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ABSTRACT 

Objective: To characterize the in vitro release of carbamazepine tablets and benzoyl metronidazole suspensions using the flow-through cell 

apparatus and simulated gastrointestinal fluids. 

Methods: Tegretol® tablets, Flagyl® suspension, and generic formulations of each were tested. Release studies were performed using an automated 

flow-through cell apparatus. Simulated gastric fluid (with and without pepsin) and simulated intestinal fluid (without pancreatin) at 16 ml/min and 

fasted state simulated intestinal fluid at 8 ml/min, all at 37.0±0.5 °C, were used as dissolution media. The quantity of dissolved carbamazepine and 

benzoyl metronidazole was determined at 5-min intervals until 60 min at 285 and 278 nm, respectively. Percentage dissolved at 60 min, mean 

dissolution time, dissolution efficiency values, and t10%, t25%, t50% and t63.2% were calculated. Mean values for all parameters were compared between 

the reference and generic formulations using Studentʼs t-test. Dissolution data were fitted to different kinetic models. 

Results: Simulated gastric fluid without pepsin showed no discriminative capability for carbamazepine tablets. Significant differences were 

observed between the reference and generic formulations for almost all parameters (*P<0.05). In some cases, the logistic model best described the 

in vitro release of both drugs. 

Conclusion: Using an apparatus and media that best simulates the gastrointestinal environment, we identified differences in the rate and extent of 

dissolution of both drugs that could help to optimise the design of interchangeable formulations. Based on the physicochemical characteristics of 

carbamazepine and benzoyl metronidazole and the conditions in which the formulations were tested, these differences could be of clinical relevance. 
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INTRODUCTION 

Carbamazepine, an antiepileptic drug with a narrow range of 

therapeutic efficacy, is widely used to control seizures [1]. Benzoyl 

metronidazole is an antiparasitic and antibacterial agent [2, 3]. 

According to the Biopharmaceutics Classification System, 

carbamazepine is a Class II drug owing to its low solubility/high 

permeability; metronidazole is a Class I drug owing to its high 

solubility/high permeability [4]. However, Kasim et al. [5] have 

classified metronidazole as a Class III drug (high solubility/low 

permeability), and a private company specializing in drug delivery 

studies [6, 7] has classified it as a Class IV drug (low solubility/low 

permeability). Both compounds are manufactured as generic tablets 

and suspensions, and to determine whether these drugs are safely 

interchangeable, evaluation of their in vitro release under conditions 

that simulate the natural environment of the gastrointestinal tract is 

very important. A generic product refers to a bioequivalent product 

with the same quality and efficacy as the new drug [8]. In vitro 

dissolution studies are currently performed with a United States 

Pharmacopeia (USP) basket (USP Apparatus 1) or paddle apparatus 

(USP Apparatus 2). An official dissolution test for carbamazepine 

tablets, using a USP Apparatus 2 at 75 rpm with 900 ml of 1.0% 

sodium lauryl sulphate aqueous solution as the dissolution medium, 

has been reported, but no official dissolution test for benzoyl 

metronidazole suspension is defined in the USP [9]. 

Accurately simulating gastrointestinal conditions is essential to 

adequately predict the in vivo behavior of poorly soluble drugs [10]. 

For immediate-release dosage forms containing Class II or Class IV 

drugs, drug solubilization and formulation properties have a 

substantial effect on in vitro and in vivo dissolution. The in vitro 

dissolution profiles should be evaluated during drug development 

using biorelevant tests (using biorelevant media combined with 

biorelevant hydrodynamics appropriate for the formulation) so that 

a correlation can be established between the in vitro dissolution and 

the in vivo performance [11]. Drug absorption may be affected by 

several physiological factors, including volume and composition of 

the gastrointestinal fluids, the pH and buffer capacity of these fluids, 

digestive enzymes, contraction patterns, and bacterial flora in the 

gut [12]. Simulated human fluids have been widely used to mimic 

the natural environment in which the dosage forms will be 

administered and to evaluate the predictive capability of a 

dissolution test. Simulated gastric fluid (SGF) with or without 

pepsin, simulated intestinal fluid (SIF) with or without pancreatin, 

fasted state simulated intestinal fluid (FaSSIF), and fed state simulated 

intestinal fluid (FeSSIF) are commonly used. The use of FaSSIF and 

FeSSIF is particularly important for poorly water-soluble compounds 

because they simulate the solubilizing environment of mixed micelles. 

