | BRAF V600E solid tumors in combination with trametinib                      |
| Tecentriq  | Atezolizumab                                  | Advanced alveolar soft part sarcoma                                         |
| Terlivaz   | Terlipressin                                  | Hepatorenal syndrome                                                        |
| Ultomiris  | Ravulizumab                                   | Myasthenia gravis                                                           |
| Vijoice    | Alpelisib                                     | PIK3CA-related overgrowth spectrum                                          |
| Vonvendi   | Von willebrand factor                         | Severe type 3 von willebrand disease                                        |
| Vraylar    | Cariprazine                                   | Major depressive disorder                                                   |
| Xalkori    | Crizotinib                                    | ALK-positive inflammatory myofibroblastic tumors                            |

### Table 2: New indications of previously approved drugs in 2022

HER2: Human epidermal growth factor receptor 2, RET: Rearranged during transfection, BRCA: Breast cancer gene, ALK: Anaplastic lymphoma kinase, FGFR1: Fibroblast growth factor receptor 1

| Table 3: New label extensions | of previously approved | drugs in 2022 |
|-------------------------------|------------------------|---------------|
|-------------------------------|------------------------|---------------|

| Trade name | Active ingredient         | New label extensions                                                                           |
|------------|---------------------------|------------------------------------------------------------------------------------------------|
| Adcetris   | Brentuximab vedotin       | Untreated high risk classical hodgkin lymphoma in children aged 2 years and older              |
| Benlysta   | Belimumab                 | Active lupus nephritis in children aged 5–17 years                                             |
| Brexafemme | Ibrexafungerp             | Reduction of recurrent vulvovaginal candidiasis                                                |
| Breyanzi   | Lisocabtagene maraleucel  | Large B-cell lymphoma patients                                                                 |
|            |                           | Refractory to/relapsed after first-line chemoimmunotherapy                                     |
|            |                           | Not eligible for hematopoietic stem cell transplant due to comorbidities or age                |
| Cabenuva   | Cabotegravir, rilpivirine | Once-in-2-month dosing for virologically suppressed HIV-1 in adults                            |
|            |                           | Optional "Oral Lead-In" with cabotegravir and rilpivirine tablets before starting parenteral   |
|            |                           | formulation                                                                                    |
| Caplyta    | Lumateperone              | Dose reduction with                                                                            |
|            | *                         | Moderate to strong CYP3A4 inhibitors                                                           |
|            |                           | Moderate to severe hepatic impairment                                                          |
| CellCept   | Mycophenolate mofetil     | Prophylaxis of organ rejection in pediatric recipients of allogenic heart and allogeneic liver |
|            | 5                         | transplants aged 3 months and older                                                            |
| Dupixent   | Dupilumab                 | Moderate to severe atopic dermatitis in children aged 6 months–5 years                         |
| Enĥertu    | Trastuzumab deruxtecan    | Metastatic HER2-positive breast cancer patients                                                |
|            |                           | Metastatic HER2-low breast cancer                                                              |
| Evrysdi    | Risdiplam                 | Spinal muscular atrophy in infants under 2 months old                                          |
| Firdapse   | Amifampridine             | Lambert-eaton myasthenic syndrome in children aged 6 years and older                           |
| Imbruvica  | Ibrutinib                 | Chronic graft-versus-host disease in children aged 1 year and older                            |
| Imcivree   | Setmelanotide             | Obesity in children aged 6 years and older with bardet-biedl syndrome                          |
| Imfinzi    | Durvalumab                | Stage IV (metastatic) nonsmall cell lung cancer in combination with                            |
|            |                           | tremelimumab plus platinum-based chemotherapy                                                  |
| Jardiance  | Empagliflozin             | Management of heart failure in adults regardless of left ventricular ejection fraction         |
| Mirena     | Levonorgestrel            | Prevent pregnancy up to 8 years                                                                |
| Nubeqa     | Darolutamide              | mHSPC in combination with docetaxel                                                            |
| Opdivo     | Nivolumab                 | First-line treatment of metastatic esophageal squamous cell carcinoma                          |
|            |                           | In combination with fluoropyrimidine- and platinum-containing chemotherapy (or)                |
|            |                           | In combination with ipilimumab                                                                 |

