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ABSTRACT

Objectives: Numerous tiny receptor tyrosine kinase inhibitors have been reported as anticancer medications over the past 10 years. However, a lot of 
them lack effectiveness in vivo, selectivity, or do not last long before developing resistance.

Methods: We used molecular modeling research to improve the pharmacophore to get beyond these limitations. For the purpose of linking the 
chemical makeup of pyrazolyl thiazolinone analogs with their anticancer activity, quantitative structure activity relationship (QSAR) investigations 
in two dimensions (2D) and three dimensions (3D) were carried out. Pyrazolyl thiazolinone pharmacophore’s stearic, electronic, and hydrophobic 
requirements were calculated using 3D QSAR.

Results: By leveraging the findings of QSAR investigations, the pharmacophore was refined and new chemical entities (NCEs) were generated. The r2 
and q2 values obtained for the best model No. 4 of 2D QSAR were 0.9244 and 0.8701, respectively. A drug-like pharmacokinetic profile was ensured 
by studying the binding affinities of proposed NCEs on epidermal growth factor receptor-TK using docking studies and estimating their absorption, 
distribution, metabolism, and excretion features.

Conclusion: When statistical significance is closely examined, predictability of the model and its residuals (actual activity minus predicted activity) is 
found to be close to zero, leading us to draw the conclusion that the logic behind the design of NCEs was determined to be sound.
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INTRODUCTION

The phosphotyrosine kinase (PTK) or epidermal growth factor receptor 
(EGFR) plays a key role in cellular differentiation and proliferation. It is 
frequently expressed in numerous cancer types. It has shown to be a 
successful target for the creation of anticancer medications [1].

Small molecule RTK inhibitors have received positive press in the 
past 10  years as potential cancer treatments. Despite the fact that 
many of them have strong tyrosine kinase inhibitory actions, they 
frequently lack selectivity, have poor cellular and in vivo potency, 
or develop drug resistance [2]. Due to the similarities in the ATP 
catalytic binding sites across the kinase family, developing selective 
kinase inhibitors is a significant difficulty in the drug discovery and 
development process [3].

The creation of novel, highly active compounds is made possible 
by computational approaches. We were able to connect the 
physicochemical characteristics of chemical compounds through 
their biological processes thanks to quantitative structure activity 
relationship (QSAR) investigations, which may have provided insight 
into the crucial structural elements required for biological activity. 
The ability of QSAR approach to foretell the biological activity of new 
chemical entities (NCEs) created in silico is one of its key functions [4]. 
Various techniques for model creation and validation were used to 
boost the QSAR methodology’s predictive potential.

Numerous pyrazole and thiazolinone nuclei have been identified 
for a variety of activities, including antiviral, antifungal, anti-
inflammatory, antibacterial, analgesic, and hypoglycemic [5]. 

A  combination pharmacophore of pyrazole and thiazolinone was 
described as a strong and selective EGFR-TK receptor inhibitor 
in various papers [6]. The development of NCEs was therefore 
expected to benefit from molecular modeling investigations, such 
as QSAR, absorption, distribution, metabolism, excretion (ADME) 
predicton, and docking studies on a series of pyrazolyl thiazolinone 
pharmacophore (NCEs).

In this study, we concentrated on using molecular modeling techniques 
to create effective anti-cancer chemicals and to create a model that will 
be able to predict the biological actions of NCEs [7-9]. It incorporates 
the techniques in building the main QSAR model components, notably 
the techniques for choosing informative descriptors, and evaluating 
the model for predicting anticancer activity. On a variety of compounds 
having the pharmacophore pyrazolyl-thiazolinone, a QSAR model 
was created to determine the crucial structural fragments needed 
around both heterocyclic rings for effective anti-proliferative activity. 
In the current investigations, the predictive QSAR modeling method 
was used to conduct 2D and 3D QSAR [10]. The NCEs were created 
using the best model that produced the most accurate and statistically 
acceptable findings. To further understand the interactions between 
the proposed NCEs and the EGFR target, molecular docking study was 
completed. To produce a well-rounded drug design, logical drug design 
ought to also take into account metabolic and pharmacokinetic data 
as well as molecular, biochemical, and pharmacological information. 
Therefore, to guarantee that the proposed NCEs had a drug-like 
pharmacokinetic profile, the final screen to identify compounds that 
meet Lipinski’s criteria was prediction of ADME characteristics.

© 2023 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
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METHODS

2D QSAR study
The v-Life Molecular Design Suite Software®, version  3.5, was used 
for all QSAR investigations [11]. To create a QSAR model reported for 
anticancer activity, a series of 36 pyrazolyl-thiazolinone compounds 
(E1-E36) were selected from the literature. For the molecular modeling 
study, biological activity was scaled to its logarithmic value (pIC50=-log 
IC50) (Table 1) [12]. The 2D draw tool of v-life MDS was used to create 
all derivatives. All of them were converted to 3D structures using the 
v-Life tool 2D TO 3D Converter, and then optimized using the Merck 
Molecular Force Field (MMFF) energy minimization method [13] by 
maintaining the electrostatic and Vanderwall cutoff at 20 and 10 Kcal/
mole, the dielectric constant at 1, the maximum number of cycles 
allowed to be 10,000, and the convergence criteria of 0.01 (Root mean 
square gradient).