They comprise a bile salt (sodium taurocholate) and lecithin 

(phosphatidylcholine), which are responsible for the emulsification 

and absorption of dietary fats in humans and animals [13, 14]. 

Some researchers have reported that hydrate formation is the main 

cause of changes in dissolution characteristics and clinical failure of 

some compounds, including carbamazepine [1]. These authors 

tested this drug using a channel flow cell and simulated 

gastrointestinal fluids as a dissolution medium. They concluded that 

dissolution studies of solids that are capable of hydrate formation 

are complex and cannot be completely understood simply by 

measuring the dissolved concentration. For these drugs, they 

suggest that dissolution studies must be initiated in a physiologically 

representative medium to determine an appropriate in vitro-in vivo 

relationship. On the contrary, some researchers studied generic 

suspensions of benzoyl metronidazole [15] and metronidazole 

benzoate [16]. Although both groups used 900 ml of 0.1 N 

hydrochloric acids as dissolution medium, one group used a USP 

paddle apparatus at 75 rpm and the other used a USP basket 

apparatus at 100 rpm. Differences in dissolution profiles were found 

by both groups. Others have studied the in vivo release of 

carbamazepine using different dissolution medium and agitation 
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rates [2]. The optimal conditions were used of a USP paddle 

apparatus at 50 rpm with SGF without pepsin as the dissolution 

medium. Under these conditions, only one drug product (of four 

studied) was considered similar to the reference product (f2>50). 

The flow-through cell method (USP Apparatus 4) is an alternative 

dissolution apparatus [17, 18]. Its advantages over USP Apparatuses 1 

and 2 have been widely demonstrated, especially for the study of the in 

vitro dissolution performance of poorly water-soluble drugs [19, 20]. 

The flow-through cell apparatus permits continuous extraction of the 

drug, simulating absorption into the systemic circulation, generating 

an intermittent flow of the dissolution medium into the cell where the 

dosage form is placed [21]. It can be used as an open system, allowing 

release under sink conditions, which facilitates the dissolution of 

poorly soluble drugs as well as changing the dissolution medium 

within a pH range of physiological relevance [22]. USP Apparatus 4 has 

been used with FaSSIF, FeSSIF, and fasted state simulated gastric fluid 

(FaSSGF) to evaluate the in vitro dissolution profiles of troglitazone 

tablets [23]. Additionally, the flow-through cell method has been used 

to obtain significant in vitro-in vivo correlations under fasted and fed 

state conditions for immediate-release danazol capsules [19] and for 

modified-release diclofenac sodium pellets [24]. All of these drugs 

have solubility problems. 

Despite the advantages of the flow-through cell apparatus over the 

USP basket and paddle apparatuses, little information is available of 

the in vitro release of carbamazepine and benzoyl metronidazole 

using the USP Apparatus 4 and simulated gastrointestinal fluids. The 

aim of this study was to quantify the in vitro release of both drugs 

from reference and generic formulations, using the flow-through cell 

apparatus and SGF with and without pepsin, SIF without pancreatin, 

and FaSSIF. The dissolution profiles of the reference and generic 

formulations obtained were compared using model-independent 

and dependent approaches. 

MATERIALS AND METHODS 

Reagents and drug products 

Benzoyl metronidazole, carbamazepine, lecithin, pepsin, and sodium 

taurocholate were purchased from Sigma-Aldrich Co. (St. Louis MO, 

USA). Ethanol, hydrochloric acid, potassium chloride, sodium 

hydroxide, potassium phosphate monobasic were purchased from J. 

T. Baker-Mexico. The Tegretol® tablets (Novartis Farmaceutica S. A. 

de C. V., Mexico) and Flagyl® suspension (Sanofi-Aventis de Mexico, 

S. A. de C. V., Mexico), containing carbamazepine (200 mg) and 

benzoyl metronidazole (250 mg/5 ml), respectively, were used. The 

Mexican health authorities (COFEPRIS) have established these 

brands as reference drug products [25]. A generic formulation of 

each containing the same dose was also used. Content uniformity of 

the carbamazepine tablets was determined, and assays for both 

drugs were performed on all products, according to the procedures 

described in the USP [9]. 

