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ABSTRACT

The zebrafish is no doubt a powerful model organism with a combination of forward and reverse genetics, low cost, amenable high throughput, and 
rapid in vivo analysis. With these unique features, it can be expected that the zebrafish will become more frequently used for drug discovery. This 
review outlines the potential of zebrafish to contribute to drug discovery through the identification of novel drug targets, validation of those targets 
and screening for new therapeutic compounds and assay development.
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INTRODUCTION

The zebrafish (Danio rerio) is a small tropical fish, family of Cyprinidae 
and native to the river of India and South Asia. Zebrafish has been an 
important model organism in genetics and toxicology. A  number of 
unique features have contributed to its attraction such as it is a very 
small vertebrate that can be kept in captivity in large number easily. 
Its generation time is short and most important a single spawning can 
produce hundreds of offspring and that is fertilized outside of the mother 
and can be easily collected from the breeding tank. Furthermore, the 
entire body plan established by 24 hrs postfertilization (hpf) and most 
of the internal organ such as heart, liver, kidney, and intestine totally 
developed by 96 hpf [1]. A direct comparison of the zebrafish and human 
protein coding genes reveals a number of interesting features. 70% of 
protein coding human genes are related to genes found in the zebrafish 
and that 84% of genes known to be associated with human disease have 
a zebrafish counterpart [2]. The 9th assembly of the zebrafish genome 
(Zv9) reports 1.41 billion base pairs with ~24,000 protein coding genes 
present in zebrafish. Due to above advantages, the zebrafish has become 
an established model for genetics, development biology, neuroscience, 
cardiovascular, behavior science, toxicology, and human diseases [1,3-8]. 
Recently, it has crossed the border and metamorphosised into a 
promising tool for drug discovery and development.

THE UNIQUENESS OF THE ZEBRAFISH

The ability to culture large numbers of zebrafish embryos and larvae 
in small volumes of media [9] facilitates rapid testing of compounds 
for toxicity while using a minimal amount of compound (nanograms 
or less per animal). Compounds in the media are absorbed by the 
zebrafish through the skin and gills at embryonic stages and through 
the digestive system during later larval stages [10-12]. These 
features combine to create an ideal in vivo model suitable for medium 
throughput phenotypic screening in microtiter plates. Now zebrafish 
is used in various pharmacological studies including screening and 
investigation of mechanisms of action of biologically active substances, 
pharmacogenomics, and toxicogenomics [13].

In this study, we highlighted the potential of zebrafish to contribute 
to drug discovery and development through the identification of 
novel drug targets, validation of those targets and screening for new 
therapeutic compounds.

ZEBRAFISH IN DRUG DISCOVERY

Drug discovery is a complex process and normally involves expensive, 
laborious, and time-consuming tests. To tackle these limitations, people 

tend to look for a “shortcut” by which to reach their desired result. 
Modern drug discovery involves a wide variety of approaches for the 
identification and validation of new therapeutics, including both in 
vitro and in vivo assays. In vivo assays have been performed in cultured 
cells and yeast, as well as in whole animals, both invertebrates, such 
as Drosophila melanogaster and Caenorhabditis elegans, and mammals 
such as mice, rats, and primates [14].

The modern drug discovery process can be divided into three major 
components: Target identification and target validation; drug screening 
and clinical trials (Fig. 1). A conventional drug discovery has recently 
employed systematic, target based high throughput screening (HTS) 
in purified proteins or cells as primary screens with in vivo models 
as tertiary screens in the cascade after more mechanistic cell assays. 
While the in vivo screens have been successful at identifying small 
molecules affecting known mechanisms, there is still the need to 
identify modulators of the complex in vivo phenotypes in the whole 
organism for less well-understood pathways or those that only occur in 
a physiological perspective. The advantage of larval zebrafish is it will 
allow high throughput in vivo screening [15,16]. However, that uptake 
of compound into the zebrafish can be variable and should be measured 
for accurate interpretation of results and particularly to avoid false 
negative, and the larval stages of the zebrafish may not be appropriate 
in all disease [7]. Peterson and colleagues were done first chemical 
screen in zebrafish. They have screened 1100 compounds in 96 well-
plates for small molecules that caused developmental phenotypes 
during the first 3 days of development [9]. This was an important study 
showing that small molecule screening in zebrafish could identify 
genetic mutations, developmental disorder and timing of the chemical 
action during development.

