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ABSTRACT

Because of its importance in the human diet, potato growth and development have received considerable scientific attention, especially the regulation 
of tuber development. The trend of potato production has been toward greater acreage in warm climates using cultivars that were developed for 
production in cool climates. However, low land tropical regions are characterized by high temperatures that limit successful potato cultivation. High 
temperatures in potato promote haulm growth and suppress tuber production, whereas disbudding and paclobutrazol have the opposite effect, 
promoting tuber production and reducing the growth of the haulms by inhibiting GA biosynthesis which was increased by high temperature. In 
addition, the germplasm base for potato is large and assessments of germplasm performance under challenging conditions have revealed new 
possibilities.
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INTRODUCTION

Potato (S. tuberosum L.) is categorized in Solanaceae family and genus 
Solanum (Thompson and Kelly, 1972). It is believed to be originated 
and native to continent of South America (Eskin and Michael, 1989). 
Reports indicated that the introduction of potato to Ethiopia is in the 
year 1859 (Berga et al. 1994b). The cultivation of potato in Ethiopia 
was not wide and restricted only to homesteads for many years. 
Ethiopia with diverse agro ecology, suitable environmental and soil 
condition fits potato production, but the area cverage of production is 
estimated to be only about 66,926 ha and with national average yield 
of 13.8 t ha-1, which is very low compared to the world’s average yield 
of 19 t ha-1 (CSA, 2017). This low yield of potato is associated with 
different factors mainly lack of improved varieties, less availability 
and cost of seed, poor agronomic management, pest attack, poor post-
harvest handling, and lack of adequate market facilities (Tekalign and 
Hammes, 2005).

Potato prefers cool temperature between 16 and 25°C that favor 
foliage growth, better photosynthesis, and tuberization (Levy, 1992). 
High temperature is one of the factors affecting the expansion of potato 
across different parts of the world (Levy, 1986). In Ethiopia, about 
35% of semi-arid areas are considered suitable for potato production, 
but its cultivation is not practiced due to high temperatures across 
the months of the year. High temperatures in potato crops cause low 
production of assimilates, delayed tuberization, and low distribution 
of assimilates to tubers. Due to this, high temperature across tropics 
is considered the limiting factor in potato production (Menzel 1980; 
Vandam et al. 1996).

Formation of stolon is the prime stage of tuber formation which is 
the source of tuberization in its sub apical region (Booth, 1963). 

Environmental factors, mainly temperature and photoperiod are 
the factors affecting these processes (Slater, 1968). An early tuber 
growth in potato is associated to low mean temperatures (15–19°C) 
under a short photoperiod (12  h) (Vandam et al. 1996). In these 
conditions, growth and bulking are early, in addition absolute tuber 
growth rates and dry matter partitioning higher. Conversely, higher 
temperatures enhanced leaf growth, less assimilate partitioning, 
delayed tuber initiation and bulking, decreased absolute growth 
rate, and net photosynthesis happens in increasing dark respiration 
(Levy, 1992; Vandam et al. 1996). Some cultivars are more sensitive 
to high temperatures than are others (Khedher and Ewing, 1985). 
Nevertheless, it seems safe to say that for all genotypes, high 
temperatures, like long photoperiods, decrease the partitioning of 
assimilates to tubers, but an increase of partitioning to other parts 
(Wolf et al. 1990).

The inhibition of tuberization by high temperature is considered to 
be enhanced through the production of high levels of endogenous 
gibberellins (Menzel, 1983) which is believed to delay or negatively 
alter tuberization (Vreugdenhil and Sergeeva, 1999). The 
hormonal activity affecting potato tuberization can be altered by 
using chloroethylammonium chloride (CCC) (Menzel, 1980), and 
paclobutrazol (PBZ) (Tekalign and Hammes, 2005b).

Pruning by manual and commercially available chemical agents 
serve as a useful alternative. Both 2, 3, 5-tri-iodobenzoicacid and 
maleic hydrazide effectively inhibits bud development (the site of 
GA biosynthesis) at the lower amount and cause death of the buds at 
higher concentrations (Sachs and Hackett, 1972). Fatty alcohols such 
as 1-decanol and the lower alkyl esters such as C6-C10 fatty acids can be 
used to selectively kill or inhibit bud development without damaging 
stem or leaf tissue (Cathey et al. 1966). These substances are mainly 
contact phytotoxins, which enter through the cuticle and destroy 
underlying tissues by rupturing cell membranes. Their selective action 
is dependent on differences in cuticle structure and susceptibility of the 
buds (Dicks, 1976).

Cultivars development which have tolerance to high temperatures has 
been tried and achieved by integrating sources of tolerance in to the 
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Potato (Solanum tuberosum L.) is one of the most valuable crops in the 
world. In volume of world crops production, it ranks fourth following 
wheat, maize, and rice and took first rank from root and tuber crops 
(Douches, 2013). It is a rich source of nutrients about 79% water, 18% 
starch as a good source of energy, 2% protein and 1% vitamins 
including Vitamin C, minerals including calcium and magnesium and 
many trace elements (Ahmad et al. 2011).
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cultivated potato through conventional breeding (David and Richard, 
2007). Hence, the aim of this review is to determine response of potato 
to high temperature and measures taken to cope with such stress, 
which has become highly important in mitigating the impact of global 
warming.