Dissolution studies 

Dissolution profiles for carbamazepine and benzoyl metronidazole 

were obtained using an automated flow-through cell apparatus 

(Sotax CE6, Sotax AG, Switzerland) with 22.6-mm cells (i.d.) and a 

piston pump (Sotax CY7−50, Sotax AG, Switzerland). In all 

experiments, laminar flow (with a bed of 6 g of glass beads) at 

37.0±0.5 °C was used. SGF with and without pepsin and SIF at pH 6.8 

without pancreatin were prepared according to the USP procedure 

[9]. FaSSIF at pH 6.5 was prepared according to a previous report, 

which evaluated its use for predicting the in vivo performance of 

Class I and II drugs [26]. All deareated simulated gastrointestinal 

fluids were pumped at a flow rate of 16 ml/min, excepting FaSSIF, 

which was pumped at 8 ml/min. An open system was used, without 

recycling the dissolution medium. Sequential sampling using 

nitrocellulose filters (Millipore) was performed every 5 min until 60 

min, with six replicates. For every trial, standard calibration curves 

were used for each drug. Standard solutions of carbamazepine and 

benzoyl metronidazole (1 mg/ml) in ethanol were prepared 

separately by serial dilutions of stock solutions in SGF with and 

without pepsin, SIF without pancreatin and FaSSIF to achieve 

concentrations of 10–25 µg/ml of carbamazepine and 50–80 µg/ml 

of benzoyl metronidazole. 

Data analysis 

The dissolution profiles of the generic drug products versus the 

reference products were compared by model-independent and-
dependent-approaches. For model-independent comparisons, the 

mean dissolution time (MDT) and dissolution efficiency (DE) were 
calculated. Furthermore, the percentage of drug dissolved at 60 min 

was compared. Mean values were compared using Student’s t-test. 
Differences were considered significant if *P<0.05. For calculation of 

DE and MDT values, the Excel add-in DDSolver was used [27]. For 
model-dependent comparisons, dissolution data were fitted to first-

order, Higuchi, Korsmeyer−Peppas, Hixson−Crowell, Peppas−Sahlin, 
Weibull, and logistic models. The model with the highest adjusted 

determination coefficient (R2
adjusted) and the minimum Akaike 

information criterion (AIC) was chosen as the best fit model [28]. 

Data analysis was performed using the Excel add-in DDSolver. 

Additionally, dissolution data were fitted to a single rectangular 
hyperbola model: y = ax/b+x using SigmaPlot software (version 

11.0). The t10%, t25%, t50% and t63.2% values were calculated using the a 
and b parameters. Reference and generic mean values were 

compared using Student’s t-test. Differences were considered 
significant if *P<0.05. 

 

 

Fig. 1: Dissolution profiles of carbamazepine tablets, determined using the flow-through cell and simulated gastrointestinal fluids. A) SGF 

without pepsin, B) SGF with pepsin, C) SIF without pancreatin, and D) FaSSIF. Reference (R) and generic (G) formulations. mean±SD, n = 6 
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Fig. 2: Dissolution profiles of benzoyl metronidazole suspensions, determined using the flow-through cell and simulated gastrointestinal 

fluids. A) SGF without pepsin, B) SGF with pepsin, C) SIF without pancreatin, and D) FaSSIF. Reference (R) and generic (G) formulations. 

mean±SD, n = 6 

 

RESULTS AND DISCUSSION 

Both carbamazepine drug products met the requirements of the content 

uniformity test, and the carbamazepine and benzoyl metronidazole drug 

products met the requirements of the assay tests specified in the USP. In 

the content uniformity test, carbamazepine (n = 10) ranged from 99.06 

to 105.09% (reference) and 97.94 to 106.58% (generic). In the assay 

test, the results for carbamazepine (n = 3) were 101.41±2.31% 

(reference) and 101.88±1.96% (generic), whereas those for benzoyl 

metronidazole were 102.37±2.89% (reference) and 99.57±3.21% 

(generic). All values are shown as the mean±SD. 

Dissolution profiles 

The dissolution profiles of carbamazepine tablets and benzoyl 

metronidazole suspension, determined using the flow-through cell 

apparatus and simulated gastrointestinal fluids, are shown in fig. 1 

and fig. 2, respectively. 

The carbamazepine generic and reference drug products showed 

limited dissolution in SGF without pepsin (<35%), likely due to its 

low solubility, the pH of the medium, and the absence of pepsin. 