Experimental design for 2 Dimensional (2D) QSAR
In an effort to boost the QSAR model’s prediction power and assure 
model resilience, the 36-molecule dataset was split into various training 
and test sets. The plan of the experiment Fig. 1 displays the results of 
our study. As a result of the randomization test, two models were chosen 
and given the names Training set-A and Training set-B. By dividing the 
remaining test set of compounds into two groups, Test set a1 and a2 for 
Training Set A, and Test set b1, b2 for Training Set B, respectively, these 
models were exposed to external validation twice. Only this model is 
used to estimate the activity of the molecules in the second test set (a2) 
if the model created by the training set satisfies all of the parameters for 
prediction of the first test set (a1). The entire process, starting with the 
selection of the training set, is repeated if the model does not fulfill the 
prediction parameters for the first test set (a1). For the design of NCEs, 
only models that pass both test sets were chosen [14].

Descriptor selection
Using the V-Life MDS program, a total of 549 different 2D descriptors were 
estimated, including topological, polarizability, molecular connectivity, 
dipole moment, and element count. By eliminating invariables (the 
ones that do not display variations as per physicochemical variations of 
the molecules chosen for the experiments), the independent variables 
(i.e., descriptors) were preprocessed. Only 210 descriptions were left in 
the spreadsheet after this.

The likelihood of a coincidence between observed and predictive 
activity has been shown to be high, especially when the number of 
independent variables (descriptors) employed in any QSAR study is 
comparable to or exceeds the number of compounds in the dataset [15]. 
Therefore, reducing the number of descriptors is a crucial step. As a 
result, we have employed a variety of strategies for variable (descriptor) 
reduction that may enhance both the performance and predictability of 
the QSAR model.

Correlation matrix
The relationship between the activity and the description, as well as 
the relationship between the descriptors themselves, was taken into 
consideration in the present study [16]. We only took into account the 
descriptors that were generated for the series of chemicals we chose 
and that either directly or indirectly correlate with activity. For model 
generation, only descriptors with activity correlations ≥0.3–0.7 were 
considered.

Table 1: Selected series of compounds containing the 
pharmacophore pyrazolyl thiazolinone

Comp code R1 R2 IC50 pIC50

E1 ‑H ‑H 3.38 −0.52892
E2 ‑H ‑F 4.86 −0.68664
E3 ‑H Cl 3.49 −0.54283
E4 ‑H ‑Br 1.35 −0.13033
E5 ‑H ‑Me 3.03 −0.48144
E6 ‑H ‑OMe 4.27 −0.63043
E7 ‑F ‑H 8.14 −0.91062
E8 ‑F ‑F 16.92 −1.2284
E9 ‑F ‑Cl 10.92 −1.03822
E10 ‑F ‑Br 4.79 −0.68034
E11 ‑F ‑Me 8.36 −0.92221
E12 ‑F ‑OMe 10.69 −1.02898
E13 ‑Cl ‑H 5.34 −0.72754
E14 ‑Cl ‑F 14.21 −1.15259
E15 ‑Cl ‑Cl 8.16 −0.91169
E16 ‑Cl ‑Br 2.28 −0.35793
E17 ‑Cl ‑Me 6.67 −0.82413
E18 ‑Cl ‑OMe 8.58 −0.93349
E19 ‑Br ‑H 3.2 −0.50515
E20 ‑Br ‑F 6.48 −0.81158
E21 ‑Br ‑Cl 4.12 −0.6149
E22 ‑Br ‑Br 2.03 −0.3075
E23 ‑Br ‑Me 5.58 −0.74663
E24 ‑Br ‑OMe 7.96 −0.90091
E25 ‑Me ‑H 1.08 −0.03342
E26 ‑Me ‑F 2.01 −0.3032
E27 ‑Me ‑Cl 1.66 −0.22011
E28 ‑Me ‑Br 0.24 0.619789
E29 ‑Me ‑Me 1.16 −0.06446
E30 ‑Me ‑OMe 4.24 −0.62737
E31 ‑OMe ‑H 2.37 −0.37475
E32 ‑OMe ‑F 5.95 −0.77452
E33 ‑OMe ‑Cl 5.35 −0.72835
E34 ‑OMe ‑Br 1.26 −0.10037
E35 ‑OMe ‑Me 5.46 −0.73719
E36 ‑OMe ‑OMe 8.89 −0.9489

Fitness plot
The following are a few significant elements that we considered when 
selecting the appropriate descriptors for QSAR model creation:
•	 The number of data points distributed on either side of the regression 

line should be equal.
•	 The slope of the plot between the descriptor and the activity has 

been shown. Highly correlated descriptors were occasionally deleted 
since they had a relatively low slope.

•	 In the case of indicator variables (primarily for topological 
descriptors), the fitness plot additionally showed the frequency of 
a specific data point. Each data point in the plot displayed at least 
three members. This provided data on how frequently each specific 
substituent appeared in a series. The outcomes are shown in (Fig. 2).

