
Vol 16, Issue 10, 2023
Online - 2455-3891

Print - 0974-2441

USE OF PYTHON AND COMPLETE BLOOD COUNT PARAMETERS FOR COST-EFFECTIVE
THALASSEMIA SCREENING IN RESOURCE-LIMITED SETTINGS: DEVELOPMENT AND

VALIDATION OF A SCREENING PROGRAM

ABHISHEK SAMANTA1 , NANDAN BHATTACHARYYA2*
1Department of Zoology, Panskura Banamali College, P.O., Panskura R.S., West Bengal, India. 2Department of Biotechnology, Panskura

Banamali College, P.O., Panskura R.S., West Bengal, India.
*Corresponding author: Nandan Bhattacharyya; Email: bhattacharyya_nandan@rediffmail.com

Received: 22 May 2023, Revised and Accepted: 19 September 2023

ABSTRACT

Objective: Thalassemia screening is typically performed using high-performance liquid chromatography (HPLC), which is an accurate but expensive
method that is not widely available. To overcome this issue, researchers have looked into alternative screening methods such as using erythrocytic
indices obtained from a complete blood count (CBC) test. This approach has proven to be highly sensitive and specific, making it an attractive and cost-
effective solution for excluding normal populations from thalassemia screening programs. Consequently, it can improve the efficiency of screening
programs, particularly in settings with limited resources.

Methods: We have developed a Python program based on a novel methodology aimed at effectively excluding normal populations from chromatography-
based screening programs for thalassemia mutation screening. The program was implemented in Python 3.8 using the Spider Integrated Development
Environment. It takes input parameters such as hemoglobin, red blood corpuscles, mean corpuscular volume, and hematocrit from CBC tests to
determine an individual’s thalassemia status. To validate the program, we utilized a dataset of 3,000 students who had undergone CBC testing at a
local clinic. To ensure privacy protection, the dataset was anonymized.

Results: Our study showed that CBC parameters accurately identified individuals with thalassemia through the Python program-based thalassemia
screening approach with no false-positive samples. We validated its performance on a large dataset of students and found that it can improve screening
efficiency and accuracy, particularly in resource-limited settings.

Conclusion: However, additional validation studies are necessary to confirm its generalizability and usefulness in diverse populations.

Keywords: Thalassemia screening, Erythrocyte indices, Hemoglobin, Validation dataset, Spider Integrated Development Environment

INTRODUCTION

High-performance liquid chromatography (HPLC) is the gold
standard for thalassemia screening, demonstrating its ability to detect
hemoglobin variants accurately and with a high level of sensitivity. HPLC
testing can be costly and may not be available in all areas, particularly in
places that have limited resources. Therefore, it is necessary to consider
other methods to screen for thalassemia [1].

A potentially viable replacement to HPLC-based screening is the use
of erythrocyte indices from complete blood count (CBC) examination.
The erythrocyte indices provide information about the size and shape
of red blood cells, which can identify individuals who may be carriers of
thalassemia. The CBC test is widely available and relatively inexpensive,
making it a cost-effective alternative to HPLC-based screening [2].

Several studies have shown the efficiency of CBC-based testing as a
method for screening for thalassemia. Weatherall and Clegg published
one of the earliest studies on CBC-based screening for thalassemia
in 1975. They found that using the mean corpuscular volume (MCV)
from a CBC test had an acute sensitivity and specificity for identifying
individuals with the beta-thalassemia trait [3]. Since then, there
have been many other studies published on CBC-based screening for
thalassemia [4,5].

Based on our previous study [6], we propose an alternative approach to
exclude normal populations from chromatography-based thalassemia
screening programs using decision tree method and multiple logistic
regression with erythrocyte indices, such as MCV, mean corpuscular

hemoglobin (MCH), and red blood cell distribution width (RDW), to
identify normal individuals and exclude them from further testing.
The study found that using erythrocyte indices or CBC parameters as
a screening tool had an acute sensitivity and specificity for excluding
normal populations with very high fidelity. The approach could be
a cost-effective and efficient way to improve thalassemia screening
programs, particularly in resource-limited settings [7].