Thus, SGF without pepsin is lacking discriminative capability for 

carbamazepine reference and generic products. Better in vitro 

release of carbamazepine was observed in SGF with pepsin, SIF 

without pancreatin, and FaSSIF. Previous reports showed significant 

differences in carbamazepine plasma levels of healthy volunteers 

[29] and in serum levels of patients using this drug [30]. An 

adequate dissolution test allows differentiation between drug 

products before clinical problems occur. The flow-through cell 

method (16 ml/min) with 1.0% sodium lauryl sulphate aqueous 

solution as dissolution medium was reported to be more 

discriminative for carbamazepine generic products than the use of 

USP Apparatus 2 [31]. In another report, rapid dissolution was 

observed when several carbamazepine formulations were tested 

under official conditions (USP basket apparatus and 1.0% sodium 

lauryl sulphate aqueous solution); however, SIF showed better 

discriminative capability between drug products [32]. 

Otherwise, the slow rate of metronidazole absorption from tablets 

was reported to be associated with the slow dissolution in the USP 

basket apparatus at 100 rpm using 0.1 N hydrochloric acids as 

dissolution medium [33]. Other researchers have reported 

variations in absorption, lack of bioequivalence, and ineffective 

treatment due to low drug levels [34]. Benzoyl metronidazole has a 

bioavailability of approximately 80%. Based on its solubility and 

absorption characteristics, it is classified as a Class IV drug. The 

dissolution of Class IV drugs is dependent on nature of the drug (acid 

or basic), its solubility, and formulation factors. Consequently, drugs 

with this class may have problems with dissolution, which can 

restrict in vivo absorption [2]. 

Some researchers have reported that fluids in the fasted state stomach 

typically have a pH<2, but ranging from pH 1−7.5. Food intake results 
in an almost instantaneous increase of the gastric pH. Depending on 
the content of the meal, the fed-state gastric pH increases to between 4 
and 7. Soon after food intake, the gastric pH gradually returns to the 
fasted state pH. The mean fasted-state pH in the proximal small 
intestine is approximately 6.5 [12]. This information is valuable when 
the dissolution medium for an in vitro release study is chosen. 
Research should focus on the establishment of discriminative 
dissolution tests to guide the development of a formulation with 
optimal bioavailability. We found that the USP Apparatus 4 and SIF 
without pancreatin allowed differentiation between the reference and 
generic formulations of carbamazepine and benzoyl metronidazole. 

Some conditions showed slow in vitro release of carbamazepine and 
benzoyl metronidazole from tablets and suspension, respectively. 
Some researchers have suggested that this result can be explained 
by the hydrodynamic conditions that characterize the flow-through 
cell apparatus, which lacks an agitation mechanism, and by the fact 
that the dosage form and the drug particles are continuously 
exposed to uniform laminar flow, similar to the natural environment 
of the gastrointestinal tract, causing a different dissolution pattern 
[35]. When using the USP Apparatus 4, cell size, glass bead type, and 
flow rate are critical factors in determining the dissolution pattern. 
Flow rates of 8 and 16 ml/min are suggested by the European and 
US Pharmacopeia [36]. When the flow rate of the dissolution 
medium is 16 ml/min, fluid flow inside the 22.6-mm cells is 4 
cm/min [37]. Fotaki et al. [37] reported that the axial velocity of the 
intestinal fluid is approximately 1.5 cm/min. Therefore, the axial 
velocity of 4 cm/min generated under the experimental conditions 
described above is close to reported physiological parameters. 

Model-independent comparisons 

Mean values±standard error of the mean (SEM) of percentage dissolved 
at 60 min and model-independent parameters MDT and DE are shown in 
table 1. In most comparisons, significant differences were observed 
between the generic and reference formulations of carbamazepine and 
benzoyl metronidazole (*P<0.05). Differences in the three parameters 
used to compare dissolution profiles were observed for carbamazepine 
in SGF without pepsin and FaSSIF, whereas for benzoyl metronidazole 
differences were only observed in SIF without pancreatin. 
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Table 1: Model-independent parameters of carbamazepine and benzoyl metronidazole 

Drug Medium Code Diss. at 60 min (%) MDT (min) DE (%) 