Variance
Using descriptor variance information, variables were minimized [17]. 
We have thought about the relationship between descriptor and activity 
here. We discovered that some descriptors constantly showed 
considerable variance even when the physicochemical qualities did not 
change all that much, whereas other descriptors, such as the indicator 
variable, consistently displayed low variance even when there were 
significant physicochemical changes. This was caused by the fact that 
each descriptor’s calculating process was unique. Descriptors with the 
highest variance occasionally did not exhibit a strong connection with 
activity. After carefully examining the results of our study, we have come 
to the conclusion that, because final outcomes are more dependent on 
correlation than on variance, one should place more emphasis on the 
correlation between descriptors and activity than on descriptors with 
the biggest variance.



Fig. 1: Experimental design for selection of molecules in training and test sets

Fig. 2: Fitness plot for descriptor T_2_O_6 with biological activity
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The algorithm we followed for variable reduction is as follows
1.	 Define the proper correlation cutoff value (Amax) between the 

description and the activity. Eliminate any descriptors with values 
lower than Amax.

2.	 Define the Cmax value, which is the suitable cross correlation cutoff 
value between the descriptor and the descriptor. Eliminate all 
descriptors with values greater than Cmax.

3.	 Specify the variance cutoff value for the Vmax descriptor. Descriptors 
with variance values below Vmax were eliminated.

This approach, according to our observations, reduces the number 
of variables by almost 75%. After that, we used several variable 
selection techniques to make sure that every last descriptor was 
significantly influencing the QSAR model. All of the generated 
descriptors were chosen using the aforementioned methodology 
and then submitted to various analytical techniques to create 
models.

QSAR model generation
Using the MLR (multiple linear regressions) approach, QSAR models 
were created by manually and randomly picking training sets. The 
methods of step-wise forward-backward and molecular simulation 

were employed to choose the variables. The regression model 
(Equation 1), which describes the activity dependent variable, y, as a 
linear combination of the X-variables with the coefficients b, is typically 
fitted using MLR. Remainings, which are represented by the letter e, are 
the variations between the data (y) and the model (Xb). The obvious 
relationship between these parameters is shown by the subsequent 
equation.

y = Xb + e� (1)

3D QSAR by SA-kNN method
k-Nearest Neighbor molecular field analysis (kNN-MFA) studies of 
3D-QSAR were carried out utilizing Simulated Annealing (SA) as a 
variable selection approach [18]. Utilizing k-Nearest Neighbors, 
there are three steps to calculating grid points: (1) Determine the 
separation between the k training set known objects and the u 
unknown object, (2) choose k objects from the training set that are 
nearby the unidentified object (u), and (3) assign your object to the 
same group as the majority of your other objects. After optimization, 
the given set of molecules must be properly aligned according to the 
kNN-MFA approach; the alignment was done using a template-based 
alignment method. Molecular alignment was used to view the variety 
of structural features in the supplied set of molecules. A  typical 
rectangular grid was then generated to surround the molecules. Using 
a methyl probe with a charge of +1, hydrophobic and electrostatic 
interaction energies at the grid’s lattice points were calculated. The 
3D-QSAR model was then constructed using the resulting set of 
aligned molecules.

Model evaluation
The created QSAR models were assessed using the subsequent 
statistical metrics: n, the number of molecular observations; k, the 
number of variables; q2, cross-validated r2 (via leave-one-out [LOO]); 
pred r2, r2 for external test set; r2, coefficient of determination; Z score 
is the result of the randomization test, and the best rand q2 and best 
ran r2 values represent the highest q2 and highest r2 values, respectively. 
SEP stands for standard error of external test set prediction, SEE for 
standard error of estimate of the model, and SECV for standard error 
of cross-validation.
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Model validation
Internal validation
Internal validation was performed using the (q2, LOO) approach [19]. 
Each molecule in the training set was successively deleted to determine 
q2, after which the model was trained using the same descriptors and 
the biological activity of the removed molecules was predicted. This 
effort was conducted to determine the QSAR model’s robustness. Every 
cross-validation study was carried out with the assumption that q2>0.5.

External validation
Predicting the activity of a test set of chemicals was done as an external 
validation of the produced models. As seen below, the pred r2 value is 
computed.
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Where yi and ŷi are the actual and predicted activity of the ith molecule in 
the test set, respectively, and y mean is the average activity of all molecules 
in the training set.

It should be more than 0.5.

Randomization test
This is a practical method to avoid random connection [20]. This 
approach involves repeatedly permuting the response variable while 
maintaining the x-variable unaltered. R2 and q2 are recorded following 
each permutation. We may say with some confidence that the original 
QSAR model is real and was not created by coincidence if the r2 and q2 
values in each case are significantly lower than the original data.

In our study, we have calculated Z-score to check significance of the 
model. Following formula was used for the same.
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Where q 2org is the q2 value calculated for the actual data set, q2
a is 

the average q2, and q2 std is the standard deviation of q2, calculated for 
various iterations using different randomized data sets.

