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ABSTRACT

Chimeric antigen receptor T (CAR T) therapy, a type of anticancer cellular immunotherapy, is emerging expeditiously. Primarily reported in 1987, 
the concept of a chimeric T-cell receptor (TCR), which combines antibody-derived variable regions with TCR-derived constant regions, was then, 
followed by double-chain chimeric TCR (cTCR) and single-chain variable fragment receptor chimeric cell (referred to as “T-bodies,” the prototypes of 
modern CAR). The CAR construct, which incorporates both a costimulatory endodomain and the CD3ζ signaling endodomain, is classified as a second-
generation CAR, and this later achieved fantastic success in human clinical trials, marking a momentous milestone in the development journey of the 
CAR T-cell therapy. Tisagenlecleucel was the first CAR T-cell therapy to be approved by the Food and Drug Administration (FDA) for treating pediatric 
and young adult acute lymphoblastic leukemia. Six CAR T-cell therapies have been approved by FDA; many more are still there in the budding stages. 
The major challenges for CAR T-cell therapy are safety, ineffectiveness for solid tumors, cost, etc. To overcome these elements, further research is 
essential.
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INTRODUCTION

Right now, without any doubt, cancer is the most significant contributor 
to disability-adjusted life years and the second highest cause of 
worldwide mortality [1-3]. For decades, the foundations of cancer 
treatment were surgery; chemotherapy, and radiation therapy, still 
recently newer treatments like immunotherapy have transformed 
cancer treatment, offering a beacon of hope to once-desperate patients 
with late-stage metastatic cancers [4-6]. Immunotherapy encompasses 
a broad spectrum of treatments designed to induce, augment, or 
suppress the immune response, that fine-tune the immune system to 
strike a balance between eliminating harmful pathogens and protecting 
normal body tissues from the collateral damage of an inflammatory 
response. Monoclonal therapeutic antibodies, immune checkpoint 
inhibitors, cytokines, and immunomodulators are methods to mediate 
the immune response [7-12].

Chimeric antigen receptor T (CAR T) therapy, the most rapidly 
developing branch of anticancer cellular immunotherapy, already 
accounts for >50% of the cell therapies that are under development 
for hematological malignancies. As of March 2020, there were 1483 
anticancer cell therapies under research or on the market worldwide, 
with an increase of 46.7% compared with 1011 in 2019. Among 
these, 858 were CAR T-cell therapies in 2020, a rise of more than 50% 
compared to the corresponding quarter last year [13,14].

In CAR T-cell therapy, autologous T cells are isolated from the patient’s 
blood, genetically modified with enhanced specificity and killing 
efficacy toward the patient’s cancer cells. Then, they are reinjected into 
the host to help clear the tumor. This is accomplished through genetic 
modification of the T cells to express the CAR, a receptor engineered to 
recognize a given antigen of the patient’s cancer cells and subsequently 
activate the CAR T cells’ expansion and cytotoxic potential [3,17,18,19].

HISTORY OF CAR T-CELL THERAPY

The concept of a chimeric T-cell receptor (TCR), which combines 
antibody-derived variable regions with TCR-derived constant regions, 

was first reported in 1987, by a Japanese immunologist Dr. Yoshikazu 
Kurosawa and team. He suggested that, in response to antigens, the 
chimeric receptor could activate T cells [6,20]. Two years later, in 1989, 
Israeli immunologist Dr. Zelig Eshhar and his colleagues described a 
similar approach to redirect T cells to recognize antigens in a non-major 
histocompatibility complex (MHC)-restricted manner. The chimeric 
TCR (cTCR), thus developed, was comprised of anti-2,4,6-trinitrophenyl 
(TNP) antibody Sp6’s variable heavy and light chains which were 
fused with constant regions of α and β TCR chains, respectively. The 
functional cTCRs are expressed on cell surface, and they can bind 
to TNP antigen on co-transfection into murine MD.45 cytotoxic T 
lymphocyte hybridoma cells, leading to T-cell activation, as evidenced 
by interleukin-2 (IL-2) production and the killing of target cells. The 
MHC-independent activation of cTCR-expressing T lymphocytes was 
demonstrated further by IL-2 production on binding to TNP-coupled 
proteins adsorbed onto a plastic substrate [6,15,21].

