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ABSTRACT

Objective: Increase the predictive quality of the structure-based virtual screening (SBVS) protocol to identify potent ligands for estrogen receptor 
alpha (ERα).

Methods: Employing recursive partition and regression tree (RPART) method to identify potent ligands for ERα among their decoys by using molecular 
docking scores and the protein-ligand interaction fingerprint bitstrings as the predictors. These predictors were obtained from previously published 
SBVS campaign to identify potent ligands for ERα. The quality of the protocol by using RPART method was assessed by examining the enrichment 
factors and the accuracy in 95% level of confidence compared to the reference protocol.

Results: The decision tree resulted from analysis using RPART method increased the enrichment factor and the accuracy values of the SBVS protocol 
from 18.5 to 247.9 and from 0.975 to 0.989, respectively. Notably, the accuracy value of the protocol using the decision tree was statistically significant 
in 95% level of confidence while the reference protocol was not.

Conclusion: RPART method could lead to a significant increase of the SBVS quality to identify potent ligands for ERα.
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INTRODUCTION

The understanding of molecular determinants of protein-ligand 
binding has served as a key success in structure-based drug design 
and discovery  [1-6]. The information resulted from site-directed 
mutagenesis (SDM) studies provides an important basis on which 
residues an active ligand might bind in the relevant interaction 
pocket  [1,2,4,7,8]. Employing this knowledge has been proven to 
increase the quality of structure-based virtual screening (SBVS) and to 
assist in the elucidation on how active ligands bind in their receptor 
targets [1,2,5,6,9-11]. Unfortunately, this important information on 
SDM results is not available for every relevant target for drug discovery 
purposes, e.g.,  for breast cancer drug discovery targeting estrogen 
receptor alpha (ERα)  [11-14]. Therefore, method development to 
increase the quality of SBVS campaigns as well as to virtually identify 
molecular determinants to guide SDM studies is of considerable 
interest [1,4].

Tamoxifen, by binding to ERα [15], has served as one of the drugs of 
choice in the chemotherapy for breast cancer treatment [16]. The 
compound is metabolized to 4-hydroxy-tamoxifen and N-des-methyl-
4-hydroxo-tamoxifen, which bind to ERα with 30-1000 times stronger 
compared to tamoxifen [17]. Visual inspection of the crystal structure 
of 4-hydroxy-tamoxifen binds to ERα discovered that the ERα binding 
pocket has circa 70 residues (Fig. 1) [11-13,18]. The visual inspection 
has also discovered two hydrogen bond (H-bond) networks formed by 
the co-crystalized ligand 4-hydroxy-tamoxifen with the ERα binding 
pocket, i.e., (i) the phenol moiety of the co-crystal ligand with GLU353, 
ARG394 and a conserved water molecule, and (ii) the protonated amine 
of the co-crystal ligand with THR347 and ASP351 [11,13,18]. An ionic 
interaction between the protonated amine of the co-crystal ligand and 
ASP351 has also been observed [11,13]. These interactions might play 
an important role in the ERα-ligand binding, which can, therefore, be 
used to increase the SBVS quality significantly [5,6,10,19].

The freely and publicly available PyPLIF, a software to identify protein-
ligand interaction fingerprints (PLIF) offers opportunities to develop a 
method for the identification of the interactions that play an important 
role in the protein-ligand binding [11,19]. Since there is no molecular 
determinants data resulted from SDM studies on ERα-ligand binding 
that could assist the development of more predictive SBVS protocol to 
identify ligands for ERα, PyPLIF could be pivotal in the identification 
of the molecular determinants [11,13,19]. The research presented in 
this article made use of in-house data from a previously published 
research project on the development and validation of a retrospective 
SBVS protocol using a database of useful decoys enhanced version 
(DUD-e) to identify ligands for ERα [13,20]. The ChemPLP scores and 
the PLIF bitstrings resulted from the SBVS protocol [13] were used as 
the descriptors in the construction of a decision tree using recursive 
partition and regression tree (RPART) method [21-23]. The best 
decision tree resulted from the analysis using RPART could increase the 
virtual screening quality significantly.