CM A R 17.99±0.58 27.25±0.37 9.81±0.30 
G 33.00±0.67* 39.68±0.29* 11.17±0.28* 

B R 52.55±3.67 34.27±1.17 22.57±1.86 
G 42.26±6.82 39.77±0.53* 14.06±2.01* 

C R 49.16±1.26 25.38±0.15 28.36±0.63 
G 74.55±1.61* 25.56±0.25 42.77±0.81* 

D R 53.31±2.08 28.19±0.18 28.28±1.15 
G 73.66±3.88* 29.19±0.39* 37.74±1.72* 

BM A R 61.68±2.16 17.18±0.51 43.98±1.37 
G 67.47±3.44 20.77±0.86* 43.90±1.39 

B R 80.94±1.28 19.97±0.14 54.00±0.85 
G 62.98±0.98* 19.71±0.27 42.29±0.71* 

C R 92.09±1.08 23.24±0.30 56.40±0.34 
G 55.41±1.39* 21.18±0.39* 35.86±1.03* 

D R 97.09±1.31 24.81±0.17 56.94±0.75 
G 79.42±1.19* 25.31±0.14 45.92±0.51* 

CM: carbamazepine, BM: benzoyl metronidazole, A: SGF without pepsin, B: SGF with pepsin, C: SIF without pancreatin, D: FaSSIF, R: reference, G: 
generic, MDT: mean dissolution time, DE: dissolution efficiency. mean±SEM, n = 6. *P<0.05 

 

According to previous reports, carbamazepine dihydrate showed a 
dissolution of 36.74% in FaSSGF at 60 min [38]; five benzoyl 
metronidazole suspensions in SGF without pepsin showed DE values 
of 56.60-93.96% in 90 min, using the USP Apparatus 2 at 50 rpm [2]. 

The model-independent parameters MDT and DE are commonly 
used to compare dissolution profiles. MDT represents the average 
time at which 63.2% of the dose is dissolved, and DE relates the area 
under the curve of the dissolution profile to the total area of the 
rectangle formed by the theoretical dissolution of 100% of the dose 
and the time interval of the test. MDT and DE have been also 
proposed as satisfactory parameters for in vitro-in vivo correlation 
(IVIVC) levels B and C [39]. Level B is defined as the relationship 
between MDT and mean residence time (average time that a 

molecule stays in the body), and both parameters are calculated by 
statistical moments analysis. Level C is defined as the association 
between a dissolution time point (t50%, t85%, etc.) and one 
pharmacokinetic parameter, such as area under the curve, Cmax, or 
Tmax. DE is used by some researchers as an appropriate parameter to 
expresses the global drug dissolution performance, useful for 
comparison of dissolution profiles [40] or to relate it to some in vivo 
parameter. 

Model-dependent comparisons 

The adjusted coefficient of determination (R2adjusted) and the AIC 
mean values for carbamazepine and benzoyl metronidazole are 
shown in table 2 and table 3, respectively. 

 

Table 2: Criteria used for the selection of the best fit model for the carbamazepine data 

Medium Code First-order Higuchi Korsmeyer-Peppas Hixson-Crowell Peppas-Sahlin Weibull Logistic 

R2adjusted 
A R 0.9903 0.8623 0.9530 0.9879 0.9899 0.9641 0.9739 

G 0.8370 0.5924 0.9904 0.8495 0.9523 0.9840 0.9725 
B R 0.8993 0.7040 0.9825 0.9208 0.9863 0.9862 0.9832 

G 0.7992 0.5753 0.9919 0.8212 0.9520 0.9825 0.9690 
C R 0.9941 0.8970 0.9479 0.9870 0.9841 0.9826 0.9961 

G 0.9634 0.8499 0.8727 0.9792 0.9608 0.9778 0.9976 
D R 0.9897 0.8461 0.9628 0.9957 0.9946 0.9926 0.9990 

G 0.9308 0.7963 0.9442 0.9584 0.9890 0.9930 0.9963 
AIC 
A R 14.60 47.82 33.85 17.32 16.96 31.62 27.65 

G 65.31 76.36 30.29 64.35 51.98 37.80 44.51 
B R 69.31 83.76 39.16 65.90 36.40 36.19 39.59 

G 72.66 82.21 30.29 71.39 57.40 43.31 51.15 
C R 32.18 67.86 60.52 42.13 46.94 47.07 25.65 

G 67.45 84.60 83.40 60.83 69.94 61.65 28.57 
D R 42.15 75.40 59.21 31.58 36.51 39.36 15.92 

G 74.40 88.18 73.25 67.74 53.85 45.25 23.34 

A: SGF without pepsin, B: SGF with pepsin, C: SIF without pancreatin, D: FaSSIF, R: reference, G: generic. Mean, n = 6 