POTATO RESPONSE TO HEAT STRESS

Sprout development
Smith (1968) described that from the environmental factors affecting 
plant growth and development, temperature is the single factor which 
is uncontrolled and seriously affecting growth and yield of potatoes. On 
a controlled environmental condition, the development of seed tubers 
above soil surface requires a temperature between 6°C and 18°C to 
optimum stem elongation (Borah and Milthrope, 1962). The growth of 
haulm is faster at high temperatures of 27°C in which the ratio of stem 
to weight of leaves is higher as the temperature is beyond the optimum 
level for leaf development (12–14°C).

Tuber induction and tuber initiation
Photoperiod has a significant impact on induction and initiation of 
tuberization in potato plant. Most traditional potato species known 
worldwide are short day plants for these processes, implies fast 
tuberization is observed under photoperiods shorter than critical 
values. Temperature alters the response of potato to photoperiods 
(Ewing and Struik, 1992; Struik and Ewing, 1995). The impact of 
higher temperature is higher in impeding, delaying, or inhibiting 
tuberization than cold temperatures (Ewing and Struik, 1992; 
Jackson, 1999; Snyder and Ewing, 1989; Wheeler et al. 1986). 
The impact of higher soil temperature is on preventing stolon 
from forming tubers but not on formation of stolon itself (Ewing 
and Struik, 1992). According to Kooman et al. (1996), duration 
between emergence and tuber initiation is short if treated by a 
temperature about 22°C. Whereas, slow development is observed 
at temperatures above that value (22°C) (Ewing and Struik, 1992). 
In consequence, the impact of high temperature prolongs the time 
between emergence and tuber initiation, there by creates larger 
plant size in start of tuber initiation. Apart from this, even if there 
is significant genetic variation in response to heat, but heat may 
completely impede tuber induction and formation (Ben Kheder and 
Ewing, 1985).

According to Borah and Milthorpe (1962), an optimum temperature for 
tuber formation is 20°C. Different responses have been recorded as at 
higher temperatures (25°C) it delayed tuberization by 2 week and at 
lower temperature (15°C), it delayed by 1 week. The cause for slower 
tuber formation at the lower temperature (<20°C) could be associated 
with slow metabolism and growth, and at the higher temperatures 
(>25°C) it could be the specific kind of inhibitory effect by high 
temperatures.

Tuber yield
As for research results, tuber yield of potato is very sensitive to 
changes in temperature. As illustrated in Table  1, the tuber yield of 
potato decreased with an increase in temperature in the range of 15–
27°C. Yandell et al. (1988) verified as the optimum temperatures for 
tuber yield in Russet Burbank and Norland were 17.5°C and 18.7°C, 
respectively. Burton (1981) reported as the optimum temperature at 
which higher yield of potato were recorded is at 22°C. As illustrated by 
different authors, the optimum temperatures usually are in the range 
of 14–22°C (Marinus and Bodlaender, 1975; Sands et al. 1979; Timlin 
et al. 2006).

High temperature can adversely affect potato tuber yield in two 
distinct ways. The first by its impact on reducing growth of the crop, 
in much the same manner as its impact on other crops (Gregory, 
1965). The effect of heat stress and heat induced moisture stress could 
be observed at interrelationships among enzymes, hormones, and 
perhaps membranes, shifting the metabolic balance so that there is less 

photosynthetic available for growth (Ewing, 1981). The second way 
is by its impact on reducing the distribution of photosynthates to the 
tubers (Ewing, 1981).

An increase in either day or night temperatures beyond optimal levels 
decreases tuber yields, from those the effect of high night temperatures 
is more deleterious (Gregory, 1956). Both high air temperature and 
high soil temperature cause yield reduction (Slater, 1968; Gregory, 
1965). The effect of high soil temperature on reducing tuber yield is 
very high, mainly if combined with high ambient air temperatures 
(30°C day/23°C  night).