The double-chain heterodimeric cTCRs had low cotransduction 
efficiency as it required infecting T cells with two separate retroviral 
vectors. To overcome this low cotransduction efficiency, Dr. Eshhar’s 
team designed a single-chain chimeric receptor in which the single-
chain variable fragment (scFv) was fused to a lymphocyte intracellular 
signaling domain from either CD3ζ or FcϵRIγ, resulting in the first-
generation CAR, single-chain variable fragment receptor (scFvR). 
The scFv antigen-binding domain was derived from a monoclonal 
antibody, and it retained the antigen-binding affinity and specificity 
of its parental antibody. When expressed in MD.45 T-cell hybridoma 
cells, the scFvR conferred non-MHC-restricted activation on antigen 
exposure. Compared to cTCR, the scFvR had increased vector 
transduction efficiency and could independently transduce the T-cell 
activation signal, bypassing the need for the conventional TCR complex. 
The double-chain cTCR and the single-chain scFvR were referred to as 
“T-bodies” and are the prototypes of modern CAR [6,22-33].

Typically, T-cell activation requires two signals: The first one is 
triggered by the engagement of the TCR with peptide-loaded 
MHC, and the second one is provided by costimulatory receptors 
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like CD28 [6,35]. It was therefore suggested that incorporating a 
costimulatory endodomain into engineered T cells could enhance 
their proliferation and persistence. Dr. Michel Sadelain designed a 
chimeric receptor that combined the CD3ζ and CD28 endodomains, 
which provided both activation and costimulatory signals and led 
to enhanced antigen-dependent proliferation, IL-2 production, and 
cancer cell killing. T-cells expressing chimeric receptors containing 
both CD3ζ and CD28 endodomains showed significantly increased 
expansion and persistence compared to T-cells expressing chimeric 
receptors containing only the CD3ζ endodomain in human patients 
[6,36-38]. Dr. Dario Campana incorporated the 4-1BB/CD137 signal 
transduction domain in the CAR design which significantly improved 
the persistence and antitumor activity of CAR-engineered T cells. The 
CAR construct that contained both a costimulatory endodomain and 
the CD3ζ signaling endodomain was classified as a second-generation 
CAR and later achieved remarkable success in human clinical trials, 

marking a momentous milestone in the journey of developing CAR 
T-cell therapy [6,39,40]. Fig. 1 outlines the key milestones in the field 
of CAR T-cell therapy.

CAR T-CELL THERAPY: THE MAKING OF THE “LIVING DRUG”

According to Dr. Renier J. Brentjens, an early leader in the field, CAR 
T-cell therapy is equivalent to “giving patients a living drug.” The 
backbone of CAR T-cell therapy is T cells which help to organize the 
immune response, thus directly killing the cells infected by pathogens. 
CAR T-cell therapies are customized for individual patients; they are 
made by means of collecting T cells from patients and re-engineering 
them in the laboratories to produce proteins on their surface, which are 
known as CARs. The CARs recognize and bind to the specific proteins 
on the surface of cancer cells (Antigens). After these revamped T cells 
are “expanded” into the millions in the laboratory, they are then infused 

Fig. 1: Key milestones in the development of chimeric antigen receptor T-cell therapy [6]

Fig. 2: Chimeric antigen receptor T-cell therapy [16]
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back into the patient. In the patient’s body, CAR T cells will continue 
to multiply and, under the direction of their engineered receptor, 
recognize and destroy any cancer cells that accommodate the target 
antigen on their surfaces (Fig. 2) [41].