 

The dissolution data for the carbamazepine reference and generic 
formulations were well fitted to the logistic model (R2adjusted>0.9961) 
when using SIF without pancreatin and FaSSIF as the dissolution 
mediums. The β values of this model for the reference and generic 
formulations, respectively, were 2.75±0.02 and 4.10±0.06 using SIF 
without pancreatin and 3.18±0.08 and 4.37±0.20 using FaSSIF. These 
data were used to compare dissolution profiles, and significant 
differences in the generic formulation were found in both simulated 
fluids (*P<0.05). Inconsistent fitting using SGF with and without pepsin 
was found for both formulations. In contrast, the data for the benzoyl 

metronidazole reference and generic formulations were well fitted by 
logistic model (R2adjusted>0.9551), but using SGF with and without pepsin 
as the dissolution media. The β values of this model for the reference and 
generic formulations, respectively, were 2.33±0.06 and 2.96±0.19 in SGF 
without pepsin and 3.63±0.06 and 2.82±0.06 in SGF with pepsin. 
Significant differences in the generic formulation were found in both 
simulated fluids (*P<0.05). Inconsistent fitting using SIF without 
pancreatin and FaSSIF was found for both benzoyl metronidazole 
formulations. None of the carbamazepine and benzoyl metronidazole 
data was well fitted by the Higuchi or Peppas−Sahlin models. 
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Table 3: Criteria used for the selection of the best fit model for the benzoyl metronidazole data 

Medium Code First-order Higuchi Korsmeyer-peppas Hixson-crowell Peppas-sahlin Weibull Logistic 

R2adjusted 
A R 0.7877 0.9221 0.8499 0.6960 0.9082 0.9167 0.9551 

G 0.9422 0.9326 0.8622 0.9053 0.9393 0.9547 0.9819 
B R 0.9813 0.9180 0.8193 0.9592 0.9193 0.9720 0.9963 

G 0.9314 0.9285 0.8211 0.8853 0.9194 0.9326 0.9707 
C R 0.9753 0.9173 0.9723 0.9932 0.9658 0.9967 0.9856 

G 0.9133 0.9577 0.9079 0.8696 0.9579 0.9597 0.9801 
D R 0.8986 0.9108 0.9414 0.9857 0.9782 0.9881 0.9514 

G 0.9829 0.8968 0.9426 0.9968 0.9830 0.9965 0.9947 
AIC 
A R 77.50 65.75 74.84 82.08 69.57 67.24 59.19 

G 64.80 68.73 78.03 68.47 68.70 62.30 50.06 
B R 59.22 77.17 87.47 68.38 78.54 64.65 36.34 

G 67.83 68.05 79.86 74.06 70.98 68.00 57.70 
C R 65.46 80.15 78.90 49.56 70.82 40.38 56.53 

G 65.29 56.90 66.21 70.38 57.84 56.30 47.98 
D R 80.60 82.03 77.76 59.92 66.53 57.50 74.05 

G 57.65 79.51 73.32 37.65 59.44 39.48 44.08 

A: SGF without pepsin, B: SGF with pepsin, C: SIF without pancreatin, D: FaSSIF, R: reference, G: generic. Mean, n = 6 

 

Table 4: Model-dependent parameters of carbamazepine and benzoyl metronidazole 

Drug Medium Code R2 t10% (min) t25% (min) t50% (min) 

CM A R 0.9957 30.01±1.44 96.78±5.73 404.36±56.54 
G 0.8723 23.56±0.54* 58.90±1.36* 117.79±2.72* 

B R 0.9533 12.94±1.20 32.34±3.0 64.68±6.0 
G 0.8567 20.23±2.63* 50.58±6.57* 101.15±13.14* 

C R 0.9966 8.36±0.16 23.69±0.61 61.11±2.70 
G 0.9791 5.69±0.13* 15.11±0.33* 33.70±0.80* 

D R 0.9969 9.78±0.48 25.58±1.25 55.43±2.73 
G 0.9861 7.71±0.36* 19.43±0.91* 39.45±1.88* 

    t25% (min) t50% (min) t63.2% (min) 
BM A R 0.9788 9.24±0.50 31.82±2.43 68.51±11.38 