TARGET IDENTIFICATION

Forward and reverse genetics screening have been successfully applied 
in zebrafish [17,18]. Forward genetics, characterized as “phenotype 
to genotype,” first involves the identification and characterization of 
a specific phenotype, followed by the identification of the underlying 
genetic mutation. Reverse genetics, “genotype to phenotype,” takes 
advantage of molecular biology techniques. In these cases, a gene of 
interest is selected and targeted by the morpholino oligonucleotide 
knockdown, Targeting Induced Local Lesions IN Genomes, or zinc 
finger nucleases and CRISPR associated protein-9 nuclease (Cas9) to 
discover the function of the genetic mutation within the fish [19,20]. 
The novel genes that underlie the zebrafish disease phenotypes might 
lead directly to the identification of novel drug targets. Alternatively, 
the disease phenotypes might form the basis of further screens to 
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find genes or chemicals that can correct the phenotype. Despite an 
appreciable history of pharmacological investigation dating back over 
half a century, it is only within the past decade that large-scale screens 
of small molecules have been performed using zebrafish-based assays. 
Initial compound screens have focused on the analysis of combinatorial 
chemistry libraries encompassing up to 20,000 molecules for their 
ability to induce a variety of developmental phenotypes [9,21,22]. 
While many currently used clinical drugs have no known target [18], 
target identification remains an important aspect of drug discovery. So 
far, only crude morphological defects [9] and behavioral changes [23] 
have been considered to evaluate the effects of the compounds, but 
it is also feasible to observe the gene expression, protein localization 
and metabolic changes into the specific organ. The numbers of assays 
are being used for target identification; one assay was used to analyze 
catecholaminergic neurons in mutated fish using whole mount in situ 
hybridization (ISH) [24]. Another experiment was performed that 
directly examined the behavior of zebrafish that was exposed to 
cocaine. In this experiment, identification of mutants was performed 
with the reduced sensitivity to cocaine [23]. In a third screen, zebrafish 
mutations with defects in blood clotting were identified by measuring 
time to clotting prolonged by copper chloride. This assay can analyze 
mutations with defects in blood clotting that may help identify drug 
targets [25]. Fourth, a fluorescent lipid assay was used to identify genes 
that may hinder with normal lipid processing [26]. A  triazine-based 
combinatorial library of small molecules was screened in zebrafish to 
identify compounds that produced interesting phenotypes. Genes that 
are expressed specifically in a tissue affected by a disease process may 
also represent novel targets for that disease. The ability to generate 
tissue-specific fluorescent transgenic fish can lead to the production of 
exquisitely tissue specific cDNA libraries through the use of fluorescence 
activated cell sorting for tissue collection [27].

TARGET VALIDATION

The process of target validation identifies and assesses whether a 
molecular target merits the development of pharmaceuticals for 
therapeutic application. Target validation as well as lead compound 
optimization can be done through zebrafish system. Disease model can 
be created through transgenic line or knockdown line that can help to 
validate the target [28]. The zebrafish has the added benefit of providing 
a system for their validation through the rapid analysis of gene function.

DRUG SCREENING

Drug screening assays using zebrafish becoming increasingly popular 
and used as a platform for in vivo HTS drug discovery [29,30]. 
Zebrafish has been more used for toxicological assessment, particularly 
cardiotoxicity, hepatotoxicity, neurotoxicity, and developmental toxicity 
[31,32]. The most promising use of drug screens in the zebrafish is to 
screen genetically modified zebrafish embryos instead of wild-type 
embryos. These genetically modified fish may be screened with large 
panels of drugs for reversion of the phenotypes. The targets of the 

chemical compounds will include factors downstream of the mutant 
gene and may include the expressed transgene as well. These types of 
screens provide a direct means to screen for chemical compounds that 
act in disease pathways. Examples of human disease gene which have 
been identified in the zebrafish are presented in Table 1.

ASSAY DEVELOPMENT FOR DRUG DISCOVERY

Four major classes of whole organism chemical screening assays are 
commonly used: Morphological screens, behavioral screens, fixed time 
point/labeling assays, and fluorescence assays [37]. Morphological 
assays encompassing basic qualitative observations to automated 
imaging, manipulation, and data processing systems provide whole 
organism to subcellular levels of detail. Behavioral screens extend 
chemical screening to the level of complex systems. In addition, 
zebrafish based disease models provide a means of identifying new 
potential therapeutic strategies. Automated systems for handling/
sorting, high-resolution imaging and quantitative data collection have 
significantly increased throughput in recent years.

