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ABSTRACT 

Objective: Chemically modify by acetylation, Arracacia xanthorrhiza starch, and to physicochemically and pharmacotechnically characterize it, 

thereby evaluating its potential as a pharmaceutical excipient, in comparison with the native starch of Arracacia xanthorrhiza. 

Methods: The chemical modification was performed through acetylation with acetic anhydride (AA) on different levels, determining following 

starch’s characteristics: degree of substitution (DS), size and form of particles, its degree of crystallinity through X-ray powder diffraction (XRPD), 

gelatinization temperature (Tg) through differential scanning calorimetry (DSC), swelling power (SP) and sorption isotherms by means of Enslin 

method, and its application as excipient in tablet production, using diclofenac as model drug. 

Results: On the third level of substitution, the morphology of modified-starch particles presented changes on their surface and all modified starches 

increased their particle average sizes, in comparison to native starch. Starch crystallinity was not altered by acetylation, and the DS increased as 

more AA was added to the reaction. This modification caused a decrease of Tg by approx. 9.45 °C for A. xanthorrhiza starch modified to level III, in 

comparison to native starch. SP and water uptake capacity increased with starch modification, being greater to higher DS. Dissolution studies 

conducted on tablets showed that diclofenac delivery occurs practically immediately when using native starch, while those made of acetylated 

starch were close-fitting with Korsmeyer-Peppas model, with a release mechanism that suggests an anomalous, non-Fickian transport behaviour, 

related to a mechanism governed by swelling and diffusion. 

Conclusion: The results suggest A. xanthorrhiza acetylated starches, as promising materials for the development of controlled-delivery matrix 

systems. 
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INTRODUCTION 

Additional to requiring higher administration frequencies, 

conventional drug delivery systems may produce, over time, great 

fluctuations in the plasmatic levels when administered in multi-dose 

regimens, which is far from the ideal in pharmacotherapy. 

Controlled drug delivery formulations tend to offer a better 

approach to ideal therapy by favoring a more constant plasmatic 

concentration, maintaining it inside the therapeutic margin and 

reducing dosage frequency [1]. Among possible ways of controlled 

dosage, hydrophilic matrix formulations are the most efficient and 

most employed, given the simplicity and low costs of their 

manufacturing process [2, 3]. 

In these matrix formulations mainly hydrophilic polymers are used, 

especially those cellulose-derived. The possibility of obtaining 

alternative materials with similar behaviours would represent a 

valuable contribution to this field. One of these possibilities is using 

starches obtained from natural sources other than corn (Zea mayz) 

and potatoes (Solanum tuberosum), which could serve as excipients 

in their natural forms or by means of some physical, chemical or 

enzymatic modifications [4]. Some modified starches are used as 

excipients in the pharmaceutical industry, for controlling the speed 

of drug delivery in hydrophilic matrices, mostly [5, 6]. This is mainly 

due to the increase in swelling capacity, even at low temperatures, 

allowing for the formation of a gel-like barrier surrounding the 

particles [7]. 

Acetylation is among the most common chemical methods used to 

modify starch. This type of modification is obtained by esterification 

of native starch [8] and might be achieved with AA, vinyl acetate or 

acetic acid, and depends on factors such as reagent concentration, 

reaction time and temperature and pH value, that module the 

number of acetyl groups incorporated into-OH groups of starch 

molecules [9]. 

In order to select starch for industrial use, aside from economic 

viability considerations, it is necessary to evaluate physicochemical 

characteristics that depend on the vegetal source, the type of 

chemical modification and DS achieved. Native starch is normally 

not adequate for designing controlled drug delivery systems given 

its very quick release due to low swelling and quick enzymatic 

degradation in biological systems [10].  

The objective of this investigation was to chemically modify A. 
xanthorrhiza native starch (non-traditional starch source), by means 

of AA on different levels and evaluating it’s physicochemical and 

pharmacotechnical properties, with the aim of determining possible 

applications in the development of controlled drug delivery systems.  