G 0.9867 11.42±0.30* 32.26±1.57 53.11±4.65 
B R 0.9774 8.92±0.20 22.53±0.58 33.08±0.96 

G 0.9785 11.54±0.28* 33.71±1.10* 56.39±2.41* 
C R 0.9926 9.69±0.12 22.59±0.19 31.29±0.26 

G 0.9909 14.57±0.66* 48.71±3.46* 97.26±11.21* 
D R 0.9949 10.08±0.15 22.89±0.37 31.17±0.55 

G 0.9962 13.41±0.12* 30.71±0.40* 42.03±0.66* 

CM: carbamazepine, BM: benzoyl metronidazole, A: SGF without pepsin, B: SGF with pepsin, C: SIF without pancreatin, D: FaSSIF, R: reference, G: 
generic. mean±SEM, n = 6. *P<0.05 

 

Some authors reported that the Weibull model best fit the release 
kinetics of five benzoyl metronidazole commercial products (oral 
suspensions). All β values were<1, which indicates a parabolic curve 
with initial inflection. The dissolution conditions used were 900 ml 
of SGF without pepsin, a USP paddle apparatus at 50 rpm, and 90 
min of testing [2]. 

Additionally, the single rectangular hyperbola equation (y = ax/b+x) 
was used to fit the dissolution data for carbamazepine and benzoyl 
metronidazole drug products, where x is the time of the test, y is the 
percentage dissolved at time t and a and b are constants. With a and 
b parameters, the t10%, t25%, t50% and t63.2% values were easily 
calculated. The coefficient of determination (R2) and the tx% mean 
values±SEM of both drugs using different simulated gastrointestinal 
fluids are shown in table 4. 

The carbamazepine reference product released approximately 50% 
of the dose at 60 min in three of the four simulated gastrointestinal 
fluids, and the t10%, t25% and t50% data were calculated. These values 
were taken as the dissolution rate parameters and compared. 
Significant differences were found between the reference and 
generic formulations in all gastrointestinal fluids (*P<0.05). As 
previously discussed, owing to the limited dissolution of 
carbamazepine in SGF without pepsin, this simulated fluid does not 
have the discriminative capability for carbamazepine formulations. 

However, as the benzoyl metronidazole reference product showed 
almost 100% released at 60 min, t25%, t50% and t63.2% were calculated. 
When the dissolution profiles were compared, significant differences 
were found between the reference and generic formulations 
(*P<0.05), except for the t50% and t63.2% values, when SGF without 
pepsin was used (*P>0.05). 

The tx% and sampling time values are commonly used to characterize 
drug release rate. The tx% value corresponds to the time necessary to 
release a determined percentage of drug (e. g., t10%, t50%, t90%) and the 
sampling time corresponds to the amount of drug dissolved in that 
time (e. g., t10 min, t50 min, t90 min). Pharmacopeias use this parameter as 
an acceptance limit for the dissolution test (e. g., t45 min ≥ 80%) [41]. 
As no official dissolution test has been defined for benzoyl 
metronidazole suspensions and since this is an immediate-release 
dosage form, some researchers have suggested a Q value ≥ 80% and 
a dissolution time ≥ 60 min are adequate dissolution criteria [2]. 

Because little information is available on carbamazepine tablets and 
benzoyl metronidazole suspensions under the hydrodynamic 
environment generated by the USP Apparatus 4, additional research 
is necessary. Some authors have suggested optimization of the flow-
through cell to obtain reliable and discriminative results reflecting 
the major as well as the minor formulation variables prior to 
bioequivalence testing [21]. Finally, it is important to emphasize that 
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this is the first in vitro release study of carbamazepine tablets and 
benzoyl metronidazole suspension using the flow-through cell 
apparatus and bio-relevant media. Reference and generic 
formulations were found to show significant differences. The clinical 
impact of these results should be evaluated using appropriate 
clinical protocols. 

CONCLUSION 

Characterization of the in vitro release of carbamazepine tablets and 
benzoyl metronidazole suspensions using the flow-through cell 
apparatus and simulated gastrointestinal fluids revealed significant 
differences in the rate and extent of dissolution of both drugs in the 
generic and reference formulations. Given the physicochemical 
characteristics of carbamazepine and benzoyl metronidazole and the 
environment in which the formulations were tested, these 
differences could be of clinical relevance. 
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