New chemical entity (NCE) design
The pyrazolyl thiazolinone pharmacophore was optimized using the 
data from 2D and 3D QSAR experiments to create NCEs with strong 
anti-cancer efficacy. Using the CombiLib tool of the v-Life MDS 3.5 
Software, a new combinatorial library was created. According to a 
literature review of drug development to date, between 80 and 85% of 
compounds fail at a later stage of drug discovery due to their inability 
to display a pharmacokinetic profile consistent with that of a drug. 
Therefore, we have submitted created NCEs to Lipinskis screening 
(Rule of Five) to confirm that their pharmacokinetic profiles are similar 
to those of drugs [21]. The following parameters were used as Lipinski’s 
screen/filters (Values in parenthesis indicate ideal requirements).
1.	 Number of Hydrogen Bond Acceptor (A) (<10)
2.	 Number of Hydrogen Bond donor (D) (<5)
3.	 Number of Rotatable Bond (R) (<10)
4.	 XlogP (X) (<5)
5.	 Molecular weight (W) (<500 g/mol)
6.	 Polar surface area (S) (<140 Ǻ).

Molecular docking studies
The most promising developed NCEs were docked using the molecular 
docking tool GLIDE (Glide version 5.0) into the receptor tyrosine kinase 
enzyme binding pocket. Ligprep, which includes the “Ligand preparation 
wizard” and “Protein preparation wizard” in Maestro wizard 9.0 of the 
Schrodinger software, was used to prepare all structures for docking. 

A controlled impact minimization of the cocrystallized compound was 
done in the refining component. This aids in the hydroxyl group’s side 
chain reorientation. For this, it makes use of the OPLS.AA force field. 
The ligand was centered in the crystal structure to determine the length 
of the grids. The ligands were constructed using the maestro structure 
builder panel and prepared using the ligprep module, which creates the 
lowest energy conformers of ligands using the MMFF94 force field. It 
was extended up to 23A0. Extra precision docking mode was used to 
pick the ligands’ lower energy conformations and dock them into the 
grid created by the protein structure. Except for the protein’s active site, 
which has a minor degree of flexibility, the ligands and receptors in this 
docking approach are both flexible. Designed NCEs were also docked 
using the v-life MDS 3.5 docking tool, and the dock score was recorded.

Prediction of ADME and Central nervous system (CNS) Toxicity 
properties
Using the Schrodinger software’s Qikprop tool, the ADME properties 
were determined. Both physicochemically significant descriptors 
and pharmacokinetically significant characteristics are predicted. To 
guarantee a drug-like pharmacokinetic profile when utilizing rational 
drug design, it also determines whether analogs are acceptable using 
Lipinski’s [22] rule of five.

RESULTS AND DISCUSSION

2D QSAR
2D QSAR models
After applying MLR method, the five meaningful descriptor were 
generated, namely, H Acceptor Count, T_2_Br_7, Chi3Cluster, T_2_O_6, 
and Chlorine count (Fig. 3a).

Out of these five descriptors, T_2_O_6 shows up to 28% contribution 
with activity as shown in Eq. No. 4.

pIC50=(−0.245) T_2_O_6–0.138	 (4)

r2=0.89, q2=0.65, F-test=23.21, Pred_r2=0.71

We learned from the findings that the T 2 O 6 descriptor alone satisfies 
all assessment criteria. The aforementioned descriptions exhibit the 
strongest relationship with activity and a balanced distribution of data 
points. We have created various combinations of the chosen descriptors 
while keeping T 2 O 6 as a constant descriptor to boost the prediction 
capability.

Three training sets A, B, and C (using an experimental design) were 
given multiple models, out of which two were chosen for training set 
A and training set C based on statistical significance. For Training set-A 
and C, respectively, outcome shown  Fig. 3b and c and in Tables 2 and 3 
display the outcomes of all these models.

It noticed that Test set c2 containing derivatives (E1, E2, E7, E11, E15, 
E19, E21, and E32) gives good result. On the basis of the statistical 
parameters, namely, r2>0.7, cross-validated r2, that is, q2>0.7 and 
parameter to assess external validation, that is, pred_r2>0.5; the 
generated regression equation of model 4 of training set C was used 
for further studies. Following regression equation was used to design 
NCEs.

pIC50=−0.247499(H-Acceptor Count) +0.132802 (T_2_Br_7)-
0.554286 (chi3Cluster) + 0.279116(T_2_O_6)-0.11112 (Chlorines 
Count)+0.00182425	 (5)

Uni-column statistics
Table 4 reports the obtained comparative unicolumn statistical parameters 
for the training and test sets. While the minimum activity value of the 
test set was more than the minimum of the training set in all models, the 
maximum activity value of the test set was less than the maximum of the 
training set. The test sets a1, c1, and a2, c2 as well as training sets A and 
C’s standard deviation were discovered to be remarkably similar. This 
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Table 2: Test set a1, a2 statistical parameters of developed QSAR models

Training set A Test set a1 Test set a2

Model Model

1 2 3 4
r2 0.8632 0.7001 0.8750 0.8101
q2 0.7245 0.5475 0.7887 0.6663
F test 20.1893 10.5030 22.4102 13.6535
r2se 0.1613 0.2267 0.1724 0.2152
q2se 0.2290 0.2785 0.2241 0.2853
Pred_r2 0.6111 0.6374 0.8166 0.5245
Pred_r2se 0.2212 0.2140 0.1556 0.2367
Best rand r2 0.41344 0.33649 0.36170 0.19695
Best rand q2 0.13126 −0.11025 −0.15391 −0.32574
Z Score_ran_r2 5.96253 3.59846 4.85464 5.75572
Z Score_ran_q2 5.53726 4.05107 4.91963 5.68119
α_ran_r2 0.00000 0.00100 0.00002 0.00000
α_ran_q2 0.00000 0.00041 0.00001 0.00000
Descriptors T_2_Br_7