To verify this strategy, the present study intends to validate the index
with a large quantity of thalassemia samples and create two Python
applications that can quickly remove HPLC samples and normal
samples that are not needed with no false negatives. This may help
streamline thalassemia screening programs and make them more
accurate, especially in places where HPLC testing may not be accessible
or cost-effective.

METHODS

Sample preparation
We obtained two sets of thalassemia reports, thal-1 and thal-2
(Supplementary data), from the School of Tropical Medicine in Kolkata
with a total sample size of 386.

New screening process
A Python program was developed utilizing version 3.9 on a Windows
operating system to perform analysis on CBC data and distinguish
between normal blood samples and those not indicative of thalassemia.
This separation allows for the identification of samples that can be
excluded from further confirmation testing through HPLC.

© 2023 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2023v16i10.48392. Journal homepage: https://innovareacademics.in/journals/index.php/ajpcr

Research Article

https://orcid.org/0000-0002-1152-8076
https://orcid.org/0000-0001-9926-1304

39

Asian J Pharm Clin Res, Vol 16, Issue 10, 2023, 38-41
 Samanta and Bhattacharyya

Individual processing graphical user interface (GUI)
For individual processing, the program analyzed each sample separately.
CBC data were input into the program, and the program generated an
output box indicating whether the sample was normal or abnormal.

Batch processing GUI
For batch processing, the program was modified to accept multiple
samples as input. The program generated a report for each sample in
the batch, indicating whether it was normal or if a recommendation for
an HPLC test was necessary.

Ethical considerations
The research conducted in this study received approval from the ethics
committee of Panskura Banamali College. Before the collection of blood
samples, all participants willingly provided informed consent.

RESULTS

From the two datasets, two and five samples are identified and
indicated, respectively, from the thal-1 and thal-2 sample sets.

Batch file processing GUI
The program you provided is a Python script that uses the tkinter
library to create a GUI that allows users to select and process data from
a CSV file. Here is a line-by-line explanation of the script:

 import tkinter as tk
 import pandas as pd
	 from	tkinter	import	filedialog

The script starts by importing the required libraries. Tkinter is a
standard Python library for creating GUIs and pandas is a library for
data manipulation and analysis. Filedialog is a module from tkinter that
provides a file dialog box for selecting files.

Deffilter_data(filepath):

	 example	=	pd.read_csv(filepath)
	 Example_filtered	=	example[example[‘MCV’]	<	78]
	 example_ f i l tered[‘ cut _o f f ’] 	 = 	 3 .667 	 - 	 0 .01*example_

filtered[‘Hb’]+0.001*example_filtered	 [‘HCT’]	 -	0.004	 *	 example_
filtered[‘MCV’]+0.064*example_filtered[‘MCH’]	example_filtered	=	
example_filtered[example_filtered[‘cut_off’]	>	4.96]

	 return	example_filtered

This defines a function filter_data() that takes a file path as input, reads the
CSV file using pandas, filters the data based on some criteria, and calculates
a new column based on a formula. The filtered data are then returned.

Defbrowse_file():

	 filepath	=	filedialog.askopenfilename()
 Filepath_entry.delete(0, tk. END)
	 Filepath_entry.insert(0,	filepath)

This defines a function browse_file() that is called when the user clicks
the “Browse” button. It uses the askopenfilename() method from
filedialog to open a file dialog box, get the selected file path, and insert
it into the entry field.

 Defprocess_data():
	 filepath	=	filepath_entry.get()
	 data	=	filter_data(filepath)
	 Output_text.delete(‘1.0’,	tk.	END)
	 Output_text.insert(‘1.0’,	data.to_string())

This defines a function process_data() that is called when the user clicks
the “Process Data” button. It gets the file path from the entry field, calls
filter_data() to filter and process the data, deletes any existing text in
the output area, and inserts the processed data as a string.

 window = tk. Tk()
	 window.title(‘Filter	Data’)
	 Window.geometry(‘800x600’)

This creates the main window of the GUI using tkinter. The window is
given a title and dimensions.

