ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

Vol 6, Issue 4, 2013

ISSN - 0974-2441

Research Article

ANTIBACTERIAL, ANTI-ALPHA GLUCOSIDASE AND ANTIOXIDANT PROPERTIES OF DILLENIA PENTAGYNA ROXB. (DILLENIACEAE)

ASHISH KUMAR SINGHA¹, BHASKAR BHATTACHARJEE¹, RANJIT GHOSH², UTPAL DE², DEBASISH MAITI^{*1}

¹Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, India ., ²Department of Chemistry, Tripura University, Suryamaninagar, Tripura, India. Email: debumaiti@gmail.com

Received: 30 July 2013, Revised and Accepted: 24 August 2013

ABSTRACT

Objective: The persent investigation is carried out to assess *in vitro* antimicrobial, antioxidant and anti-alphaglucosidase activity of the crude and fraction extracts of both leaf and fruits of the plant *Dillenia pentagyna Roxb.* (Dilleniaceae).

Methods: Extracts prepared from leaf and fruits by drying and fractionation process. Antibacterial activity assessed by disc diffusion and liquid culture method. Antioxidant activity was assayed by superoxide radical scavenging capability and by DPPH scavenging capability. By using the enzyme α -glucosidase and substrate p-nitrophenyl glucopyranoside (pNPG), the inhibitory activity of the extracts was assayed.

Results: Crude extracts of fruits from both butanol fraction and chloroform fraction showed promising antibacterial activity in disc diffusion method through measuring inhibition zone. Both butanol and chloroform fraction showed a significant superoxide radical scavenging activity and using DPPH (1,1-diphenyl-2-picryl hydrazyl), butanol fraction extract of fruit showed a significant scavenging property. α -glucosidase (E.C No. 3.2.1.20) enzyme activity is inhibited significantly by the leaf extract of the plant.

Conclusion: The results suggest that the crude plant extract contain some compounds which have antimicrobial activity, more potent antioxidant activity as well as α -glucosidase inhibitory activity.

Keywords: Dillenia pentagyna, antimicrobial, antioxidant, antidiabetic, superoxide, α -glucosidase, DPPH.

INTRODUCTION

Plants are used medicinally in different countries and are a source of many potent and powerful drugs [1]. A wide range of medicinal plant parts are used for extract as raw drugs and they possess varied medicinal properties. The different parts used include root, stem, flower, fruit, twigs exudates and modified plant organs. Many raw drugs are traded in the market as the raw material for many herbal industries [2]. Although hundreds of plant species have been tested for antimicrobial properties, the vast majority of plants have not been adequately evaluated [3].

Dillenia pentagyna Roxb. is a plant of Dilliniaceae family (Karmal family), locally known as 'Hargaza', is widely distributed randomly in hilly areas of north east states of India and Bangladesh. The synonyms of the plant are *Dillenia floribunda*, *Dillenia hainanensis. Dillenia indica* is another widely used plant of this family. Recent studies have shown that the extract of the bark of this plant had antibacterial and cytotoxic activity [4].

An ethnobotanical study among the various tribal and folk communities of Vindhya Region, Madhya Pradesh, reveal that they use the various parts of it for the treatment of their different ailments and diseases, viz, delivery (bark), bone fracture (leaf), body pain (root), piles(leaf), diabetes (bark), diarrhea and dysentery (bark) [5]. A wide range of pharmacological and biological activities have been shown to be present in the secondary metabolites isolated from plants belonging to family Dilleniaceae. Among those metabolites, terpenoids and flavonoids were the most well known, though, a large amount of alkaloid have also been found. Betulinic acid has been isolated from *Dillenia indica & D. return*, which exhibited high antitumor activity [6]. The antibacterial and antifungal activity of the crude extract has been shown in vitro studies [7].

The methanolic extract of *Dillenia indica L*. fruits showed significant anti-leukemic activity in human leukemic cell lines U937, HL60 and K562 along with a major compound, betulinic acid, was isolated from the ethyl acetate fraction by silica gel column chromatography and was identified and characterized [8]. Betulinic acid could explain the anti-leukemic activity of the methanolic extract and the ethyl acetate

fraction. This finding led to fractionation of the methanolic extract of the species *Dillenia pentagyna*, on the basis of polarity. In this study, antibacterial, antioxidant and anti- α -glucosidase activities have been tested using the different fractions of fruit and leaf of the plant.