MATERIALS AND METHODS

Materials
ChemPLP scores [24] and PLIF bitstrings [11,25,26] resulted from 
retrospective SBVS campaigns on ERα ligands and decoys [20] were 
obtained from our in-house database [13]. The data sets consisted 
of the ChemPLP scores and PLIF bitstrings of the ligands and decoys 
docking poses with the best ChemPLP score for each compound. 
The packages “rpart” [21,23] and “caret” [22,23] were employed 
in the statistical analysis using R computational statistics software 
version 3.2.1 (R-3.2.1) [23].

Methods
By employing the “RPART” package in R-3.2.1 [21,23], the best decision 
tree for every data set was constructed and selected. The decision 
tree provided the lowest cross-validated prediction error (CV-err) 
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was selected [21]. The tree was subsequently used to predict using 
the predictors in the data set and confusion matrix, i.e.  consisted of 
true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN), was created [21,27]. The enrichment factor (EF=(TP/
(TP+FN))/(FP/(TN+FP))) [28,29] and accuracy (ACC=TP+TN/
[TP+TN+FP+FN]) [22,23] values were then calculated and compared to 
the values of the reference protocol [30]. At 95% level of confidence, the 
confidence interval of the ACC value and the p value to examine whether 
the accuracy was higher than the “no information rate” (the largest 
class percentage in the data) were calculated using “confusionMatrix” 
module in the “caret” package of R-3.2.1 [22,23] to examine the 
significance of the ACC value.

RESULTS

The research presented in this article aimed to examine if employing 
ChemPLP scores and PLIF bitstrings from previously published 
retrospective SBVS campaigns as predictors in RPART analysis could 
increase the quality of the SBVS. The RPART analysis resulted in decision 
trees presented in Table  1. The decision tree with the lowest CV-err 
value was selected as the best decision tree to be employed further 
in determine whether a compound was a potent ERα ligands (Fig. 2). 
Comparison of the statistical significances of the results between the 
reference protocol [13] and the decision tree showed that the decision 
tree significantly increased the virtual screening quality to identify 
potent ERα ligands (Table 2).

DISCUSSION

By employing the selected decision tree (Table 1 and Fig. 2), the quality 
of the SBVS to identify potent ERα ligands has increased significantly 
(Table 2). The reference protocol [13] used only the ChemPLP scores and 
has resulted in better EF value (18.5) compared to the EF value of the 
original SBVS (EF=15.4) accompanying the publication of DUD-e [20]. 
Interestingly, a decision tree using the PLIF bitstrings identified using 
PyPLIF [11,26] as additional descriptors accompanying ChemPLP score 
has been constructed here using RPART method  [21,23] and could 
outperform the quality of the SBVS protocols [13,20], significantly 
(Table  2). On the other hand, a combination of ChemPLP scores  [24] 

Fig. 1: The co-crystal ligand 4-hydroxytamoxifen (carbon atoms 
are in magenta) in the estrogen receptor alpha (ERα) (carbon 

atoms are in light yellow) binding pocket [18]. ERα is presented 
in the cartoon mode while the crystal structure pose is presented 

in the sticks mode. Only polar hydrogens (presented in white), 
residues (presented in sticks mode, carbon atoms are in light 
yellow) with hydrogen bond interaction (presented in black 

dashes) and ionic interaction (presented in green dashes) to the 
ligand, and a conserved water molecule [12,18] are presented for 

the sake of clarity. Nitrogen and oxygen atoms are presented in 
blue and red, respectively. The figure was prepared by employing 

the same point of view and similar rendering with the figure in 
Setiawati et al. [13]