Photosynthesis and respiration
The impact of temperature on respiration and photosynthesis is also 
well documented. The research result by Winkler (1971) concluded 
that the optimum temperature for photosynthesis and respiration is in 
the range of 16–20°C. As for his verification, the rate of dark respiration 
is doubled for every increase in 10°C temperature. According to Burton 
(1981) the optimum temperature for photosynthesis in European 
potato cultivars is about 20°C, and reducing temperature to 10°C 
caused a 25% reduction; however, for every 5°C raise above 20°C the 
photosynthesis rate approximately lowered by 25%. Therefore, he 
concluded that at temperatures above 30°C, net assimilation amount 
of potato falls to zero and yield reduction may happen. An experiment 
was conducted by Wivutvongvana (1979) to compare heat tolerant 
and heat sensitive clones of Solanum chacoense and Solanum acaule 
growing under non-tuberizing long day photoperiod. The result 
indicated that high rate of dark respiration was recorded by heat 
sensitive clones but there was significant difference in rate of carbon 
dioxide uptake during photosynthesis to heat tolerant clones. This 
result could indicate that tolerance to high temperature is associated 
to difference in respiration than photosynthesis. Dwelle et al. (1981) 
found that cv Russet Burbank had maximum photosynthetic rates at 
24–30°C with a substantial decline in the rate of assimilation at 35°C. In 
these experiments, stomatal conductance reached its maximum at 24°C 
and remained at the same level even at 35°C. Hence, they concluded 
that the reduced carbon assimilation could not be attributed to changes 
in stomatal conductance but rather to the effect of high temperature on 
the photosynthetic system. On the other hand, Dwelle (1985) observed 
differences in the rate of assimilation as well as differences in optimum 
temperatures among potato clones. Those results could suggest that 
clones with characteristics of higher temperature for photosynthesis 
and which can maintain low dark reaction at high temperature is best 
fit to warm climate. In contrast, Lafta and Lorenzen (1995) reported 
that high temperatures (31°C day/29°C night) have no effect on rate of 
photosynthesis for either heat tolerant cv Norchip or heat susceptible 
cv up to date. But, Prange et al. (1990) reported that temperatures of 
30/25°C (day/night) reduced net photosynthesis, because of reduction 
in the activity of photosystem II. Havaux (1993) described that rapid 
and irreversible loss of photosystem II in potato occurs at about 38°C. 
However, on plants acclimated at 30–35°C, the activity of photosystem 
II was maintained without appreciable loss even at 40°C. In heat 
tolerant cv Sahel the rise in the threshold temperature was as high as 
8°C than in the heat sensitive cv Haig. More tolerance to stress tolerance 
was found for Solanum juzepczukii compared to S. tuberosum (Havaux, 
1995). Hence, incorporation of this acclimation response could have 
paramount importance in enhancing field performance of cultivated 
potato in hot seasons.

Partitioning of assimilates
Temperature has a significant effect on determining the partitioning 
of assimilates to different parts of the potato plant. The effect of 
high temperature is exhibited in its impact in reducing assimilate 
partitioning to tubers and in the reverse enhances distribution to 
haulm (Vandam et al. 1996). The metabolic activity inside the plant is 
also affected by high temperature; it is through its role in determining 
changes in metabolic balance, presumably through growth regulators, 
enzymes, and other biochemical processes (Ewing, 1981). Accordingly, 
Krauss (1978) and Krauss and Marschner (1982) verified that under 
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high GA/abscisic acid (ABA) ratio, haulm growth is enhanced and tuber 
growth is inhibited, whereas at lower ratios the growth of vines is 
limited and tuber growth is promoted, a finding that has recently been 
confirmed by the construction of transgenic potato plants expressing a 
transcription factor (POTH1) that reduces GA expression and enhances 
tuberization (Hannapel et al. 2004). Higher level of endogenous GA 
reduced the activity of ADPG-pyrophosphorylase in the tubers, which 
slowed or stopped tuber growth (Mares et al. 1981). This could verify 
the association between tuber formation and high concentration 
of soluble sugars in tips of stolon (Slater, 1968). The higher levels of 
sucrose needed in media for in vitro tuber formation (Levy et al. 1993a) 
also agree to this result. The inhibitory impact of high temperature on 
tuber initiation and growth may arise from higher GA content which 
could promote and enhance shoot elongation through partitioning 
of carbohydrates (Mares et al. 1981; Booth and Lovell, 1972). Lafta 
and Lorenzen (1995) found that the reduction of activity of sucrose 
synthase in tubers of heat susceptible up to date was affected more by 
heat stress (72% reduction) than in the heat tolerant Norchip (59% 
reduction). Concomitantly, the reduction in tuber growth was greater 
under heat stress in up to date than in Norchip, as also reported by 
Wolf et  al. (1990b). However, the report by Lafta and Lorenzen (1995) 
did not explain about the differences in heat susceptibility of cultivars 
based on enzyme activities. Krauss and Marschner (1984) described 
that the activities of enzymes have role in starch metabolism which 
depressed at soil temperatures of 30oC, resulting in an inhibition of 
sugar conversion into starch.

Tuber number
High temperature stimulates the production of large number of tubers 
in cost of slowed growth of tubers. In accordance with this, the research 
result by Borah and Milthorpe (1962) supported the evidence of higher 
tuber number by high temperature. In contrast, Lafta and Lorenzen 
(1995) reported reduced tuber number at higher temperatures. 
Reports also verified that in long days, higher tuber number is recorded 
at the lower optimum temperatures (Wheeler et  al. 1986) and there is 
significant interaction between genotypes and environment (Vandam 
et al. 1996). Such difference were associated with the categorization of 
tuber in which some may consider the swelling tuber as full tuber.