MATERIALS AND METHODS

Plant materials

The plant materials were collected locally as it grows well in hilly areas of North-East India.

Preparation of plant extracts

The leaves and fruits of *Dillenia pentagyna* were collected separately from a hilly area of South Tripura district. The collected materials were dried in shade and then grinded. The grinded matters (fruits and leaves) were then extracted separately with 10% aqueous methanol by percolation method. The methanolic extract of fruits was then concentrated and defatted with petroleum benzene (60-80) and then fractionated into CHCl₃, EtOAc, BuOH. The polar fractions were designated as DPF-C, DPF-E, DPF-B respectively. In a similar manner methanolic extract of leaves was also fractionated and designated as DPL-C, DPL-E, DPL-B. Antimicrobial and antioxidant activity of different fractions of leaves and fruits have studied.

Microbial samples

Eight human pathogenic microbial strains were analyzed viz. *K. pneumonia* (BCH 271), *S. flexneri* 16, *S. dysenteriae* 1, *V. cholerae* non.0139(L4), *V. cholerae* non.0139(CSK6669), *S. pneumoniae, S. aureus* and *E. coli*. These strains were obtained from National Institute of Cholera & Enteric Diseases, Kolkata India and Agartala Government Medical College, Agartala, India.

Anti-bacterial Activity

The anti-bacterial activity of the extracts of *D. pentagyna* was tested by the disc diffusion method [9] and liquid culture method [10] with some modifications on selected microorganisms.

Disc Diffusion Method

Different concentration of the crude extracts (1 mg, 2 mg, 3 mg) were prepared by reconstituting with N-N'-dimethyl formamide (DMF). The test microorganisms (freshly cultured) were seeded into respective medium (Nutrient Agar, SRL) by spreading of 40 μ l of freshly prepared each strains after solidification of agar media. The paper disces (5 mm in diameter and 0.4 mm in thickness) were then placed in petridishes (100 mm in diameter) containing different bacterial strains in agar media, then each of the different concentrations of extracts applied on each disc (6 μ l for leaf extract and 15 μ l for fruit extract). DMF were also applied as control for each extract respectively. The plates were then incubated at 37 °C for 24 hours. The antimicrobial activities were measured by zone of inhibition expressed in mm. All experiments were repeated three times and the mean of the readings were recorded.

Liquid Culture Method

Each microorganism was primarily cultured in 3ml LB broth medium for 5 to 6 hrs at 37°C. Then 15µl of each extract were added to each test microorganism cultured to make final concentration of 1mg/ml and incubated again at 37°C for overnight. Next day the optical densities (OD) at 600nm were measured in a spectrophotometer. The untreated culture for each microorganism used as control. The experiments were carried out five times (n=5) and the data were expressed as mean ±SD.

Chemicals required for *in vitro* antioxidant activity and antidiabetic activity

1,1- diphenyl-2-picryl hydrazyl (DPPH) from SIGMA-ALDRICH, USA, Butylated hydroxyl anisole (BHA) and methanol from MERCK Chemicals, Germany, acarbose drug from Buyers Pharmaceuticals, Germany all other chemicals including NBT, NADH, phenazonium methosulphate (PMS), p-nitrophenyl α -D-glucopyranoside (p-NPG), α -glucosidase, Na₂CO₃ and all solvents were obtained from SISCO Research Laboratories Pvt. Ltd, Mumbai, India.

Antioxidant activity

The leaf and fruit extracts were tested for its free radical scavenging property using superoxide radical scavenging activity and all experiments were performed five times and the results averaged.

Superoxide radical scavenging activity

Superoxide scavenging activity of *D. pentagyna* extracts were measured according to the method of *Robak et. al* with some modifications [11]. All the solutions were prepared in 100 mM phosphate buffer (pH 7.4). 0.5ml of NBT (156 μ m), 0.5ml of NADH (468 μ m), 1.5ml of extracts (to produce final concentrations of 1-200 μ g/ml) were mixed. The reaction was started by adding 50 μ l of PMS (60 μ m) and the mixture then incubated at 25°C for 5 min followed by measurement of absorbance at 560 nm. Same procedure was used as negative control using distilled water instead of the

extracts. Butylated hydroxyl anisole (BHA) were used as a positive control, because it is a synthetic antioxidant [12], dissolved in methanol against the extract concentrations. Now the percent of inhibition was measured by using following formulae.