Fig. 2: The decision tree adopted from the best one resulted from the recursive partition and regression tree method (Table 1). If the 
answer of the question in the box is “Yes,” then the path goes to the left arrow, otherwise it goes to the right arrow [21]
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and the Tanimoto similarity to a reference PLIF bitstrings [25] showed 
successful retrospective and prospective SBVS campaigns to discover 
novel active fragments for histamine H1 receptor [6]. Recently, 
retrospective and prospective SBVS campaigns were reported could 
discover novel active fragments for histamine H4 receptor with only 
using the Tanimoto similarity to a reference PLIF bitstrings but with two 
distinct reference ligands and two different templates in the building the 
receptor-ligand complexes for performing SBVS campaigns [29]. Since 
different references and templates could complementary resulted in a 
successful SBVS campaign [29], a reference-independent method using 
PLIF bitstrings could be of considerable interest instead of that instead 
of using Tanimoto similarity to a reference PLIF bitstrings as one of the 
scoring functions. Fortunately, RPART method [21] has provided such 
approaches and, in this research, resulted in a significantly improved 
quality of the SBVS protocol (Tables 1 and 2).

The prospective hit rate of the SBVS using combined objective scoring 
functions outperformed the one using a single objective scoring 
function [6,29]. As suggested by Istyastono et al. [29] and shown by de 
Graaf et al. [6], the optimization in using combined scoring functions 
could lead to a significantly better SBVS protocol quality. Notably, 
both SBVS protocols [6,29] made use of previous information of the 
molecular determinants in protein-ligand binding [7,31] to select 
only poses that have interaction with the pivotal ASP residue in the 
ligand binding [6,29], which increased the SBVS qualities significantly. 
These indicated that prior knowledge of the molecular determinants 
of the protein-ligand binding is pivotal to have robust SBVS protocols. 
However, not every relevant drug target has the privilege to have 
such information. The using of PLIF bitstrings as descriptors in this 
research offered the opportunity to identify virtually the molecular 
determinants in ERα-ligand binding (Table 3). In Fig. 2, these residues 
participate in different branches, which indicates that the effect of 
these molecular determinants is ligand dependent [1,2]. Notably, PLIF 
bitstrings #242, #117, and #105 were previously recognized in the 
visual inspection [13,18] as the plausible molecular determinants since 
they participated in the H-bond networks of the 4-hydroxytamoxifen 
binding to ERα (Fig. 1). However, only these residues, CYS530, TRP383, 
and MET421 that could be employed further in novel ligand designs 
since their PLIF bitstrings could correspond to the interaction of the 
side chain, while other PLIF bitstrings could only correspond to the 
main chain [11,25,32].

The method used in this research could be categorized as a binary 
quantitative structure-activity relationship [27] by using ChemPLP 
scores [24] and PLIF bitstrings [11,19,25] from previous retrospective 
SBVS campaigns [13] as the descriptors instead of using the 
physicochemical properties of the compounds [27,33-36]. Since the 
descriptors resulted from SBVS campaigns, the visual inspections on 
the corresponding docking poses and the information from the decision 
tree resulted from RPART method could provide more intuitive and 
powerful tool for the design of novel potent ligands [6,9,29,37]. Notably, 
the protocol resulted in this research could be employed to identify 
potent ligands for ERα. In turn, this offers the opportunity to identify 
potent phytoestrogens [38-40] and could provide early alarms of their 
activity and toxicity since they are available in daily foods [34,40-42].

CONCLUSIONS

Employing RPART method has led to a significant increase in the SBVS 
quality to identify potent ligands for ERα. Besides increasing the SBVS 
quality, analysis using RPART method on post-SBVS campaigns, which 
result in docking scores and PLIF bitstrings, could also assist the 
identification of the molecular determinants in protein-ligand bindings. 
These strategies could, therefore, be further employed and examined in 
the construction of SBVS protocols to identify potent ligands for other 
pharmaceutical relevant targets.
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