#### Table 3: (Continued)

| Trade name | Active ingredient                    | New label extensions                                                                      |
|------------|--------------------------------------|-------------------------------------------------------------------------------------------|
| Orkambi    | Lumacaftor + ivacaftor               | Cystic fibrosis in children aged 12–<24 months                                            |
| Oxlumo     | Lumasiran                            | Primary hyperoxaluria type 1 to lower plasma oxalate levels in patients with severe renal |
|            |                                      | impairment, including those on hemodialysis                                               |
| Qelbree    | Viloxazine                           | Attention deficit hyperactivity disorder in adult patients aged 18 and older              |
| Qsymia     | Phentermine + topiramate             | Obesity in children aged 12 years and older                                               |
| Rinvoq     | Upadacitinib                         | Active nonradiographic axial spondyloarthritis in adults                                  |
| Rylaze     | Asparaginase erwinia                 | Monday/wednesday/friday intramuscular dosing schedule for adult and pediatric patients    |
|            | chrysanthemi-rywn                    | with acute lymphoblastic leukemia or lymphoblastic lymphoma                               |
| Stelara    | Ustekinumab                          | Active psoriatic arthritis in children aged 6 years and older                             |
| Tibsovo    | Ivosidenib                           | Newly diagnosed isocitrate dehydrogenase-1 mutated acute myeloid                          |
|            |                                      | leukemia in adults in combination with azacitidine                                        |
| Triumeq PD | Abacavir + dolutegravir + lamivudine | Management of HIV-1 in children weighing>25 kg                                            |
| Tymlos     | Abaloparatide                        | Osteoporosis in men at high risk of fracture                                              |
| Veklury    | Remdesivir                           | Nonhospitalized patients at high risk of COVID-19 disease progression                     |
|            |                                      | COVID-19 patients under 12 years of age                                                   |
| Vemlidy    | Tenofovir alafenamide                | Chronic hepatitis B virus infection in children aged 12 years and older                   |
| Wegovy     | Semaglutide                          | Obesity in children aged 12 years and older                                               |
| Xofluza    | Baloxavir marboxil                   | Treat and prevent influenza in children aged 5 years and older                            |
| Yescarta   | Axicabtagene ciloleucel              | Use of prophylactic corticosteroids across all approved indications of yescarta           |
|            |                                      | Refractory or relapsed large B-cell lymphoma to first-line chemoimmunotherapy in adults   |

mHSPC: Metastatic hormone-sensitive prostate cancer

### Table 4: New routes of administration of previously approved drugs in 2022

Table 5: New dosage forms of previously approved drugs in2022

| Trade<br>name | Active ingredient | New routes of administration        |
|---------------|-------------------|-------------------------------------|
| Adlarity      | Donepezil         | Transdermal patch for               |
|               |                   | management of dementia in           |
|               |                   | alzheimer's disease                 |
| Furoscix      | Furosemide        | Subcutaneous formulation            |
|               |                   | for ambulatory treatment of         |
|               |                   | congestion due to fluid overload    |
|               |                   | in patients with NYHA class II/III  |
|               |                   | chronic heart failure               |
| Igalmi        | Dexmedetomidine   | Sublingual film for acute treatment |
|               |                   | of schizophrenia or bipolar         |
|               |                   | disorder-associated agitation       |
| Iheezo        | Chloroprocaine    | Ophthalmic formulation for ocular   |
|               |                   | surface anesthesia                  |
| Radicava      | Edaravone         | Oral suspension for the treatment   |
| ORS           | _                 | of amyotrophic lateral sclerosis    |
| Трохх         | Tecovirimat       | Intravenous formulation for the     |
|               | <b>_</b>          | treatment of smallpox               |
| Xelstrym      | Dextroamphetamine | Transdermal patch for the           |
|               |                   | treatment of attention-deficit      |
| _             |                   | hyperactivity disorder              |
| Zoryve        | Roflumilast       | Topical formulation for the         |
|               |                   | treatment of plaque psoriasis       |
| N 11 11 1 N 1 | X7 1 XX . A       |                                     |

NYHA: New York Heart Association

2022 is a monoclonal antibody, Teplizumab-mzwv. It is considered to be the first disease-modifying therapy in T1D, where it has shown to delay the onset of Stage 3 T1D in adult and pediatric patients aged 8 years and older with Stage 2 T1D by 25 months [4]. Patients who progress to Stage 3 T1D eventually require lifelong insulin injections.