% inhibition = 0.D. of Control – 0.D. of Test 0.D. of Control X 100

DPPH radical scavenging activity

DPPH radical scavenging activity was measured according to the method of Cotelle *et al.* with some modification [13]. In brief, 1.5ml reaction mixture containing 100µl of DPPH (100µM in methanol) and 1.4 ml of butanol fraction of fruit extract (at various concentration; 0.5-50µg/ml) in distilled water was incubated at 37° c for 30 min and absorbance was read at 517 nm using UV-VIS Spectrophotometer. Here, L-ascorbic acid was used as a positive control against the concentration of each extract [14]. The percentage inhibition of DPPH radical was calculated by comparing the results of the test with those of the control (not treated with extract) using above formula.

Anti-diabetic activity

The leaf and fruit extracts were tested for its anti-diabetic activity using α -glucosidase inhibitory assay and all experiments were performed five times and the results averaged.

α -Glucosidase inhibitory assay

The enzyme inhibition assay was done by taking 50 µl of α -glucosidase (0.15 unit/ml) and 50 µl of sample added to start the reaction with 100µl of 3 mM p-nitrophenyl glucopyranoside (pNPG) in 0.2 M sodium phosphate buffer (pH 6.8) as a substrate. The reaction was conducted at 37°C for 15 min and stopped by the addition of 750 µl of 0.1 M Na₂CO₃. α -Glucosidase activity was assessed by measuring the release of p-nitrophenol as color measurement from pNPG at 405 nm. Acarbose was used as a positive control [15]. All tests were performed in independently five times (n=5) and data were expressed as mean ±SD. Percent of inhibition was calculated using above formulae.

Statistical analysis: All the experimental data were calculated and statistical analysis completed using Microsoft Office Excel 2010.

RESULTS AND DISCUSSION

Antibacterial Activity

Results obtained in the present study revealed that the tested *D. pentagyna Roxb.* extracts posses potential antibacterial activity against , *S. dysenteriae* 1, *V. cholerae* non.0139(L4), *V. cholerae* non.0139(CSK6669) and *E. coli*. The test performed by the disc diffusion method and liquid culture method.

Table1: Effect of leaf and fruit extracts by disc diffusion method on different pathogenic bacterial strains. NS= Not Significant

Microorganisms	Zone of inhibition in mm after overnight incubation. (mean of 3 repeats ±SD)								
	Leaf Extract		t	Butanol Fraction of fruit extract		Chloroform Fraction of fruit			
	1 mg/	2 mg/	3 mg/	1 mg/	2 mg/	3 mg/	1 mg/	extract 2 mg/	3 mg/
	disc	disc	disc	disc	disc	disc	disc	disc	disc
S. dysenteriae 1	6 ± 0.18	8 ± 0.19	9 ± 0.31	NS	7 ± 0.20	10 ± 0.37	9 ± 0.49	10 ± 0.19	12 ± 0.4
V. cholerae non.0139 (L4)	NS	6 ± 0.19	8 ± 0.4	7 ± 0.2	9 ± 0.2	11 ± 0.3	NS	NS	7 ± 0.4
<i>V. cholerae</i> non.0139 (CSK6669)	NS	6 ± 0.19	7 ± 0.4	8 ± 0.2	9 ± 0.3	12 ± 0.4	NS	6 ± 0.19	7 ± 0.4
E. coli	8 ± 0.19	9 ± 0.49	10 ± 0.33	7 ± 0.3	10 ± 0.23	12 ± 0.4	NS	NS	NS

In disc diffusion method, the crude extracts from the leaf of *D. pentagyna Roxb.* showed (**Table-1**) significant antibacterial activity against *E. coli, S. dysentariae* 1 and the inhibition zone is around 10 mm. The lowest activity recorded in *V. cholerae* non.0139 (CCK 6669) where inhibition zone is measured 7 mm. The fruit extract

(butanol fraction) exhibit highest activity against *V. cholerae* and E. coli (12 mm) and lowest in *S. dysenteriae* 1 (10mm). The fruit extract (chloroform fraction) posses maximum activity against *S. dysenteriae* (12 mm) and the minimum zone of inhibition observed in both *V. cholerae* strains.

In liquid culture method growth inhibition of bacteria is measured by reading the 0.D of the liquid culture medium. In absence of extract, growth of bacteria will be considered as 100% i.e; no

inhibition. But if the growth of the microorganism is inhibited by the extracts can be measured comparing the control tube with test according to the formula mentioned above.