THE CLINICAL SUCCESS STORY OF CAR T-CELL THERAPY

The second-generation CAR T-cell therapy demonstrated effectiveness 
in one patient with advanced follicular lymphoma, and in patients 
with refractory chronic lymphocytic leukemia (CLL) and relapsed 
B-cell acute lymphoblastic leukemia (ALL). The therapy for advanced 
follicular lymphoma involved using a retroviral vector called MSGV 
to express a CD19-specific CAR. This CAR was designed to target the 
protein found on the surface of B-cells called CD19 using an anti-CD19 
scFv derived from FMC63 murine monoclonal antibody. It has both a 
CD28 costimulatory endodomain and a CD3ζ endodomain. The patient 
received lymphodepletion before two doses of CAR T cells and eight 
doses of IL-2. The patient achieved partial remission of the lymphoma 
and selective elimination of B-lineage cells due to this treatment. In 
patients with refractory CLL and relapsed B-cell ALL, autologous CD19-
targeted CAR T-cells expressing the second-generation CAR (19–28z) 
were evaluated for their safety and persistence in treating relapsed or 
chemotherapy refractory CLL and B-ALL. Patients who received prior 
conditioning with cyclophosphamide exhibited a partial response, 
whereas patients treated without conditioning did not show any 
objective responses [6,42,43].

A critical breakthrough in CAR T-cell therapy was obtained at the 
University of Pennsylvania through the research of Dr. Carl June’s team. 
They reported that three adult patients with advanced CLL achieved 
complete or partial remission after receiving CD19-specific CAR T-cell 
therapy. The CD19-CAR used in this trial contained an anti-CD19 scFv 
(derived from FMC63), a 4-1BB costimulatory endodomain, and a CD3ζ 
signaling endodomain. It was from a lentiviral vector driven by the 
EF1-α promoter. The CAR T-cell underwent significant expansion in 
patients on infusion, increasing in number by up to 1000 times. These 
results unlocked the potential of the second-generation CAR T-cell 
therapy in treating advanced CLL and other B-cell malignancies. The 
results of these clinical trials confirmed that prior chemotherapy to 
reduce the number of immune cells in the body called lymphodepletion 
is essential for CAR T-cell therapy to succeed. In contrast, IL-2 therapy 
does not seem to be necessary [44-49,62].

Tisagenlecleucel was the first CAR T-cell therapy to be approved by 
the Food and Drug Administration (FDA) on August 30, 2017, for the 
treatment of pediatric and young adult ALL. Later, three more CD19-
specific CAR T cells were approved by the FDA for the treatment 
of different B-cell malignancies, namely, axicabtagene ciloleucel, 
brexucabtagene autoleucel, and lisocabtagene maraleucel. In April 
2021 and February 2022, two BCMA-specific CAR T-cell therapies were 
approved for the treatment of multiple myeloma, namely, idecabtagene 
vicleucel and ciltacabtagene autoleucel [6,50-56].

Overview of CAR T-cell therapies undergoing clinical trials [3,66-69]

CAR T Cancer type Results
CD20-targeting CARs Various lymphomas and 

leukemias
Six complete remissions, three partial remissions, and two stable diseases in 11 patients 
in a PIICT (NCT01735604), with a median progression-free survival of 6 months.

CD22-targeting CARs Various lymphomas and 
leukemias

In a PICT (NCT04088890), three patients (100%) with recurrent malignancies after 
CD19-targeting CAR T-cell therapy achieved complete remission. Adverse events: Grade 
1 and 2 CRS and high-grade neutropenia, thrombocytopenia, and anemia

IL13Rα2-targeting CARs Glioblastoma A 228-day-long regression in one patient. Recurrence of cancer at four new locations, 
probably due to reduced TAA expression.
(PICT NCT02208362).

Allogeneic NKG2D-based 
CAR (CYAD-101)

Metastatic colorectal cancer In this PICT (NCT03692429) (n=15), two partial responses and nine stable diseases 
were achieved, 7 of which lasted at least 3 months. Median progression-free survival: 
3.9 months.

HER2-targeting CARs HER2+cancers (pancreatic, 
breast, gastric, others)

In an advanced pancreatic cancer, PICT (NCT01935843) of 11 patients, a 
4.5-month-long partial response and five stable diseases were achieved. Median 
progression-free survival of 4.8 months (range, 1.5–8.3 months).

GPC3-targeting CARs Hepatocellular carcinoma In two advanced hepatocellular carcinoma PICTs (NCT02395250 and NCT03146234), 
of a total of 13 patients, two partial responses were obtained. One patient with stable 
disease was alive after 44.2 months. Overall survival of 50.3% (6 months) and 10.5%  
(3 years). One Grade 5 and several Grade 1/2 CRS events were recorded.