MATERIALS AND METHODS 

A. xanthorrhiza rhizomes from which starch was derived were 

acquired in the marketplace of Paloquemao, in Bogotá (Colombia), 

choosing fresh, whole, bruise-free products presenting adequate 

organoleptic characteristics (20 kg). A voucher specimen of the plant 

(COL-602870) was identified and deposited at the Herbario 

Nacional Colombiano of the Universidad Nacional de Colombia. For 

starch extraction and acetylation processes, following substances 

were used: ethanol (EtOH) 96% (supplied by Empresa de Licores de 

Cundinamarca-Colombia, Pharmaceutical grade), AA ≥ 99.0% (J. T 

Baker, USA, analytical grade), sodium hydroxide (NaOH) (Merck, 

Germany, pharmaceutical grade), hydrogen chloride (HCl) (Merck, 

Germany, analytical grade) and deionized water (obtained by using 

Merck Millipore Milli-Q water purification equipment, Billerica, MA, 

USA). To determine the acetylation percentage (AP) and DS, 

potassium hydroxide (KOH) (Merck, Germany, analytical grade) and 

phenolphthalein (J. T Baker, USA, analytical grade) were used. In the 

evaluation of starch’s functionality as a diluent in tablet production, 

following substances were used: sodium diclofenac (Merck, 

Germany, pharmaceutical grade), disodium phosphate (Sigma-
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Aldrich, USA, analytical grade) and sodium phosphate (Sigma-

Aldrich, USA, analytical grade). 

Native starch isolation 

The process of starch extraction started with washing 20 kg of 

healthy A. xanthorrhiza rhizomes which were peeled, washed again, 

squared and blended with drinking water until a slurry was 

obtained. The latter was filtered and allowed to settle for one night. 

The supernatant liquid was eliminated by decantation and the 

sediment resuspended in distilled water to be washed anew. Finally, 

the sediment was resuspended in EtOH, vacuum filtered (vacuum 

pump Cast, DOA-P704-AA; USA) and dried to 40 °C (Mettler Toledo 

stove, Lindberg blue M, USA) for 12 h. The product was then packed 

and stored for its later use. 

Acetylation, acetyl-group determination and substitution degree 

Native starch was acetylated on three levels by varying the 

quantities of AA added (5, 10 and 15 ml for levels I, II and III, 

respectively), employing the method described by Mirmoghtadaie et 
al. [11], albeit with some modifications. A suspension consisting of 

200 ml of distilled water and 40 g of native starch was prepared, 

initially adjusting the pH to 8.5 by means of a NaOH solution 

(3%p/v), stirring at 20 rpm (Talboys, hot plate stirrer, 7x7 USA) and 

letting the system stabilize for 30 min. After that period, previously 

defined quantities of AA were added drop by drop. pH was kept 

between 8.5 and 9.0 (pH meter Mettler Toledo, seven easy, 

Switzerland) for the whole reaction through little additions of the 

same NaOH solution. Afterwards, the system was adjusted to pH 5 

with HCl solution (0.5N), filtered and the resulting residue washed 

three times with distilled water and once with EtOH, allowing it to 

dry at 40 °C for 12 h. The resulting modified-starch was then stored 

for later study. The reaction was verified through infrared (IR) 

spectrum of native and acetylated starches (Infrared spectrometer, 

Perkin Elmer, Spectrum BX, USA), in a wavelength interval ranging 

between 400-4000 cm-1. 

For AP and DS determination the alkaline saponification technique, 

as described by Sodhi and Singh, with modifications was used [12]. 

In a 250 ml flask were added 50 ml of EtOH-water solution (70% 

v/v) and then 50 ml of KOH solution (0.5N). The mixture was 

agitated at 50 rpm and kept at 50 °C for 30 min (Talboys hot plate 

stirrer, 7x7 USA) and later kept at room temperature for 72 h, with 

occasional stirring. Alkali excess was valued through back-titration 

with HCl solution (0.5N), using phenolphthalein as indicator. 