Our study is in full agreement with the number of drugs approved for cancer during the previous years [12]. 14 out of 30 new molecular entities approved in 2022 were for the management of most challenging cancers (unresectable and metastatic) with limited treatment options. Similar numbers were observed for repurposed drugs. In 2022, USFDA approved 14 new indications in oncology for existing anticancer drugs. Among others, drugs repurposed for COVID19 (Tocilizumab and Baricitinib), major depressive disorder (dextromethorphan plus bupropion), vitiligo (Ruxolitinib), cisplatin-induced ototoxicity

| Trade<br>name | Active<br>ingredient    | New dosage forms                                                                                                                                                                 |
|---------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calquence     | Acalabrutinib           | Tablet formulation for patients with<br>chronic lymphocytic leukaemia, small<br>lymphocytic lymphoma and for relapsed<br>or refractory mantle cell lymphoma                      |
| Caplyta       | Lumateperone            | Dosage strengths 10.5 mg and 21<br>mg capsules for the treatment of<br>depression associated with bipolar I or<br>bipolar II disorders                                           |
| Hyftor        | Sirolimus               | Topical gel containing 0.2% of<br>sirolimus for the treatment of facial<br>angiofibroma associated with tuberous<br>sclerosis complex                                            |
| Imbruvica     | Ibrutinib               | Oral suspension for the treatment of<br>pediatric patients 1 year and older<br>with chronic graft-versus-host disease                                                            |
| Sezaby        | Phenobarbital<br>sodium | Powder for intravenous injection for<br>the treatment of neonatal seizures in<br>term and preterm infants                                                                        |
| Tyvaso DPI    | Treprostinil            | Dry powder inhaler for treatment of<br>pulmonary arterial hypertension and<br>pulmonary hypertension associated<br>with interstitial lung disease to<br>improve exercise ability |
| Zonisade      | Zonisamide              | Oral suspension for the treatment of<br>partial seizures in patients aged 16<br>years and older                                                                                  |

(sodium thiosulfate), hepatorenal syndrome (Terlipressin), and myasthenia gravis (Ravulizumab) are noteworthy. Drug candidates for repurposing have the advantage of requiring fewer supporting studies as the new indication is built on already available safety, pharmacokinetic, and manufacturing data [13]. This will result in shorter timelines in getting approvals from regulatory agencies and reduced costs.

With the label extensions approved by the USFDA in 2022, therapeutic options which were part of standard care for adults for so many years are now accessible to young patients as well. Prominent among them were the approvals given for brentuximab, belimumab, mycophenolate, dupilumab, risdiplam, ibrutinib, remdesivir, baloxavir, and Fixed-

dose combination of lumacaftor plus ivacaftor to manage conditions in children with limited treatment options available to date. Treating children early in life is critically important in some of the devastating diseases such as cystic fibrosis [14], because early treatment has the potential to slow the disease progression.

Innovative dosage forms or delivery systems may improve drug efficacy and tolerability, or increase convenience for the patients [15,16]. In 2022, USFDA approved a sublingual film of dexmedetomidine for acute treatment of schizophrenia or bipolar disorder-associated agitation, which is usually managed with drugs given through parenteral route. Another significant approval from USFDA includes an oral suspension of ibrutinib for the treatment of children aged 1 year and older with chronic graft-versus-host disease. This dosage form is convenient for the children aged up to 5 years who have difficulty in swallowing tablets.

Development of a new drug is extremely challenging and despite the obstacles that COVID-19 has posed in 2020 and continues to pose a serious threat to public health, 2022 has been an excellent year for pharmaceutical sector in terms of new drug applications accepted by the USFDA. The authors of this study hope that, with the publication of "New Drugs and Clinical Trials 2019" rules by the Union Ministry for Health and Family Welfare, New Delhi, India, the pace of innovative clinical research may increase in India as well [2]. This study might help the primary care physicians to get well versed with the latest approvals from the USFDA.