Table2:	Effect of leaf and fruit	extracts by liquid	l culture method or	n pathogenic bacterial stra	ins.

Microorganisms	Growth inhibition in liquid culture (mean of 5 repeats % inhibition ±SD) at 1mg/ml concentration of extract				
	Leaf extract (crude)	Butanol fraction of Fruit Extract	Chloroform fraction of Fruit Extract		
K.pneumoniae (BCH27)	19.382±2.292	13.998±1.247	16.928±1.914		
S. dysenteriae 1	64.998±7.979	33.772±3.868	35.836±3.399		
V. cholerae non.0139 (L4)	47.812±3.631	64.294±5.573	60.434±6.146		
V. cholerae non.0139	7.06±0.979	13.812±1.832	20.074±1.265		
(CSK6669)					
E.coli	25.8±2.708	37.172±4.96	17.53±1.512		
S. aureus	27.666±2.816	44.284±3.506	24.978±4.934		
S .pneumoniae	15.6±2.563	36.994±3.348	32.428±3.38		
		Superoxide radica	ll scavenging activity		

In this study leaf extract showed (**Table-2**) significant inhibition (64.998%) on *S. dysenteriae* 1. All the three extracts of the plant showed a significant growth inhibition to *V. cholerae non 0319(CSK6669) strain.* Other strains also inhibited by the extracts modestly. Whether these extracts are bactericidal or bacteriostatic is not known. Plants are rich in antibacterial compound including tannin, terpenoids, alkaloids and flavonoids [19]. But exactly which compound is present in this extract is yet to be analyzed.

Free radicals are associated with various physiological and pathological events such as inflammation, aging, mutagenicity and carcinogenicity. Reactive oxygen species (ROS) capable of damaging DNA, proteins, carbohydrates and lipids are generated in aerobic organisms. These ROS include superoxide anion radical (O_{2^-}) , hydrogen peroxide (H₂O₂), hydroxyl radical (OH-), and singlet molecular oxygen [11]. The different portions of the plant extracts are used if the ROS can be scavenged by these extracts and can save the host cell.

Concentration of extracts and BHA	Leaf extract	Percentage of inhibition (Mean Fruit	BHA as positive	
		Butanol fraction	Chloroform fraction	control
1 μg/ml	5.911 ±2.676	15.561 ±0.710	11.648 ±3.544	10.146 ±4.170
25 μg/ml	54.178 ±4.210	30.987 ±1.191	28.489 ±3.125	15.345 ±3.888
$50 \ \mu g/ml$	67.980 ±1.572	52.774 ±3.828	52.398 ±1.190	17.902 ±0.946
75 μg/ml	70.443 ±0.827	66.508 ±0.234	64.911 8±1.574	23.020 ±3.472
100 µg/ml	67.980 ±0.837	73.410 ±0.700	72.953 ±1.695	27.115 ±7.446
200 µg/ml	37.438 ±2.020	70.568 ±1.086	60.836 ±1.426	37.042 ±9.575
Control (Negative	0	0	0	0
with water without				
extract)				

Calculating percentage of inhibition of the extract on superoxide radicals *in vitro* condition, scavenging activity is measured. Superoxide anion is also very harmful to cellular components. It has been reported that flavonoids are effective antioxidants mainly because they scavenge superoxide anions [16]. As shown in **Table-3**, the superoxide radical scavenging activities of this plant extract and the reference compound are increased markedly with increasing concentrations. Highest percentage of inhibition is found in case of leaf extract (70.4%) for the concentrations of 75 μ g/ml. In case of fruit extract of butanol fraction shows 73.4% inhibition for the concentrations 100 μ g/ml. Fruit extract of chloroform fraction shows 72.953% inhibition for the concentrations of 100 μ g/ml. Several laboratories used BHA as a good ROS scavenger [21] and in this study maximum inhibition with BHA is 37.042% in its 200

 $\mu g/ml\,$ concentration where this plant extract shows higher inhibition in lower concentration than the positive control.

DPPH radical scavenging assay

DPPH is a relatively stable free radical and the assay determines the ability of the extract to reduce DPPH radical to the corresponding hydrazine by converting the unpaired electrons to paired ones. Antioxidants exert their activity by converting the unpaired electrons to paired ones. The yellow coloured diphenylpicrylhydrazine is formed due to reduction of stable redical DPPH by extract. The antioxidants property of the extracts reduce the absorbance of the tests and this might be due to the hydrogen donating ability resulted in the scavenging of the radical [17].