As indicated in Table  1. For cv. Spunta, at a temperature of 23°C and 
below, tuber number didn’t indicate significant difference. Whereas, 
in cv. Desiree while the temperature increases from 15 to 23°C, the 
tuber number also showed an increase in exhibiting factors associated 
to higher temperature that prolonged stolon formation and enhanced 
stolon branching.

Tuber quality
Physiological tuber disorders
Heat stress, hot, and dry weather creates physiological disorder in potato 
tubers (Ahmadi et al. 1960). Exposure to high temperature creates 
internal rust spots or chocolate spots which could show symptom of 
necrotic brown spots in the tuber parenchyma (Iritani et al. 1984). 
Common features appeared in affected cells are discoloration, then 

wound phellogen and suberization, and finally aggregate and collapse 
of cells (Hooker, 1981). Similarly, high soil temperature exhibited heat 
necrosis, and brown discoloration in the vascular ring (Hooker, 1981). 
These necrotic symptoms are variable depending on severity of stress, 
cultivar, tuber developmental stage, and environmental conditions 
(Henninger et al. 2000).

Different types of tuber disorder symptoms by the effect of higher 
temperature are irregular tuber shape, chain tuberization or secondary 
tuber formation (often associated with excessive stolon elongation 
and branching), and sprouted tubers (Marinus and Bodlaender, 1975). 
Common problems such as tuber malformation and sprouting are 
associated to high temperature and drought stresses on field conditions 
(Levy, 1986a).

The impact of high temperature could be also exhibited during tuber 
maturation and at onset of tuber dormancy; it may shorten their rest 
period, release the inhibition of tuber buds, which could force the 
formation of pre-harvest sprouting. It is indicated that such processes 
are associated with an increase in endogenous content of growth-
promoting substances like gibberellins. The dormancy of tubers is 
reported to be affected by the balance between growth inhibiting 
and promoting compounds. Burton et al. (1992) reported a dramatic 
decrease in content of ABA and enhanced gibberellin concentrations 
in potato during end of dormancy and start of sprout growth. After 
harvest, treatment of tubers by gibberellins breaks dormancy and 
enhanced the stimulation of sprout growth. On the other hand, treating 
by thidiazuron showed reduced content of ABA and induced tuber 
sprouting (Ji and Wang, 1988). The report by Krauss and Marschner 
(1984) described that at higher temperatures (30°C), higher content 
of gibberellins and lower ratio of gibberellins to ABA is recorded. 
Likewise, van den Berg et al. (1991) found a lower amount of ABA that 
enhanced sprouting of tubers produced from leaf cuttings under high 
temperature (35°C).

On the other hand, exposure of tuber for high temperature even 
for short time causes tuber cracking (Lugt et al. 1964), in which it is 
associated to formation of high internal turgor pressure on tubers of 
potato. Potato grown in hot summer and irrigated at such conditions 
created rotting of tubers while underground (Levy, 1986a). The other 
impact of high temperature during growth is observed to increase the 
level of steroidal glycoalkaloids in tubers, which laterally may create 
bitter taste to the tubers (Dimenstein et al. 1997).

Specific gravity and dry matter content
Reports by Lujan and Smith (1964) concluded that specific gravity is 
an accurate index of mealiness for potatoes. The suitability of potato 
tubers to different roles such as cooking, canning, or dehydrating is 
accurately expressed by this factor. Based on different researches 
conducted on relationship of specific gravity to cooking, it is expressed 
that tubers with high specific gravity are mealy, contain high starch and 
slough for cooking (Nelson and Shaw, 1976).

Table 1: Effects of temperature on onset of tuber growth, relative tuber growth rate, relative partitioning rate (RPR), final dry matter 
tuber yield and final tuber number per plant

Cultivar Average temperature (°C) OTG (DAP) RTGR (d‑1) RPR (d‑1) Yield (g pl‑1) Number (per plant)
Spunta 15 36 0.38 0.090 213 23

19 38 0.37 0.090 191 23
23 42 0.34 0.055 140 22
27 68 0.32 0.040 31 _

Desiree 15 35 0.38 0.085 205 22
19 36 0.37 0.060 154 29
23 40 0.34 0.045 42 42
27 70 0.32 0.035 0 _

Data are for cvs Spunta and Desiree grown at a photoperiod of 12 h. Temperature regimes had a day-night differential of 6°C. sources: (Vandam et al. 1996; Ingram and 
McCloud, 1984).
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Lower specific gravity was recorded on tubers grown at higher 
temperature areas; this could be due to reduced available starch 
content to be transported to leaves and low incorporation of starch in 
to tuber tissue (Van Es and Hartmans, 1987). In addition, the dry matter 
content of potato should be well known as it determines weight of 
processed products. It also determines quality of potato for processing 
and cooking. Tubers with high dry matter content are suitable for 
processing and cooking as it contain less sugar and high water content 
(Nelson and Shaw, 1976).