Simultaneously, a blank determination was made with a sample of 

native starch, following the same procedure. All calculations were 

realized with equation 1. 

AP �
��mL	blank�mL	sample�∗�HCl�∗0,043�∗100

sample	grams
…… (Equation 1) 

For which: 0.043= acetyl-group milligrams 

DS determination, which corresponds to the mean number of 

hydroxyl groups replaced by CH3-C=O groups in the anhydro-

glucose-unit (UAG), is calculated using equation 2: 


� �
�162∗��

��4300��42∗���
 ……. (Equation 2) 

For which:  

162 = molecular weight of each UAG. 

4300 = 100 x molecular weight of CH3-C=O group 

42 = Molecular weight of CH3-C=O group minus 1. 

Morphology, size and particle size distribution 

The morphology of each obtained starch was assessed using scanning 

electron microscopy (SEM, FEI, Quanta 200-r, USA). Particle size was 

assessed using a particle size analyzer (Mastersizer, Malvern 

Instruments, 2000S, USA) with a refractive index of 1.494 and±1% 

accuracy, employing cold water as a vehicle [13].  

X-ray powder diffraction (XRPD) 

X-ray diffraction analysis was performed on each obtained starch 

using an X-ray fluorescence spectrometer (Phillips, Magix Pro, 

Holland), in the range of 10 °-70 ° 2θ/θ, with a scanning speed of 

0.066 °2θ/s [14]. 

Swelling power (SP) 

The starch swelling was determined using the method described by 

González and Pérez [15], albeit with some modifications. The 

determination was conducted at temperatures between 25 and 70 

°C. 4 g of each starch were dispersed in 200 ml water and placed into 

a 300 ml triple-neck flask which contained a magnetic agitator. A 

refrigerant was plugged to the central neck, a thermometer to one 

side, and a glass cap to the remaining opening. Flask was heated and 

agitated at 30 rpm (Talboys hot plate stirrer, 7x7 USA), with 10 ml 

samples of the suspension taken each 5 °C. Said samples were placed 

in previously weighed centrifuge-flasks; the weight of flask and 

sample was measured and centrifuged at 2200 rpm for 5 min 

(Centrifuge Hettich, Rotofix32A, Germany). The supernatant was 

decanted in dry, previously weighed Petri-dishes and the weight of 

dish and supernatant was noted. Centrifuge tubes with precipitate 

were again weighed. Determinations were done in triplicate. 

Equations 3 through 6 were used for corresponding calculations. 

W1 �
Starch	dry�basis	weight	�g�

Starch	dry�basis	weight	�g��200
∗ 100……. (Equation 3) 

W2 � A ∗
W1

100
……. (Equation 4) 

%SS �
b

W2
∗ 100…… (Equation 5) 

SP �
a∗100

W2∗�100�%SS�
 ……. (Equation 6) 

A = Sample weight (g), a = Sediment weight in tube (g), b = Weight of 

residue in Petri dish (solubilized starch, g), W1 = Percentage of dry-

basis starch in suspension, W2 = Starch in each sample, % SS = 

Soluble solids percentage (g/starch g) y SP = Swelling power. 

Gelatinization temperature  

The range for gelatinization temperature was determined by DSC 

(Mettler Toledo, DSC823, Switzerland), following method by Alves et 
al. [16] with some modifications. 2 μL samples of water suspension 

(10% p/p) of each starch were placed in previously weighed 

aluminum capsules. Each capsule was weighed, including the 2 μL 

sample and then hermetically sealed. An empty aluminum capsule 

was taken as reference. Samples were then heated from-20 ° to 90 

°C, at 10 °C/min. 