Table4: Effect of leaf and fruit extracts to assess DPPH radical scavenging activity

Concentration of		Percentage of inhibition (Mean ± SD) each of 5 experiments.				
extracts and L- Leaf extract		Fru	L-Ascorbic acid as			
Ascorbic acid		Butanol fraction	Chloroform fraction	positive control		
500 ng/ml	7.124 ±1.225	12.089 ±3.680	6.415 ±2.066	35.714 ±6.705		
1 μg/ml	13.524 ±2.396	22.959 ±3.410	12.622 ±1.550	55.535 ±1.801		
5 μg/ml	45.688 ±3.723	40.625 ±4.194	20.569 ±3.165	64.643 ±3.232		
$10 \mu g/ml$	63.098 ±3.422	65.522 ±6.374	26.193 ±1.731	74.560 ±4.477		
25 µg/ml	70.614 ±0.938	72.761 ±1.395	34.721 ±3.035	84.365 ±1.155		
$50 \mu g/ml$	67.072 ±2.455	65.646 ±1.831	61.886 ±3.384	90.555 ±2.915		
Control (Negative	0	0	0	0		
with water without						
extract)						

In this study the butanol fraction shows DPPH reduction significantly at different concentrations ($50\mu g/ml-65.6\%$, $25\mu g/ml-72.7\%$ and $10\mu g/ml-65.5\%$ of inhibition as shown in **Table-4**) where as other fractions also can reduce DPPH significantly at the concentration of $50\mu g/ml$ though none of these can reach up to the control's level.

Diabetes is still not completely curable by the present anti-diabetic agents. Insulin therapy is the only satisfactory approach in diabetic mellitus, even though it has several drawbacks and the major one is insulin resistance [18]. Herbal drugs are gaining popularity in the treatment of diabetic mellitus [19] as the side effect is none or very negligible. The major advantages of herbal medicine seem to be their efficacy, low cost, and low incidence of side effects.

α –glucosidase inhibitory assay

Table5: Effect of leaf extract to assess the α-glucosidase inhibition compared to acarbose

Concentration of leaf extract and	Percentage of inhibition (Mean of 5 repeats ± SD)		
Acarbose	Leaf extract	Acarbose as positive control	
250 ng/ml	3.441 ±7.761	47.310±8.499	
500 ng/ml	29.240 ±11.54	50.160±11.822	
750 ng/ml	45.518 ±16.493	58.250 ±6.477	
1000 ng/ml	46.440 ±15.054	63.620 ±3.832	
2000 ng/ml	74.694 ±11.540	65.440±3.931	
5000 ng/ml	70.327 ±4.303	79.640±3.394	
Control (Negative with water without	0	0	
extract)			

 α -glucosidase inhibition is another *in vitro* experiment to assess the indirect anti-diabetic activity [20] of the plant extract. As shown in **Table-5**, the leaf extract shows highest 74.6 % inhibition for the concentration of 2 µg/ml. But with fruit extracts is no such activity. In this experiment positive control acarbose shows the maximum activity 79.6 % inhibition at the dose of 5 µg/ml.

CONCLUSION

In this study, butanol fraction from the fruit of *Dillenia pentagyna Roxb.* shows significant antibacterial, antioxidant as well as indirect antidiabetic activity compared to other fractions of fruit and leaves. But exactly which compound of this fraction is active is not yet explored. Based on these results, *Dillenia pentagyna* may be considered as a pharmaceutical agent. Specific compound from the crude extract may have better activity as antibacterial, antioxidant as well as anti-diabetic but need to be explored. Finally *in vivo* experiment may show some direction to use this fruit as supplementary with food or as therapeutic agent.

ABBREVIATIONS

DMF: Dimethyl formamidel; DPPH: 1,1-diphenyl-2-picryl hydrazyl; NBT: Nitroblue tetrazolium; PMS Phenazonium Methosulphate; p-NPG: p-Nitrophenyl α-D-Glucopyranoside

ACKNOWLEDGEMENT

Authors are thankful to NICED, Kolkata and AGMC, Agartala, Tripura for providing pathogenic bacterial strains. Financial support from the DBT, Govt. of India and technical support from State Biotech Hub, Tripura University is gratefully acknowledged.

CONFLICT OF INTEREST

The authors declare that there is no conflict of Interest.