Due to its characteristics of growing in cooler areas, potato is 
classified as a “cool season” crop. This indicates that temperature 
has significant effect on dry matter than any other environmental 
factor. At high temperatures, it is exhibited that there is high 
respiration which may cause higher burning of solids accumulated 
by photosynthesis, and then it creates lower dry matter content. At 
higher temperatures at night such impact could be even higher (Van 
Es and Hartmans, 1987). Lower dry matter partitioning to tubers is 
recorded at areas of higher day and night temperature (40/30°C) 
ranges (Ben Kheder and Ewing, 1985) and it may cause an increased 
assimilation levels by other parts of the plant which may be related 
to high GA levels (Menzel, 1980;Vandam et al. 1996). Several other 
reports also verified quantitative decline of dry matter content by 
higher growth temperature (Ben Kheder and Ewing, 1985; Marinus 
and Bodlaender,1975).

METHODS TO COPE WITH HEAT STRESS

Disbudding
The investigation by Chapman (1958) and Hammes and Beyers (1973) 
verified that tuber initiation can be enhanced by manual disbudding on 
long days. Other research report by Das Gupta (1972) concluded that 
decapitation increases the formation of storage roots and higher root/
shoot ratio was recorded in Beta vulgaris plant.

The inhibition of tuberization in long day conditions is associated with 
the formation of inhibitor substance (could be gibberellins) from leaves 
and buds (Chapman, 1958; Hammes and Beyers 1973). The verified 
impact of vegetative buds in producing gibberellins was reported by 
Lockhart (1957) who observed the reinitiating of suppressed shoot 
growth with addition of gibberellins. The result was later confirmed 
by experiments utilizing the agar diffusion technique in pea (Jones 
and Lang, 1968), sunflower (Jones and Phillips, 1966), and red clover 
(Stoddart and Lang, 1967).

The probability of gibberellin production at this site was confirmed 
by existence of exceeded amount of diffusible gibberellins over time 
than extractable gibberellins. The experiment by Jones and Phillips 
(1967) later evidenced such gibberellins synthesis by indicting that 
CCC significantly reduces the amounts of diffusing gibberellins. It could 
be indicated that gibberellins produced by buds are on continuous 
transportation through potato. Gibberellins are known to be part of the 
sieve tube sap (Hoad and Bowen, 1968) and xylem exudates (Skene, 

1967) in different plants and exogenous 14C labeled gibberellins are 
moved in the plant (Bowen and Wareing, 1969).

Ting and Lockhart (1965) verified that movement of assimilates and 
gibberellins transport are closely correlated. In Phaseolus coccineus, 
Nash and Crozier (1975) have observed very limited distribution of 
apically synthesized gibberellins and could only influence immediate 
sub-apical region. The source to sink relationship on potato plant 
could be different scenario as the transport of gibberellins could be 
bud to stolon which is different to Phaseolus (Ting and Lockhart, 
1965).

The response of potato to exogenous gibberellins could verify 
conclusions indicating that tuberization is controlled by this hormone 
(Menzel, 1980). The reported impact of disbudding depends on 
reduction of amount of gibberellin reaching to stolons from buds. 
As for reports, roots possibly play part in tuberization (Krauss and 
Sattlemacher, 1979). Crozier and Reid (1971, 1972) also indicated 
gibberellins may be synthesized by leaves of P. coccineus and could 
be transported to roots, which may undergo conversion to other 
gibberellins, and return to shoot. They concluded that the shoot part is 
the primary site of gibberellin synthesis.

The impact of high temperature could be in increasing the amount 
of endogenous gibberellins and inhibiting tuberization (Menzel, 
1980). The researcher also indicated that negative impact of high 
temperatures on tuberization could be controlled by manual or 
chemical disbudding. In such evidences even if there were no direct 
measurements of phytochrome levels yet, the verification of such 
results are consistent in indicating site of synthesis of gibberellin 
at buds, its transportation to stolon and the inhibitory impact on 
tuberization. Until the actual gibberellin contents is quantified the 
mechanism how high temperatures affect gibberellin biosynthesis is 
not well investigated that could be direct effect on synthesis or/and 
transport or by influencing meristematic activity.

The removal of buds and younger leaves significantly increased tuber 
yield, number, dry matter contents and specific gravity. This indicates 
that bud and younger leaves growth may have a depressing effect on 
tuber development perhaps due to competition for assimilate between 
them (Bizuayehu and Tekalign, 2007). The results showed in Table  2 
revealed the possibility of improving potato tuber yield by manipulation 
of the pruning treatments.