### CONCLUSION

The USFDAs commitment to bring newer treatment options to address the patient needs with an established track record of safety and efficacy of the new as well as the previously approved molecules is noticed in our analysis. Various approaches have been utilized continuously by the USFDA to encourage the research based biopharmaceutical companies involved in the development of therapeutic options for patients suffering from rare diseases such as cyclin-dependent kinaselike 5 deficiency disorder. More emphasis was given to the approvals of anticancer drugs given the limited options available to treat the cancer in advanced or metastatic stages. There has been a slow but steady progress in drug approvals for lifestyle diseases such as obesity and diabetes. On the contrary, lack of discovery and development of antimicrobials with novel mechanism of actions to combat resistance is a cause of concern. This trend is harmful to the developing countries like India, where the burden of infectious diseases is high.

#### Limitations

We did not analyze the biosimilars and generic medicines approved by the USFDA in 2022 due to a lack of innovative research involved in the development of these drugs.

#### **AUTHORS' CONTRIBUTION**

All the authors have contributed equally.

### **CONFLICTS OF INTEREST**

There are no conflicts of interest.

#### **FUNDING SOURCE**

Nil.

### ETHICAL APPROVAL

Not required.

#### REFERENCES

- World Health Organization (WHO). Clinical Trials. Available from: https://www.who.int/news-room/questions-and-answers/item/clinicaltrials [Last accessed on 2023 Jan 01].
- Central Drugs Standard Control Organization (CDSCO). NDCT Rules 2019. Available from: https://cdsco.gov.in/opencms/export/sites/ cdsco\_web/pdf-documents/newdrugs\_ctrules\_2019.pdf [Last accessed on 2023 Jan 01].
- US Food and Drug Administration (FDA). Hemgenix. Available from: https://www.drugs.com/newdrugs/fda-approves-hemgenixetranacogene-dezaparvovec-drlb-gene-therapy-hemophilia-b-5931. html [Last accessed on 2023 Jan 01].
- US Food and Drug Administration (FDA). Tzield. Available from: https://www.drugs.com/newdrugs/fda-approves-tzield-teplizumabmzwv-delay-onset-stage-3-type-1-diabetes-5929.html [Last accessed on 2023 Jan 01].
- US National Library of Medicine. Clinical Trials. Available from: https://clinicaltrials.gov [Last accessed on 2023 Jan 01].
- US Food and Drug Administration (FDA). CDER's New Molecular Entities and New Therapeutic Biological Products. Available from: https://www.fda.gov/drugs/development-approval-process-drugs/ new-drugs-fda-cders-new-molecular-entities-and-new-therapeuticbiological-products [Last accessed on 2023 Jan 01].
- US Food and Drug Administration (FDA). CBER's; 2022. Biological Approvals. Available from: https://www.fda.gov/vaccines-bloodbiologics/development-approval-process-cber/biological-approvalsyear [Last accessed on 2023 Jan 01].
- US Food and Drug Administration (FDA). Available from: https:// www.fda.gov/patients/learn-about-drug-and-device-approvals/fasttrack-breakthrough-therapy-accelerated-approval-priority-review [Last accessed on 2023 Jan 01].
- The Importance of having a Primary Care Doctor. Available from: https://my.clevelandclinic.org/health/articles/16507-the-importanceof-having-a-primary-care-doctor [Last accessed on 2023 Jan 01].
- Batta A, Kalra BS, Khirasaria R. Trends in FDA drug approvals over last 2 decades: An observational study. J Family Med Prim Care 2020;9:105-14. doi: 10.4103/jfmpc.jfmpc\_578\_19, PMID 32110574
- De la Torre BG, Albericio F. The pharmaceutical industry in 2021. An analysis of FDA drug approvals from the perspective of molecules. Molecules 2022;27:1075. doi: 10.3390/molecules27031075
- Shukla KA, Mehani R, Jain S, Maqsood S. Analysis of FDA novel drug approvals. Biomed Pharmacol J 2021;14:225-33.
- Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004;3:673-83. doi: 10.1038/nrd1468, PMID 15286734
- Introduction to Cystic Fibrosis. Available from: https://www.cff.org/ intro-cf [Last accessed on 2023 Jan 01].
- Jain KK. An overview of drug delivery systems. Methods Mol Biol 2020;2059:1-54. doi: 10.1007/978-1-4939-9798-5\_1, PMID 31435914
- Galande AD, Khurana NA, Mutalik S. Pediatric dosage formschallenges and recent developments: A critical review. J App Pharm Sci 2020;10:155-66. doi: 10.7324/JAPS.2020.10718