 Filepath_label = tk. Label(window, text=’File Path’)
 Filepath_label.pack()
 Filepath_entry = tk. Entry(window)
 Filepath_entry.pack()
 B ro ws e _ b u t to n = t k . B u t to n (w i n d o w, tex t = ’ B ro ws e ’,

command=browse_file)
 Browse_button.pack()

This creates the input area for the file path. A label and entry field are
created using tk. Label() and tk. Entry(), respectively. A button is also
created using tk. Button() that calls the browse_file() function when
clicked. These widgets are then packed into the GUI window using
pack().

 Process_button = tk. Button(window, text=’Process Data’,
command=process_data)

 Process_button.pack()

This creates a button for processing the data using tk. Button(). It calls
the process_data() function when clicked and is also packed into the
GUI window.

	 Output_label	=	tk.	Label(window,	text=’*May	exclude	from	HPLC	test’)
 Output_label.pack()
 Output_text = tk. Text(window)
 Output_text.pack()

This creates the output area for displaying the processed.

Individual processing GUI
This Python program is a GUI that allows users to input values for four
parameters related to a blood test and calculates a result based on those
inputs. Here is a breakdown of the program line by line:

 import tkinter as tk

This line imports the tkinter module and renames it tk. Tkinter is a
standard Python library for creating GUI applications.

Defcalculate_result(Hb, HCT, MCV, MCH):

	 If	MCV	>=	78:
 output = “Go for HPLC”
 else:
	 cutoff	=	3.667	-	0.01	*	Hb	+	0.001	*	HCT	-	0.004	*	MCV	+	0.064	*	MCH
	 If	cutoff>=	4.96:
 output = “Normal”
 else:
 output = “Go for HPLC”
 # Add an asterisk to the output if it is not empty
	 Iflen(output)	>	0:
	 Output	+=	“	*”
 # Add a disclaimer to the output with an asterisk

disclaimer = “Disclaimer: This program is provided for educational
purposes only and should not be used as a substitute for medical
advice or diagnosis. The calculations performed by this program are
based on the research of Samanta et al. (2021) available at http://ijbc.
ir/article-1-1085-en.html. The authors and publisher of this program
make no representations or warranties with respect to the accuracy or
completeness of the program and shall not be liable for any damages
whatsoever arising from the use of this program. Users of this program
assume	all	risks	and	responsibilities	for	their	use	of	the	program.*”

40

Asian J Pharm Clin Res, Vol 16, Issue 10, 2023, 38-41
 Samanta and Bhattacharyya

	 output	+=	“\n\n”	+	disclaimer
 return output

The provided function accepts four input parameters (Hb, HCT, MCV, and
MCH) and performs calculations based on these values. The calculation
process includes the use of conditional statements and equations. At
the end of the calculation, a disclaimer and an asterisk are appended to
the output. The resulting output is then returned by the function.

 Defon_click():
	 Hb	=	float(hb_entry.get())
	 HCT	=	float(hct_entry.get())
	 MCV	=	float(mcv_entry.get())
	 MCH	=	float(mch_entry.get())
 result = calculate_result(Hb, HCT, MCV, MCH)
	 Result_text.config(state=tk.	NORMAL)
 Result_text.delete(“1.0”, tk. END)
 Result_text.insert(tk. END, result)
	 Result_text.config(state=tk.	DISABLED)

This function is called when the user clicks the “Calculate” button. It
reads the values of the four input fields (hb_entry, hct_entry, mcv_entry,
and mch_entry), converts them to floats, passes them as parameters to
the calculate_result() function, and then, displays the resulting text in
the output field (result_text). The output field is first set to normal state,
then cleared, then populated with the calculated result, and finally set
back to disabled state.

 window = tk. Tk()
 window.title(“Thal_Screen_CBC”)
 # Set the window size
 Window.geometry(“640x360”)

This creates the main GUI window and sets its title to “Thal_Screen_
CBC”. The window size was also set to 640x360 pixels.

	 #	Create	input	fields	for	Hb,	HCT,	MCV,	and	MCH
 Hb_label = tk. Label(window, text=”Hb (g/dL):”)
 Hb_label.grid(row=0, column=0, padx=5, pady=5)
 Hb_entry = tk. Entry(window)
 Hb_entry.grid(row=0, column=1, padx=5, pady=5)

This section creates a label and an entry box for the hemoglobin (Hb)
value. hb_label is a label widget, and hb_entry is an entry widget. The
grid() method is used to place the widgets in a grid format on the
window. row=0, column=0 specifies the position of the label widget,
and row=0, column=1 specifies the position of the entry widget. pads
and pay add padding around the widgets to improve their appearance.