CRS: Cytokine-release syndrome; PICT: Phase I clinical trial; PIICT: Phase II clinical trial, CAR T: Chimeric antigen receptor T, HER2: Human epidermal growth factor 
receptor 2

Overview of Food and Drug Administration approved CAR T-cell therapies [6,40,50-65]

Molecule name Brand name Approval Target Antigen Cancer type Study results
Tisagenlecleucel Kymriah August, 2017 CD19 R/R B-ALL ELIANA (n=75) Overall remission rate: 81%

FL ELARA (n=97) ORR: 86%, CR: 69%
LBCL JULIET (n=93) ORR: 52%, CR: 40%

BELINDA (n=162) ORR: 46%, CR: 28%
Axicabtageneciloleucel Yescarta October, 2017 CD19 R/R LBCL ZUMA-1 (n=108) CR: 58%

FL/MZL ZUMA-5 (n=104) ORR: 92%, CR: 74%
LBCL ZUMA-7 (n=180) ORR: 83%, CR: 65%

Brexucabtagene autoleucel Tecartus July, 2020 CD19 R/R MCL ZUMA-2 (n=68) CR: 67%
ALL ZUMA-3 (n=71) ORR: 71%, CR: 56%

Lisocabtagene maraleucel Breyanzi February, 2021 CD19 R/R LBCL Transcend NHL001 ( n=269) CR: 53%
TRANSFORM (n=92) ORR: 86%, CR: 6%

Idecabtagene vicleucel Abecma March, 2021 BCMA R/R MM KarMMa (n=128) CR: 33%
Ciltacabtagene autoleucel Carvykti February, 2022 BCMA R/R MM CARTITUDE-1 (n=97) CR: 82.5%
R/R: Relapsed or refractory, ALL: Acute lymphoblastic leukemia, ORR: Overall response rate, CR: Complete response rate, FL: Follicular lymphoma, LBCL: Large B-cell 
lymphoma, MCL: Mantle cell lymphoma, MM: Multiple myeloma, CAR T: Chimeric antigen receptor T
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MAJOR CHALLENGES IN CAR T-CELL THERAPY

CAR T-cell therapies have shown outstanding results, but their 
limitations are coming to light with an extensive research [3,6].

Tumor-antigen escape
Refractory cancer subclones often overtake tumors due to the highly 
selective nature of the targeted therapy. For example, in large B-cell 
lymphoma patients, anti-CD19 CAR T-cells effectively eliminate most 
of the CD19+ cancer cells; however, CD19− cancer cells escape the 
targeted therapy and can then increase at will and perpetuate the 
cancer [3,19,70,71].

Ineffectiveness against solid tumors
Despite the remarkable success and revolutionary impact of CAR T-cell 
therapy on the treatment of hematological cancers, the same is not the 
case for solid cancers. Multiple reasons, including immunosuppressive 
tumor microenvironment and lack of tumor-exclusive target, are 
there for the impaired reach and effectiveness of CAR T cells in solid 
cancers [3,72-78].

CAR T cells are to be infused into the blood, and they must then travel 
to the region where the tumor is located; this is a process dependent on 
chemokine attraction signals and therefore varies from tumor to tumor. 
On reaching the tumor site, the lymphocytes must penetrate through 
the layers of extracellular matrix (ECM) which is frequently thickened 
and stiffened by intense collagen and heparan sulfate proteoglycan 
deposition carried out by tumor-associated fibroblasts. T cells do not 
form substantial amounts of ECM-degrading enzymes, and this barrier 
deeply hinders the accessibility of CAR T cells to their target cells. 
Microenvironment of solid tumors is often oxidative, hypoxic, acidic, and 
nutrient-starved, and consists of high amounts of immunosuppressive 
elements or even the tumor cells themselves. This immunologically 
deleterious “cold tumor” environment encourages the development of 
anergic and apoptotic states in the CAR T cells [3,34,72-78].