Morphological screens
Visual observation of arrayed fish treated with chemicals is the 
simplest possible assay and can be performed easily at a dissecting 
microscope. Morphological screens utilizing zebrafish assessed specific 
processes such as organogenesis [38], fin regeneration [39], or bone 
morphogenetic proteins signaling [40]. Researchers have developed 
a number of mutant and transgenic lines with disease relevant 
phenotypes that can be utilized for chemical screening purposes. 
Chemical suppression of such mutant phenotypes is a powerful 
method that can give insight into the effect of a compound on specific 
disease relevant pathways. Similarly, the heart rate of zebrafish can 
be visually assessed by 1.5 dpf and has been used to screen for drugs 
that affect heart rate [41]. This assay was later extended to a voltage-
gated potassium channel mutant that exhibits a long QT syndrome 
phenotype. To improve throughput and remove subjectivity, advances 
in high content imaging (HCI) techniques have provided. HCI entails 
the rapid, automated capture of a collection of images, such as those 
from each well of a multi well-plate. These images can then be used 
for quantification of parameters such as the effects from compound 
exposure in a chemical screen. The visual system is especially amenable 
to study in the zebrafish, due to the large size of the eyes and the ease 
with which visual assays can be established [42,43].

Behavioral assays
Zebrafish swimming kinetics is a commonly used parameter in 
behavioral studies, for instance in assays to quantify the effects of single 
compounds [44]. Due to commercial availability of devices that record 
and quantify swimming behavior like mean velocity, active velocity, and 
percent time moving in a 96 well-plate format are also greatly increased 
in this type of assay. Rihel et  al. developed an automated rest/wake 
behavioral assay that quantified several parameters (rest bouts, rest 

Fig. 1: Drug discovery and development process
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latency, and waking activity) to create a “behavioral profile” for each 
assayed drug [45]. However, some of the important factors affecting 
the throughput of behavioral screens are require replicates for each 
assayed; the amount of time for a single assay.

Fixed time point/labeling assays
Procedures involving either fixation of samples, or labeling compounds 
that compromise biological function, represent “fixed time point” 
assays. Labeling methods can yield sample sets that can be repeatedly 
analyzed, and possibly even archived. The simplest of these methods is 
histochemical staining. ISH of endogenous mRNA has also been utilized 
in chemical screens. Furthermore, automation of immunolabeling and 
ISH screens through the use of mesh bottomed micro well-plates greatly 
increased throughput assays. Incubation of treated larvae in vital dyes 
is often a simple protocol that requires little processing compared with 
fixed embryo assays. In addition, a quantifiable signal is often quickly 
available, an advantage that increases throughput. Chemical screens 
that utilize hair cell specific vital dyes [46], and the commonly used 
acridine orange stain of apoptotic cells have been performed; as these 
dyes are fluorescent, they can be quantified by analysis of pixel intensity 
in captured images [47]. Other vital dye assays do not label specific cell 

types but have been used in screens as a reporter of biological processes 
such as fat content [48]. Similarly, an assay involving chemiluminescent 
substrate conversion to reveal drug metabolizing enzymes activity has 
been developed for use in toxicology studies.

Fluorescence assays
Many advantages brought to the forefront with this approach of 
fluorescence assays. Fluorescence-based screens are highly quantifiable 
and subtle cellular phenotypes can often be achieved. Furthermore, 
through expression of multiple, different colored fluorescent proteins 
within the same transgenic fish, several cell types or organs can be 
assayed simultaneously. Fluorescent zebrafish has also been utilized in 
multiple screens for potential cancer therapeutics including screens for 
antileukemia drugs [49] and anti angiogenics [50]. Angiogenesis was 
measured using either endogenous alkaline phosphatase staining of 
blood vessels or microangiography. Transgenic lines of zebrafish with 
fluorescent blood vessels have been developed, which simplifies the 
process by which blood vessels are visualized [51].

CRISPR/Cas9 system for genome editing
Several studies have employed the CRIPR/Cas9 system in zebrafish 
with high precision. By employing this technique targeted single 
nucleotide polymorphism modifications were done that could be 
transferred roughly to 10% of the germline. With such high precision, 
polymorphisms that drive disease condition could be modeled and 
screened for potential therapy and understand molecular pathways. In 
zebrafish the genes gol, ntl, and kra have been disrupted, th, fam46c, 
and smad5 have been added among the multiple others modified [52].

CONCLUSION

The zebrafish has already provided a wealth of fundamental information 
about embryonic development and disease [14,53]. With the completion 
of the Zv9 project and the establishment of a robust infrastructure for 
genetic and physiological studies, the zebrafish system sits poised to 
take on a larger role in the field of drug development. By contributing to 
target identification and validation, drug lead discovery and toxicology, 
the zebrafish might provide a shorter route to developing novel 
therapies for human disease. However, the development of disease 
relevant assays and disease models in the zebrafish is still in infancy 
and should be more. With the improvement of modern technology, the 
zebrafish might be able to important substitute of other mammalian 
models for the pharmaceutical discovery.
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