T_C_N_6
T_T_T_7
T_2_Cl_5
T_2_Br_5

HAcceptorCount
ChlorinesCount
T_2_Br_7
T_2_Br_5

HAcceptorCount
T_2_Br_7
T_2_Cl_5
T_2_F_5
T_2_Br_5

HAcceptorCount
ChlorinesCount
T_2_Br_7
T_2_F_5
T_2_Br_5

Coefficient 0.246232
0.239912−0
.0626532−0
.342318−0.
234524

−0.286907
−0.349796
0.138057
−0.275964

−0.255198
0.15707
−0.536102
−0.479
−0.38092

−0.253403
−0.393246
0.141559
−0.471403
−0.311254

Table 3: Statistical parameters of developed QSAR models for external test set c1, c2

Training set C Test set c1 Test set c2

Model Model

1 2 3 4
r2 0.8157 0.9244 0.8814 0.9244
q2 0.6791 0.8701 0.8050 0.8701
F test 15.0522 39.1315 29.7194 39.1315
r2se 0.2008 0.0981 0.1099 0.0981
q2se 0.2650 0.1285 0.1409 0.1285
Pred_r2 0.5738 0.5721 0.7827 0.7721
Pred_r2se 0.2339 0.1156 0.1355 0.1156
Best rand r2 0.58423 0.42601 0.36384 0.42601
Best rand q2 0.28204 0.02785 0.04835 0.02785
Z Score_ran_r2 3.48120 5.68977 5.93013 5.68977
Z Score_ran_q2 3.29056 4.97327 4.98157 4.97328
α_ran_r2 0.00100 0.00000 0.00000 0.00000
α_ran_q2 0.00100 0.00001 0.00001 0.00001
Descriptors H AcceptorCount

T_2_Br_7
slogp
T_2_Cl_5
chi3Cluster

HAcceptorCount
T_2_Br_7
chi3Cluster
T_2_O_6
ChlorinesCount

HAcceptorCount
T_2_Br_7
chi3Cluster
T_2_O_6

HAcceptorCount
T_2_Br_7
chi3Cluster
T_2_O_6
ChlorinesCount

Coefficient −0.441874
0.228188
−0.478782
−0.256814
0.405305

−0.247499
0.132802
−0.554286
0.279116
−0.11112

−0.230682
0.130664
−0.553897
0.259916

−0.247499
0.132802
−0.554286
0.279116
−0.11112

Table 4: Unicolumn statistics for training set and test set

Column name Training set A Test set a2 Training set B Test set b1 Training set C Test set c2

Average −0.5814 −0.7631 −0.5297 −0.6670 −0.7006 −0.7318
Max 0.6198 −0.0645 0.6198 −0.0334 −0.1004 −0.5051
Min −1.2284 −1.0382 −1.2284 −0.9222 −1.2284 −0.9222
SD 0.4256 0.3172 0.4145 0.2787 0.3113 0.3035
sum −12.7912 −6.1044 −11.6526 −5.3362 −15.4128 −5.8546



89

Asian J Pharm Clin Res, Vol 16, Issue 8, 2023, 84-93
	 Raut et al.

showed that despite the fact that the molecules selected for the training 
or test set are different, the distribution pattern for the biological activity 
of the molecules in the two selection processes is strikingly comparable.

Interpretation of 2D QSAR
The present QSAR model reveals that topological T_2_O_6 descriptor 
has major contribution in explaining variation in activity. Descriptors 
T_X_Y_Z can be defined as count of fragments formed with atom types X 
and Y separated by topological distance of Z bonds.

The definition for the descriptors with their % contribution in QSAR 
models is given:

H-acceptor count (24%)
This descriptor is negatively contributing. It signifies that number of 
hydrogen bond acceptor atoms should be less in designed NCEs.

chi3Cluster (8%)
This descriptor is negatively contributing toward activity. This 
descriptor signifies simple third order cluster chi index in a compound. 
It belongs to molecular connectivity indices which describes about 
required group connection like linear or branched or tertiary in 
substitution. This descriptor indicates that substitution by methyl or 
ethyl group at R2 position decreases anticancer activity.

Chlorines count (7%)
This descriptor signifies that number of chlorine atoms in a compound 
should be less as it is negatively contributing towards activity.

It indicates that by avoiding chlorine substitution at R1 and R2 position, 
one can increase anticancer activity.

T_2_O_6 (28%)
This is the count of number of double bounded atoms (i.e., any 
double bonded atom, T_2) separated from Oxygen atom by six bonds 
in a molecule. This descriptor contributes positively. It indicate that 
substitution by hydroxy or oxygen containing group like methoxy and 
ethoxy at R2 position separated from doubly bounded carbon atom 
may increase anticancer activity. Essential presence of keto oxygen of 
thaizolinone ring can be explained by this descriptor.

T_2_Br_7 (28%)
This is the count of number of double bounded atoms (i.e., any double 
bonded atom, T_2) separated from Bromine atom by seven bonds. 
This descriptor contributes positively. It describes that the presence 
of bromine substitution at both R1 and R2 position is positively 
contributing toward activity.