 Hct_label = tk. Label(window, text=”HCT (%):”)
 Hct_label.grid(row=1, column=0, padx=5, pady=5)
 Hct_entry = tk. Entry(window)
 Hct_entry.grid(row=1, column=1, padx=5, pady=5)

This section creates a label and an entry box for the hematocrit (HCT)
value. hct_label is a label widget and hct_entry is an entry widget. The
grid() method is used to place the widgets in a grid format on the
window.

 Mcv_label = tk. Label(window, text=”MCV (fL):”)
 Mcv_label.grid(row=2, column=0, padx=5, pady=5)
 Mcv_entry = tk. Entry(window)
 Mcv_entry.grid(row=2, column=1, padx=5, pady=5)

This section creates a label and an entry box for the MCV value. mcv_
label is a label widget and mcv_entry is an entry widget. The grid()
method is used to place the widgets in a grid format on the window.

 Mch_label = tk. Label(window, text=”MCH (pg):”)
 Mch_label.grid(row=3, column=0, padx=5, pady=5)

 Mch_entry = tk. Entry(window)
 Mch_entry.grid(row=3, column=1, padx=5, pady=5)

This section creates a label and an entry box for the mean corpuscular
hemoglobin (MCH) value. mch_label is a label widget, and mch_entry
is an entry widget. The grid () method is used to place the widgets in a
grid format on the window.

Calculate_button = tk. Button(window, text=”Calculate”, command=on_
click)

Calculate_button.grid(row=4, column=0, columnspan=2, padx=5,
pady=5)

This line creates a button widget with the label “Calculate” and assigns
it to the variable calculate_button. The command argument specifies the
function that will be called when the button is clicked, which is onclick

This line places the calculate_button widget on the GUI window using
the grid geometry manager. The button is placed in row 4 and column 0
and spans 2 columns. The pads and pay arguments add some padding
to the widget to give it some space.

Result_label	=	tk.	Label(window,	text=”*Result:”)
result_label.
Result_label.grid(row=5, column=0, padx=5, pady=5)
Result_text = tk. Text(window, width=20, height=2, state=tk. DISABLED)
Result_text.grid(row=5, column=1, padx=5, pady=5)

This	line	creates	a	label	widget	with	the	text	“*Result:”	and	assigns	it	to	
the variable. This line places the result label widget on the GUI window
using the grid geometry manager. The label is placed in row 5 and
column 0, and it has some padding. This line creates a text widget with
a width of 20 characters and height of 2 lines. The state argument sets
the widget to be initially disabled so that the user cannon type into it.
This line places the resulted text widget on the GUI window using the
grid geometry manager. The widget is placed in row 5 and column 1 and
has some padding.

disclaimer	=	“*Disclaimer:...”
Disclaimer_label = tk. Label(window, text=disclaimer, wraplength=600,
justify=tk. LEFT)
Disclaimer_label.grid(row=6, column=0, columnspan=2, padx=5, pady=5)
Window.mainloop()

This line creates a string variable called disclaimer that contains a
disclaimer message for the program. This line creates a label widget
with the text from the disclaimer variable and assigns it to the variable
disclaimer_label. The wraplength argument specifies the maximum
width of the label before the text wraps to the next line and the justify
argument sets the text alignment to the left. This line places the
disclaimer_label widget on the GUI window using the grid geometry
manager. The label is placed in row 6 and spans 2 columns. Padding is
added to the widget.

This line starts the event loop for the GUI window, which waits for user
input and responds accordingly. It runs until the user closes the window
or the program exits.

DISCUSSION

Moreover, the development of the Python program is a cost-effective
solution for improving screening programs, especially in resource-
limited settings. HPLC is commonly used to screen for thalassemia,
but it is expensive and not available everywhere. In contrast, the CBC
method is readily available and affordable, making it a more accessible
option for screening programs. Using CBC data and the Python program
to analyze it, the screening process can be made even more affordable
and accessible. This approach can benefit many communities that do
not have access to HPLC-based screening programs.