Paclobutrazol
The shoot growth of plants is highly regulated by triazoles even in very 
low amounts. The reported impact of PBZ in suppressing growth at 
different plants is well recorded in which the treated plants are dark 
green, short stature, and compact (Sebastian et al. 2002). Even if the 
dose of PBZ which is effective is variable from plant to plant, its growth 
reduction is well associated to reduce internode length (Davis and 
Curry, 1991). In potato plant this hormone reduces number of leaves; 
growth of shoots and the plant become short stature. The research 

Table 2: The effect of pruning treatments on total tuber yield, total tuber number, specific gravity and dry matter content of potato

Treatments (manual pruning) Total tuber 
yield (ton/ha)

Total tuber 
number (hill‑1)

Specific gravity 
(gcm‑3)

Dry Matter 
content (%)

Normal growing plants (control) 18.12b 9.14b 1.0710b 18.03b

Terminal buds removed 20.35b 9.48b 1.0734b 18.42b

Terminal buds and younger 
leaves removed

21.06b 9.61b 1.0736b 18.49b

Terminal and axillary buds 
removed

29.23a 11.67a 1.0873a 21.06a

Terminal buds, axillary buds, and 
younger leaves removed

30.01a 11.86a 1.0881a 21.33a

CV (%) 11.66 11.38 0.19 2.42
Means of the same main effect in a same column followed by the same letters are not significantly different at 5% level of probability. Source: 
(Bizuayehu and Tekalign, 2007).
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report by Haughan et al. (1989) indicated that PBZ treatment reduces 
cell proliferation thereby curtails shoot growth.

Different research studies verified that PBZ enhances the synthesis of 
chlorophyll in which treated plants markedly showed dark green leaves 
(Sebastian et al. 2002) and/or showed densely packed chloroplasts per 
unit leaf area (Khalil, 1995). Other researches also reported an increase 
in chlorophyll a and b contents in PBZ treated plants (Tekalign, 2006). In 
experiment conducted on potato plant by Bandara and Tanino (1995), 
higher chlorophyll content was exhibited in PBZ treated leaves. The 
impact of PBZ in delaying senescence and higher chlorophyll content 
of leaves could be associated to its impact on content of indigenous 
cytokinin content. The impact of cytokinin is exhibited by its impact 
in increased chlorophyl differentiation and chlorophyll biosynthesis 
which in turn prevents degradation of chlorophyll (Fletcher et al. 1982). 
Inhibitors of GA biosynthesis exhibited an increase in cytokinin content 
in rice (Izumi et al. 1988), soybean (Grossman, 1992), and Dianthus 
carophyllus (Sebastian et al. 2002). Other research reports also verified 
that onset of senescence is delayed by the treatment of triazole (Davis 
and Curry, 1991).

Treating plants by PBZ enhanced the chlorophyll content of leaves 
and earlier tuberization which favors higher net leaf photosynthesis 
(Tekalign, 2006). Such promoted net photosynthesis by treatment of 
PBZ was reported in soybean (Sankhla et al. 1985) and rape (Zhou 
and Xi, 1993). Other evidences also indicated treating by GA decreases 
tuberization in potato, whereas GA biosynthesis inhibitors exhibited 
promoted tuberization (Bandara and Tanino, 1995; Langille and 
Hepler, 1992). Analyzing rate of photosynthesis as separate event is 
difficult, but higher demand for sink created higher amount of source 
output, in which the reverse is also true (Peet and Kramer, 1980). In 
situation of higher tuber growth, amount of net photosynthesis and 
translocation of photo assimilates to the tubers is higher (Dwelle 
et  al. 1981). Conversely, significant reduction in photosynthesis was 
exhibited when fast growing tuber is removed which could indicate 
an imbalance in source and sink relationships (Nosberger and 
Humphries, 1965).

The effect of PBZ on partitioning of dry matters is also well recorded. 
This could be related to the impact of PBZ in formation of lower GA 
level in tuber tissues which may enhance the sink activity of tubers. On 
long days and higher temperatures, the biosynthesis of GA is higher that 
could cause fast growth in the top parts (Vreugdenhil and Sergeeva, 
1999). The exogenous application of GA in turn causes an inhibition of 
tuber formation; lower sink activity of tubers and increased growth of 
shoots and stolon (Menzel, 1980; Mares et al. 1981; Vreugdenhil and 
Struik, 1989). Other research reports indicated that high temperature 
reduces growth rate of tubers, the partitioning of assimilates, but 
increased distribution of assimilates to other parts of the plant (Menzel, 
1980; Vandam et al. 1996).

Due to its impact on increased rate of photosynthesis, earlier 
tuberization, higher chlorophyll content and reduced senescence of 
leaves, PBZ treated plants showed increased tuber yield (Tekalign, 
2006) (Table 3). Lower tuber numbers could be recorded under lower 
levels of GA activity which may cause lower stolon number (Kumar 
and Wareing, 1972). Simko (1994) reported that higher tuber yield 
was recorded at PBZ treated plants even if it is not clear that it is by 
increased tuber size or number. Conversely, Bandara and Tanino (1995) 
verified that the treatment of potato by PBZ nearly doubled number 
of tubers per plant but didn’t affect total fresh weight of the tubers. 
Such difference could be observed due to the difference in growing 
conditions mainly, cooler growing conditions, as 23±2°C/18±2°C day/
night temperature and length of the day to 16 h.