REFERENCES

- 1. Uniyal SK, Singh KN, Jamwal P, Lal B Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalayan. J. Ethnobiol. Ethnomed 2006; 2: 1-14.
- Srivastava J, Lambert J, Vietmeyer N Medicinal plants: An expanding role in development. World Bank Technical Paper 1996; 23: 320.
- Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH Natural plant chemicals: Sources of Industrial and Medicinal materials. Science 1985; 228: 1154-1160.
- Haque MF, Islam MN, Hossain M, Mohamad AU, Karim MF, Rahman MA Antimicrobial and Cytotoxic Activities of *Dillenia pentagyna*. Dhaka Univ. J. Pharm. Sci. 2008; 7 suppl 1: 103-105.
- 5. Dubey PC, Sikarwar RLS, Khanna KK, Tiwari AP Ethanobotany of *Dillenia pentagyna* Roxb. in Vindya Region

of Madhya Pradesh, India. Natural Product Radiance 2009. 8 suppl 5: 546-548.

- 6. Sundarapandian SM, Swamy PS Litter production and leaflitter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India. Forest Ecology and Management 1999; 123: 231-244.
- Charimbu MK, Wagara IN, Otaye DO Antifungal activity of various crude plant extracts against *Phaeoisariopsis* griseola pathogenic on common bean. African Crop Science Conference Proceedings 2009; 9: 683–685.
- Kumar D, Mallick S, Vedasiromoni JR, Pal BC Anti-leukemic activity of *Dillenia indica* L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine: International Journal of Phytotherapy & Phytopharmacology 2010; 17 Suppl 6: 431-435.
- 9. Duraipandiyan V, Ayyanar M, Ignacimuthu S Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complementary and Alternative Medicine 2006; 6: 35.
- 10. Christian K, Mobarak AM, Michael S, Can Eugen I, Stephan P, Torsten H Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complementary and Alternative Medicine 2011; 11: 16.
- 11. Mondal SK, Chakraborty G, Gupta M, Mazumdar UK *In vitro* Antioxidant Activity of *Diospyros malabarica* Kostel Bark. Indian J of Exp Biol 2006; 44: 39-44.
- 12. Ogunlana OE, Ogunlana OO. In vitro Assessment of the Free Radical Scavenging Activity of *Psidium guajava*. Res J of Agri and Bio Sciences 2008; 4(6): 666-671.
- Cotelle A, Bernier JL, Catteau JP, Pommery J, Wallet JC Gaydou EM Antioxidant properties of hydroxyl-flavones. Free Radic Biol Med 1996; 20: 35.
- Gupta RC, Sharma V, Sharma N, Kumar N, Singh B In vitro Antioxidant Activity from Leaves of *Oroxylum indicum* (L.) Vent. -A North Indian Highly Threatened and Vulnerable Medicinal Plant. J of Pharm Res 2008; 1 Suppl 1: 65-72.
- Singha AK, Bhattacharjee B, Das N, Dinda B, Maiti D *lchnocarpus frutescens* (linn) -a plant with different biological activities. Asian J Pharm Clin Res 2013; 6(Suppl 1): 74-77.
- Robak J, Gryglewski RJ. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 1998; 37: 837.
- 17. Sreejamole KL, Radhakrishnan CK. Antioxidant and cytotoxic activities of ethyl acetate extract of the indian green mussel *Perna viridis*. Asian J Pharm Clin Res 2013; 6 Suppl 3: 197-201.
- Pari L, Uma MJ Hypoglycemic effect of *Musa sapientum* L. in alloxan-induced diabetic rats. Journal of Ethnopharmacology 1999; 68: 321–325.
- 19. Piedrola G, Novo E, Escober F, Garcia-Robles R White blood cell count and insulin resistance in patients with coronary artery disease. Annual Endocrinology 2001; 62: 7–10.

- Yin J, Heo S-II, Wang MH Antioxidant and Antidiabetic Activities of Extracts from *Cirsium japonicum* roots. Nutrition Research and Practice 2008; 2 Suppl 4: 247-251.
 N Festjens¹, M Kalai^{1,2}, J Smet³, A Meeus¹, R Van Coster³, X Saelens^{1,4} and P Vandenabeele^{*,1} Butylated
- N Festjens¹, M Kalai^{1,2}, J Smet³, A Meeus¹, R Van Coster³, X Saelens^{1,4} and P Vandenabeele^{*,1} Butylated hydroxyanisole is more than a reactive oxygen species scavenger; Cell Death and Differentiation 2006; **13**: 166– 169