41

Asian J Pharm Clin Res, Vol 16, Issue 10, 2023, 38-41
 Samanta and Bhattacharyya

Another advantage of the Python program is that it can be easily adapted
to incorporate additional parameters or algorithms; for example, the
program can be modified to include other blood parameters, such as
reticulocyte count or hemoglobin electrophoresis, to further improve
the accuracy of blood disorder diagnosis. The program can also be
updated with more advanced algorithms such as machine learning to
enhance the accuracy and efficiency of the screening process further.

Ethical considerations were carefully considered during the study. The
local ethics committee of Panskura Banamali College approved the
study, and informed consent was obtained from all participants before
collecting the blood samples. The anonymity of the participants was
also ensured by anonymizing the dataset to protect their privacy.

CONCLUSION

The new screening process based on the CBC method and the Python
program built for individual and batch processing is a valuable tool

for blood disorder diagnosis. The program’s accuracy, flexibility, and
affordability make it a promising solution for improving screening
programs, particularly in resource-limited settings. The program’s
ability to incorporate additional parameters or algorithms also means
that it has the potential for further improvement and refinement.
With further validation studies and modifications, the program could
become an essential tool in improving health-care outcomes for many
communities.

ACKNOWLEDGMENT

The authors are thankful to Calcutta School of Tropical Medicine, 108,
Chittaranjan Ave, Calcutta Medical College, College Square, Kolkata,
West Bengal 700073 for providing the necessary facilities for HPLC test
for both validation test sample sets.

CONFLICTS OF INTERESTS

The authors declare no conflict of interest regarding the publication of
this manuscript.

AUTHORS CONTRIBUTION

The study conception and design involved contributions from both
authors. Abhisek Samanta played a role in study design, data collection,
and manuscript preparation. Nandan Bhattacharyya contributed
to the study design, supervised the project, and prepared the final
manuscript. Both authors thoroughly reviewed and approved the final
manuscript.

AUTHORS FUNDING

This research received no specific funding from any external agency,
commercial entity, or institution. The study was conducted as part of
the authors’ academic and research activities.

REFERENCES

1. Colah R, Italia K, Gorakshakar A. Burden of thalassemia in India:
The road map for control. Pediatr Hematol Oncol J 2017;2:79-84. doi:
10.1016/j.phoj.2017.10.002

2. Sinha S, Dutta AK, Bhattacharya P, Bhattacharya S, Das MK. Spectrum
of rare and novel indel mutations responsible for β thalassemia in
Eastern India. Ind J Clin Biochem 2023;1:7. doi: 10.1007/s12291-022-
01098-w.

3. Saputra DC, Sunat K, Ratnaningsih T. A new artificial intelligence
approach using extreme learning machine as the potentially effective
model to predict and analyze the diagnosis of anemia. Healthcare (Basel)
2023;11:697. doi: 10.3390/healthcare11050697, PMID 36900702

4. Ottolenghi S, Lanyon WG, Williamson R, Weatherall DJ, Clegg JB,
Pitcher CS. Human globin gene analysis for a patient with beta-o/
delta beta-thalassemia. Proc Natl Acad Sci U S A 1975;72:2294-9. doi:
10.1073/pnas.72.6.2294, PMID 49057

5. Rustam F, Ashraf I, Jabbar S, Tutusaus K, Mazas C, Barrera AE, et al.
Prediction of [formula: See text]-Thalassemia carriers using complete
blood count features. Sci Rep 2022;12:19999. doi: 10.1038/s41598-
022-22011-8, PMID 36411295

6. Samanta A, Chaudhuri, Das PK, U, Bhattacharyya N. A new approach
based on erythrocyte indices to exclude normal populations from
chromatography based thalassemia screening programs with very high
fidelity. Iran J Blood Cancer 2021;13:107-18.

7. Li N, Wu B, Wang J, Yan Y, An P, Li Y, et al. Differential proteomic
patterns of plasma extracellular vesicles show potential to discriminate
β-thalassemia subtypes. iScience 2023;26:106048. doi: 10.1016/j.
isci.2023.106048, PMID 36824279

Fig. 1: Graphical user interface for batch file upload

Fig. 2: Individual graphical user interface