The characteristics of tubers with higher specific gravity and dry matter 
content in PBZ treated plants could be due to reduced GA in tuber 
tissue which may hasten sink strength to attract high assimilates and 

improve starch synthesis. Booth and Lovell (1972) reported that higher 
accumulation of GA in tuber tissue creates reduced sink strength. In 
inductive growing conditions, the activities of enzymes parted in potato 
tuber starch biosynthesis such as ADPG-pyrophosphorylase, starch 
phosphorylase and starch synthase increases (Visser et al. 1994). 
Exogenous application of GA3 on the growing tubers significantly 
decreases the activity of ADPG-pyrophosphorylase, while the role of 
starch phosphorylase remained more or less constant (Mares et al. 
1981). In agreement to this, Booth and Lovell (1972) reported that 
application of GA3 to potato shoots reduces movement of photosynthates 
to the tubers, reduced starch accumulation, increased sugar levels and 
resulted in reduction of tuber growth.

Tekalign and Asfaw (2002) verified that there is a positive correlation 
between dry matter content and specific gravity of potato tubers. In 
production of potato for processing purpose, enhancing the dry matter 
content by treating with PBZ is important as it increases the specific 
gravity of tubers.

By its impact of counteracting the activity of GA it is verified that 
PBZ enhances tuber crude protein content. On the other hand, GA3 in 
turn inhibits accumulation of patatin (a glycoprotein associated with 
tuberization) and other tuber specific proteins (Vreugdenhil and 
Sergeeva, 1999). There is positive correlation between crude protein 
content and dry matter content, in which increased dry matter content 
increases crude protein content. As per report by Paiva et al. (1983) the 
activity of GA in regulating accumulation of starch and patatin was well 
recorded, on the other hand, close correlation was observed between 
starch and patatin content.

Different reports have proved that treatment of plants by PBZ 
significantly extended tuber dormancy (Tekalign, 2006; Bandara and 
Tanino, 1995; Simko, 1994; Harvey et al. 1991). This could be due to 
the effect of PBZ in inhibition of GA biosynthesis and prevention of 
ABA catabolism (Rademacher, 1997). This, in turn, could create lower 
GA and high ABA concentrations in the tubers. The impact of GA3 in 
shortening tuber dormancy (Dogonadze et al. 2000) and the effect of 
ABA in inhibiting sprouting by hindering DNA and RNA synthesis is 
well recorded (Hemberg, 1970). The role of PBZ in prolonging tuber 
dormancy might have positive impact in potato industry as it prevents 
sprouting of potato cultivars in short time.

Screening for tolerance to heat stress
Differences in heat stress tolerance have been recorded (Levy et al. 
1991) mainly in primitive and wild Solanum species (Mendoza and 
Estrada, 1979) and in hybrid clones developed by crosses among 
various sources of tolerance (Mendoza and Estrada, 1979; Veilleux 
et  al. 1997).

Selecting reliable methodology to screen genotypes tolerant to heat 
stress is the prerequisite in success of breeding. Field trials are mainly 
suffered by impact of unpredictable weather, soil type, moisture 
and mineral distribution, disease incidence, etc., hence usually 
accommodate very limited number of clones (Tai et al. 1994). The other 
factor which prominently affects the use of seed tubers is also identified 
which is named tuber dormancy. There is variability in length of tuber 
dormancy across genotypes, which makes it difficult to synchronize the 
physiological status of seed tubers to a specific planting date. “Young” 
tubers grow at a slower pace, produce fewer stems and tuberize and 
mature late, while “older” tubers grow fast, develop more stems and 
tuberize and mature earlier. Such case may significantly alter the 
response to stress (Haynes et al. 1988). The maturation time of clones 
and cultivars is also variable in which early maturing ones express 
greater tolerance to stress than late maturing when grown in summer 
season (Levy, 1986b). Early maturing clones are known in accumulating 
yield in short period and late maturing types accumulate yield in long 
period which may cause exposure to high temperature in late summer. 
The relative yield ratio to potential yield is higher in late maturing types. 
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However, in favorable growing conditions, late maturing cultivars mostly 
out yield early maturing ones because of their longer growing period.

To select heat tolerant clones, different methods have been tried and 
used. To select heat tolerant sources in population of Solanum andigena, 
Ewing et al. (1983) used method of exposing of tuber for higher 
temperature. The selection of heat tolerant clones was conducted by 
two traits: Vigorosity of the shoot (indicates ability to produce high 
biomass under heat stress), and tuber formation (indicate ability 
to produce tuber at higher heat stress). This procedure is one of the 
repeatedly used methodologies for repeated comparison of clones in 
greenhouse condition (Nagarajan and Minhas, 1995). Use of cutting 
as research material overcomes problems associated to dormancy in 
tuber propagated materials. This procedure could easily identify heat 
tolerant and heat susceptible genotypes which could, in turn, help in 
identification of parent material (Ewing et al. 1983) and in selecting 
clones before field tests.