It is challenging to find tumor-associated antigens (TAAs) that are 
specifically yet uniformly expressed at high levels in the tumor. TAAs 
are generally present at higher expression in cancer cells; still they are 
also co-expressed at shallow levels in non-malignant tissues, enabling 
dangerous cross-reactivity and on-target off-tumor toxicity. Even when 
dealing with TAAs of very low expression in healthy cells, solid tumors 
are usually very heterogeneous, so wide antigen expression variability 
and antigen-loss events are pretty common [3,72-78].

Cytokine-release syndrome (CRS)
CRS is a type of cytokine storm syndrome, graded between I and IV 
depending on symptomatic severity, caused by exaggerated levels of 
circulating inflammatory cytokines, such as IL-6 and IFN-γ. Mild cases 
often present with flu-like symptoms and systemic inflammatory 
response symptoms such as fever, fatigue, and generalized pain. Severe 
cases display features like hypotension as well as high fever, and it can 
progress to an uncontrolled systemic inflammatory response with 
circulatory shock needing vasopressor, vascular leakage, disseminated 
intravascular coagulation, and multi-organ system failure. This requires 
medical attention that is imperative, and sometimes it can escalate to 
patient’s death. Clinical trials of anti-CD19 CAR T cells in blood cancers 
have often reported high frequencies of CRS, sometimes as high as 
100%, and related fatalities. An apparent connection between tumor 
burden and severity of CRS reactions has been reported several times 
regarding CAR T-cell treatments [3,79-82].

Neurotoxicity
Adverse CAR T-cell-induced neurotoxicity, also known as immune 
effector cell-associated neurotoxicity (ICANS), is reported to occur in 
approximately two-thirds of leukemia and lymphoma patients who are 
treated with adoptive CAR T-cell transfer. Although its pathophysiology 
is still ambiguous, general clinical understanding states that 
exacerbated immune activation and elevated serum and cerebrospinal 
fluid cytokines play an essential role in blood-brain barrier dysfunction 

and neurotoxicity. Clinically, ICANS can present itself through 
expressive aphasia, tremor, dysgraphia, and lethargy; these symptoms 
can progress to global aphasia, seizures, obtundation, stupor, and coma 
and often follow or occur concomitantly with events of CRS [3,81-84].

On-target off-tumor toxicity
It occurs when the cognate antigen of the CAR T cells is expressed 
not only in the targeted tumor cells but also in normal cells. As the 
potent, genetically modified T lymphocytes travel through the blood 
and infiltrate the various body tissues, they encounter all types of cells; 
(1) normal cells, with no expression of the specific antigen, that go 
by immunologically invisible, (2) target malignant cells, which highly 
express the antigen and are therefore attacked by the lymphocytes, 
(3) problematic, target antigen-negative malignant cells, which 
often escape unscathed from the cytolytic action of CAR T cells, and 
(4) normal cells expressing the target antigen, which then get caught 
in the immune crossfire and end up succumbing to the inflammatory 
and cytolytic action of the CAR T cells. This “friendly fire” can have 
serious consequences, damaging healthy tissue and compromising its 
function, besides creating unnecessary inflammation, which can have 
detrimental effects both locally and systemically [3,85,86].

FUTURE PERSPECTIVES

The outstanding achievement of CAR T-cell therapy has inspired 
scientists to research the potential of engineering other immune 
cells, such as Natural Killer (NK) cells, NKT cells, macrophages, and 
neutrophils, for therapeutic purposes. Among these, CAR-NK cell 
therapy has shown magnificent responses in human clinical trials. 
These immune cells have fewer concerns of graft-vs-host disease, 
making them more suitable as off-the-shelf products; still they also 
have their limitations, such as limited proliferation capabilities, short 
life spans, and inability to form memory cells. T cells can be genetically 
engineered to target tumors through tumor-neoantigen-specific TCRs. 
This therapy has a significant advantage as the target is not limited to 
membrane antigens [87-92].

In conclusion, CAR T-cell therapy has made remarkable progress in 
the treatment of cancer, but there are several challenges to make 
this treatment widely available and effective. Further research in the 
development of CAR T-cell therapy for solid tumors, off-the-shelf CAR 
T-cell therapy, safety, cost, and non-cancer diseases will be crucial to 
the future success of this treatment. The progress made in CAR T-cell 
therapy calls for the importance of continued investment in scientific 
research and innovation.
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