3-Dimensional (3D) QSAR studies
In Model A, error occurred in predictivity was low (pred_r2=0.1690) 
and predictive power of model B (pred_r2=0.5579) which is inferior 
to Model A in terms of quality. The q2, pred _r2, and k values of model 
B (SA kNN MFA model A) were found to be 0.5899, 0.5579, and 4, 
respectively. Although the Model B demonstrated good internal and 
external predictability, there was a higher error in forecasting the 
activity when compared to Model A. (q2_se=0.2550, pred r2=0.7947). 
Fig.  4 shows the 3D data points produced around a rectangular 
grid using the SA KNN-MFA Model A, together with the range of 

Fig. 3: (a) Contribution plot of significantly contributed descriptors. (b) Plot of actual versus predicted activity for training set A. (c) Plot 
of actual versus predicted activity for training set C

c

ba

Table 5: Comparison of the various statistical results of 3D QSAR generated by SA kNN‑MFA methods

Statistical parameter Simulated annealing‑k nearest neighbor molecular field analysis

Training set A Training set B

Model A Model B
q2 0.5628 0.5899
q2se 0.2550 0.2477
Pred_r2 0.7947 0.5579
Pred_r2 se 0.1690 0.2383
N 28 28
K nearest neighbor 2 4
Contributing descriptors E_477 (−1.05499, −0.81627)

H_271 (0.115775, 0.129451)
E_20 (0.187479, 0.250906)
E_115 (0.377103, 0.400051)

E_75 (−1.72254 0.794403)
E_358 (3.71312 6.75997)
S_178 (−0.108042−0.105661)
E_115 (0.346376 0.432693)



Fig. 4: The 3D rectangular grid of data points created using the 
kNN-MFA approach (3D-QSAR) demonstrates the contributions 
of electrostatic, steric, and hydrophobic functional groups for 

considerable anticancer action

Fig. 6 Common template used to design NCEs

Fig. 5: Pharmacophore requirements around pyrazolyl 
thiazolinone
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Table 6: Structures of designed NCEs along with predicted activity obtained by MLR equation generated by 2D‑QSAR models

Molecule name R1 R2 H accept 
bond

H donnr 
Bond 

xLogP M.W. Polar surface 
area

screen 
result

Screen 
score 

Predicted 
activity

D 1 ‑H ‑allyl 1 1 4.542 342.3166 83.75 ADRXWS 6 0.9542 
D 2 ‑vinyl ‑NH2 2 1 3.258 344.3124 86.99 ADRXWS 6 0.9088 
D 3 ‑vinyl ‑F 2 0 3.659 349.304 83.75 ADRXWS 6 0.8385 
D 4 ‑vinyl ‑OH 2 1 3.798 346.305 92.98 ADRXWS 6 0.8228 
D 5 ‑H ‑NH2 2 2 3.952 320.2904 86.99 ADRXWS 6 0.8023 
D 6 ‑H ‑COCl 2 1 4.004 334.294 100.82 ADRXWS 6 0.7918 
D 7 ‑CH3 ‑NH2 2 2 4.125 332.3014 86.99 ADRXWS 6 0.7848 
D 8 ‑H ‑OH 2 1 3.745 322.283 92.98 ADRXWS 6 0.6579 
D 9 ‑CH3 ‑OH 2 1 3.652 334.294 92.98 ADRXWS 6 0.6058 
D 10 ‑NH2 ‑F 3 1 4.023 339.2888 86.99 ADRXWS 6 0.5954 
D 11 ‑NH2 ‑OH 3 2 3.487 336.2898 96.22 ADRXWS 6 0.5885 
D 12 ‑F ‑OH 3 1 4.033 341.2814 92.98 ADRXWS 6 0.5754 
D 13 ‑NO2 ‑OH 3 2 3.913 352.1547 112.32 ADRXWS 6 0.5698 
D 14 ‑NO2 ‑F 3 2 4.054 383.365 98.26 ADRXWS 6 0.5618 

contribution noted in parenthesis, statistical results are shown in 
Table 5.

Interpretation of 3D QSAR model
The electrostatic, steric, and hydrophobic requirements around the 
pyrazolyl thiazolinone pharmacophore were optimized using 3D-QSAR. 
Points generated in SA kNN-MFA 3D-QSAR model(A) are E_477 
(−1.05499, −0.81627), H_271  (0.115775, 0.129451), E_20  (0.187479, 
0.250906), E_115  (0.377103,0.400051), that is, electronic and 
hydrophobic interaction at lattice points 477, 271, 20, and 115, 
respectively. Negative values in electrostatic data point indicate 
that electronegative potential (group) is preferred at that position 
to increase activity, positive range indicates that group that impart 
positive electrostatic potential is favorable for activity so electropositive 
(electron withdrawing) group is preferred at that position.

In Model A, small positive hydrophobic value H_271  (0.115775, 
0.129451) indicates that the less hydrophobic groups are required 
to increase activity at R1substitution. Positive and negative values 
in electrostatic field descriptors E_477 (−1.05499, −0.81627), 
E_20 (0.187479, 0.250906), and E_115 (0.377103, 0.400051) indicated 
the requirement of positive and negative electrostatic potential, 
respectively, at R1 and R2 substitution to enhance the anticancer activity 
of pyrazolyl thiazolinone derivatives. Thus KNN-MFA models helped 
us to identify various local interacting molecular features responsible 
for activity variation and hence provided direction for design of new 
molecules in a convenient way.