Mendoza and Estrada (1979) indicated that there should be 
a procedure that helps screening of heat tolerant genotypes 
(numbering in the thousands) in seedlings. Sattelmacher (1983) in 
turn responded by greenhouse of seedling populations by criteria of 
their capacity in tuberization under high temperatures treatments. As 
for his conclusion, tubers subjected to high temperature for 50 days 
gave high yield, and late tuberized ones gave better yield at the end of 
the growing season. This result is similar to yield difference recorded 
in late and early maturing cultivars grown under favorable conditions. 
Higher yield was recorded in late maturing cultivars than early 
maturing ones due to the fact that late maturing ones accumulate 
high yield in their long stay on field. Hence, late maturation and 
heat tolerance are the factors needed in getting high yield in warm 
climates. In a study of potato cultivar response to high temperature, 
to identify those that might be suitable for controlled ecological life 
support systems, Tibbitts et al. (1992) verified that late maturing 
cultivars had greater yield potential, confirmed by experiment of 
selecting potato cultivar which is suitable in controlled life support 
as subjected to high temperature (30°C continuous for 56 days/12 h 
photoperiod).

In an experiment conducted by Levy et al. (1991), their screening of 
parental materials (grouped according to maturation) under field 
and controlled greenhouse conditions, early maturation is closely 
associate to tolerance to high temperatures. Seedlings developed by 
a cross between heat tolerant and susceptible parents were tested 
to tolerance of high temperatures under greenhouse (30–35°C 
day/20–22oC night; 13  h photoperiod) condition. In such cases, 
0.4–3.9% of seedlings developed tuber at after 88  days. After this 
those seedlings were subsequently subjected to lower temperatures 
(24–25°C day/15–16°C night) to get increased number of selections. 
Later on, at about 69 additional days, 44–72% reportedly formed 
tubers and retained for additional tests. This procedure was in 
resemble to procedure developed by Reynolds and Ewing (1989), who 
first tested vigorosity of shoot grown cuttings, and then their potential 
to tuberization at higher temperature ranges. The other factor used 
in measuring tolerance to high temperature was elongation of stem 
(Nagarajan and Minhas, 1995). Enhancing the activity of GA in heat 
tolerant cultivars of Desiree and LT1 exhibited an increase of dry 

matter partitioning to shoots without altering formation of tubers. 
But, less tolerant cultivars could not able to tuberize in this condition. 
Hence, it can be concluded that heat tolerance capacity is dependent 
on ability to maintain the growth of tuber and haulm by balanced 
partitioning of assimilates. In different countries like sub-tropical 
India (Shekhawat and Naik, 1999), the semi-arid Middle East (Levy 
et al. 2001), and the tropics (CIP, 1984) screening by physiological 
response to heat stress was highly important in development of new 
heat tolerant cultivars.

Even if it is mainly labor intensive for use in breeding populations, 
in   vitro tuber formation, or microtuberization in high temperatures 
has been suggested as a screening tool for heat tolerance (Nowak and 
Colborne, 1989). Utilizing system of microtuberization at 28°C followed 
by radiation treatment of two cultivars of potato, Das et al. (2000) 
selected heat tolerant mutants after the microtubers are planted at field 
in natural system of heat stress.

CONCLUSION

The inhibitory impact of higher temperature has been mediated by 
producing GA like chemicals which are effective in inhibition of tuber 
formation. As per the result of different researches the hormonal 
impact which alters potato tuberization can be modified through use 
of GA biosynthesis inhibitors. The associated impact of PBZ in growth 
regulation is known to be by inhibiting GA biosynthesis and preventing 
ABA catabolism through its interference with ent-kaurene oxidase 
activity in the ent-kaurene oxidation pathway. Hence, it increases 
tuber yield and quality by increasing efficiency of photosynthesis and 
partitioning of assimilates to tubers.

Pruning by its impact in manipulation of indigenous phytohormone 
levels is considered as alternative method. The buds at the vegetative 
parts and younger leaves are main sites of gibberellins synthesis, and 
their removal substantially modified the phytohormone levels in the 
plant and results in the increase in yield and quality.

As there is larger germplasm base in potato plant, evaluation of their 
performance for challenging conditions revealed new possibilities. 
Combined with advancements in knowledge of molecular biology of 
the potato and revelation of genes responsible for stress resistance, the 
system is promising to meet the challenges of enhancing potato yield in 
non-traditional and stress susceptible conditions.
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Table 3: Tuber fresh mass, number, specific gravity, dry matter and dormancy period as influenced by rates of PBZ application

PBZ rate (mg 
a.i. plant ‑1)

Tuber fresh 
mass (g pot ‑1)

Tuber number 
(pot ‑1)

Specific gravity 
(g cm ‑3)

Dry matter (%) Dormancy 
period (days)

0 (control) 71.9c 10.47a 1.048b 13.84b 13.84b

45.0 151.5b 8.05b 1.061a 42.30a 42.30a

67.5 155.6a 7.00c 1.065a 43.92a 43.92a

90.0 141.2a 6.01d 1.061a 44.08a 44.08a

SEM 5.0 0.20 0.001 0.26 0.53
Means within the same column sharing the same letters are not significantly different (p<0.01). sources: (Tekalign, 2006)
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