Designing NCEs with the pharmacophore pyrazolyl thiazolinone
The information obtained from 2D to 3D QSAR studies has helped a lot 
in optimizing pyrazolyl thiazolinone pharmacophore and for design of 
NCEs. Substitution pattern required around pharmacophore is showed 
in Fig. 5 was used to design NCEs. Fig. 6 shows common template used 
to design NCEs. Results of combiLib generated are shown in Table 6. All 
designed NCEs showed reduced hydrogen bond acceptor (A) count and 
increased hydrogen bond donor count (D) as required in 2D QSAR. All 
NCEs scored 6 (ADRXWS) for Lipinskis screen. NCEs showed rotatable 
bond (R), partition coefficient (X), molecular weight (W), and polar 
surface area(S) in acceptable range. Designed NCEs showed increased 
predicted activity than most potent of original series (E 28). Top 14 
designed NCEs were selected for further screening.

Molecular docking studies
The receptor tyrosine kinase enzyme binding pocket was studied using 
the molecular docking software GLIDE® (Schrodinger Inc., USA). The 
RCSB protein data library provided the EGFR-PTK crystal structure. 
(1M17 in PDB) [23]. Erlotinib mimics ATP and binds to the ATP-binding 
area of the kinase active site, it was discovered. Two significant hydrogen-
binding interactions between the purine base of ATP and the protein 
backbone between amino acids Gln-767 and Met-769 are involved in the 

binding of ATP itself. In the cleavage created between the two lobes, ATP 
bonds. Four significant structural components make up the cleft:

Activation loop, hinge region, catalytic site, and kinase specificity pocket. 
For ATP and inhibitor binding to the ATP site, the hinge’s interaction with 



Fig. 7: Binding pose of compound D1, D2, D7, D11, D12, erlotinib, 
and erlotinib pdb sum in receptor binding pocket
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the Met-769 backbone -NH is crucial [24]. The kinase specificity pocket 
is a pocket lined by side chains of residues Met742, Cys751, Leu764, 
Thr766, Thr830, Phe832, and part of Lys721. ATP does not interact with 
residues within this pocket, but the pocket is important for the binding 
of inhibitors at the ATP site. The moieties interacting with this pocket 
modulate inhibitory activity of ATP site antagonists [25]. The final 
evaluation was done with glide score, that is, G-score (docking score) 
mentioned in eq.6 and single best pose was generated as the output file 
for particular ligand. Docking results are shown in Table 7.

G Score = 0.065*vdW + 0.130*Coul + Lipo + Hbond + Metal + BuryP + 
RotB + Site� (6)

Where, vdW: Van der Waal energy;	 Coul: Coulomb energy;

Lipo: Lipophilic contact term;	 HBond: Hydrogen-bonding term;

Metal: Metal-binding term;	 BuryP: Penalty for buried polar groups;

RotB: Penalty for freezing rotatable bonds;

Site: Polar interactions at the active site; and

The coefficients of vdW and Coul are: a=0.065, b=0.130.

We redocked Erlotinib into the enzyme’s active site and then replaced it 
with our compounds to compare the binding modes of both the standard 
ligand Erlotinib and the test compounds based on our understanding of 
the structures of similar active sites (Fig. 6). These docking experiments 
have shown that the NH of Met-769’s backbone connects with the 
oxygen of the hydroxy group in the R2 position through a hydrogen 
bond, while in certain ligands, the oxygen of the keto group of the 
thiazolinone ring binds with the NH of Met-769. The created NCEs 
had a comparable binding mechanism to erlotinib. Hydrogen bond, it 
was shown that there was a distance between amino acids and NCEs 
of between 1.8 and 2.03 A0, which is comparable to that of erlotinib. 
These interactions show the significance of the hydoxy and keto groups 
for binding and the ensuing inhibitory capability. Similar to Erlotinib, 
the R1 substituted phenyl ring of the pyrazolyl pharmacophore is 
located in the same deep hydrophobic binding pocket (Fig.  7). Some 
NCEs exhibit binding to Leu 764 in the kinase pocket of the receptor 
with a hydrogen bond distance of 2.12–2.213A0. The Vander walls radii 
of good connections should match experimentally measured values. 
Those contacts that are experimentally inappropriate are bad contacts.  
In comparison to erlotinib, all NCEs displayed good, poor, and ugly 
contacts within range Key interactions of functional group of designed 
NCEs with specific amino acid residue are shown in Table 8. Each NCE 
displayed a strong v-life dock score. According to a docking research, 
NCEs block the EGFR TK receptor.

Table 7: Results of molecular docking studies performed using extra precision mode of glide

Molecule name R1 R2 G score Hydrogen Bond Contacts v‑Life Dock score

Good Bad Ugly
D 1 ‑H ‑allyl −7.16202 1 195 2 0 −6.4354
D 2 ‑vinyl ‑NH2 −6.12965 1 203 2 0 −6.3567
D 3 ‑vinyl ‑F −6.406401 1 200 2 0 −5.2658
D 4 ‑vinyl ‑OH −7.866976 1 250 2 0 −6.1457
D 5 ‑H ‑NH2 −7.764808 2 233 2 0 −6.6927
D 6 ‑H ‑COCl −5.765891 2 226 4 0 −5.5687
D 7 ‑CH3 ‑NH2 −6.907455 2 274 1 0 −5.7513
D 8 ‑H ‑OH −7.218316 1 198 6 0 −6.1462
D 9 ‑CH3 ‑OH −7.978312 2 242 2 0 −6.9662
D 10 ‑NH2 ‑F −7.597398 2 207 5 0 −6.9654
D 11 ‑NH2 ‑OH −6.402405 2 213 5 0 −5.2358
D 12 ‑F ‑OH −7.968543 1 208 1 0 −6.9507
D 13 ‑NO2 ‑OH −7.839369 1 215 1 0 −6.2465
D 14 ‑NO2 ‑F −6.745977 1 265 1 0 −5.2138
Erlotinib ‑ ‑ −8.575483 2 344 5 0 −8.4845

Table 8: Key interactions of functional group of designed NCEs 
with specific amino acid residue

Comp R1 R2 H‑bond 
interaction with 
distance in A0

Bonding group

Functional 
group of 
molecule

Amino 
acid

D1 ‑H ‑Allyl Met769 2.089 C=O N‑H
D2 ‑vinyl ‑NH2 Met769 2.061 N‑H C=O
D7 ‑CH3 ‑NH2 Met769

LEU 764
1.996
2.456

C=O
N‑H

NH
C=O

D11 ‑NH2 ‑OH Met769
LEU 764

2.017
2.295

C=O
O‑H

N‑H
O=C

D12 ‑F ‑OH Met769 1.891 O‑H N‑H
D13 ‑NO2 ‑OH Met769 2.107 O‑H N‑H
D14 ‑NO2 ‑F Met769 2.028 C=O N‑H

ADME and CNS toxicity predictions
Sometimes substances that have extremely high activity in vitro assays 
fail to exhibit any activity in vivo or turn out to be extremely hazardous 
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in in vivo models. Unwanted pharmacokinetic characteristics may be to 
blame for the lack of in vivo activity, and reactive metabolite production 
may be the cause of toxicity. Thus, all designed compounds were filtered 
by predicting their ADME and CNS toxicity properties by use of Qikprop 
2.2 Tool of, Schrodinger [28]. Lot many numbers of properties of 
designed analogues were predicted by Qikprop tool but here, we have 
reported some descriptors which contribute significantly for predicting 
pharmacokinetic profile of the molecule. These properties are as 
follow: Figures in parenthesis indicated ideal values in order the test 
compounds to have drug like pharmacokinetic properties [26].

Rule of five: It includes (1) Molecular Weight (mol_MW) (<500), 
Predicted octanol/water partition coefficient. (QPlogPo/w <5), 
estimated number of hydrogen bond donor (donorHB ≤5), estimated 
number of hydrogen bond acceptor (accptHB≤10), Polar surface 
area (<140A0). Compounds that satisfy these rules were expected 
to have drug like pharmacokinetic profile. (2) Brain/blood partition 
coefficient (CNS) (−2–2). (3) Percent human oral absorption (>80% is 
high, <25%is poor). (4) Number of possible metabolites (should range 
from 1 to 8).

The results of Qikprop studies are reported in Table  9. The normal 
range for the CNS parameter is −2 to +2, where −2 indicates no CNS 
penetration and +2 indicates active CNS penetration and hence CNS 
toxicity. The CNS parameter is connected to the absorption of entities 
over the blood brain barrier. All of the planned entities produced results 
that were acceptable and within the range. A high oral bioavailability 
profile and a percentage of oral absorption indicate that oral 
administration is an appropriate route of medication administration for 
patient compliance. Here, oral absorption rates for all newly developed 
chemical entities exceeded 80%. Every designed NCE exhibits minimal 
or no CNS toxicity. In donor and recipient, it was discovered the range of 
hydrogen bonding. NCEs demonstrated the creation of 1–6 metabolites, 
indicating that derivatives are less toxic and excretable from the body. 
Therefore, it is important to note that all developed molecules have a 
pharmacokinetic profile similar to that of a medication.

CONCLUSION

The goal of the present study was to optimize the chosen pyrazolyl 
thiazolinone pharmacophore using molecular modeling studies and 
it was discovered that this goal had been accomplished because 
the predicted activity of NCEs was found to be significantly greater 
(D1=0.95) than the most potent compound of the original series 
(E28=0.61). The resulting QSAR models were found to have produced 
statistically significant good results, that is, (r2>0.8), cross-validation 
(q2>0.7), and external validation (pred r2>0.7), which suggests high 
predictive capacity of all models. All things considered, it is important 
to note that the reasoning behind the optimization of the pyrazolyl 

thiazolinone pharmacophore employing 2D, 3D QSAR, ADMET, and 
molecular docking investigations was found to be quite correct.

The most promising compounds will next be put through additional wet 
laboratory testing, including synthesis, structural characterization, and 
biological evaluation of anticancer screening using the MCF-7 cell line.
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