Sorption isotherms  

For each starch, the sorption behavior was analyzed using a design 

by Enslin-Neff (fig. 1) [17]. On one of its ends, the equipment 

presents a sample unit, consisting of a glass funnel and a glass frit 

over which the sample is placed. On the other end, a graded pipette 

on the horizontal position at the same height as the upper level of 

the glass frit (to neutralize the effects of hydrostatic pressure). The 

system is balanced with distilled water (25 °C) using almost the 

whole pipette; fluid’s position in that moment represents the 

pipette’s point zero (starting position). The sample consisting of 

particulate matter (1 g) is placed uniformly applied on the glass frit. 

The sample absorbs liquid by capillarity and no other force shall 

intervene. The volume of absorbed liquid is measured at 

predetermined time intervals. Determinations were done in 

triplicate [14]. 

 

 

Fig. 1: Schematic representation of Enslin apparatus for water 
uptake studies 
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Evaluation of A. xanthorrhiza starches functionality as diluents 
in tablets 

These tests were conducted as described in the corresponding 

chapters of USP 39 [18]. 450 mg tablets were produced by direct 

compression for this trial, for each one of the starches, using sodium 

diclofenac (100 mg) as a model drug. Compaction pressure was 188 

Mpa, employing a punch of 5/16" 8 mm, (Hydraulic press, Carver 

Inc, Model C, USA).  

Determinations of dissolution profiles were done, in triplicate, under 

following conditions:  

Apparatus 1, medium phosphate buffer pH 6.8 (900 ml), speed 100 

rpm, temperature 37 °C and sampling times varied between 1 and 

16 h (Automatic dissolution, Distek, Evolution 6100, USA). Sodium 

diclofenac was quantified by ultraviolet spectroscopy (UV 

spectrophotometer, Agilent Technologies model 8453, USA), 

following a previously validated analytical methodology [16]. 

Different kinetic models such as zero-order, first order and 

Korsmeyer and Peppas (Equations 7, 8 and 9) were used to analyze 

drug-release kinetics from the tablets. 

��

�∞
� �′� …… Equation 7 

���
��

�∞
�  �′′� …… Equation 8 

��
�∞

= �′′′��……. Equation 9 

Where �� �∞⁄ , �′, �′′��′′′ represent the fraction of drug released, 

and the release constants for each model respectively. Similarity 

factor f2 was used for profile evaluation (equation 10) [19]. 

�� = 50��� � 1 + #
� ∑ �%� − '�����(# )�*,+ , 100-…… Equation 10 

For which Rt y Tt correspond to accumulated drug percentages 

released on each moment, for the tablets with native starch as a 

diluent and those with the corresponding modified starch, 

respectively. 

RESULTS AND DISCUSSION  

Degree of substitution  

In total, four types of starch were obtained: one of native starch, and 

three with different acetylation levels. Table 1 shows AP and DS 

achieved for each level. As the volume of AA added increases, a rise 

on both parameters can be evidenced, although not in directly 

proportional way. 

  

Table 1: Percentage and substitution degree of A. xanthorrhiza starch in different levels of acetylation 

Starch type Acetylation percentage mean±SD Substitution degree mean±SD 
A. xanthorrhiza native 0.00 0.00 

A. xanthorrhiza level I 7.9±0.09 0.33±0.004 

A. xanthorrhiza level II 13.5±0.12 0.59±0.006 

A. xanthorrhiza level III 16.6±1.12 0.74±0.06 

SD-Standard deviation; n=10. 

 

This might occur due to tight packaging of amylose chains in 

amorphous regions, and to the highly organized amylopectin chains, 

which might affect the efficiency of acetylation reactions on starch’s 

glucose units [12]. Efficiency was considerably lower than one 

achieved with corn starch under the same conditions (see 

supplementary material, table S1) because particle size of the corn 

starch is smaller and percentage of amylose is higher than A. 
xanthorrhiza, aspects that improve the reaction [20]; to increase 

reaction efficiency, catalysts and more drastic temperatures would 

be required [21]. Although the efficiency of the reaction can 

improve, it follows a mechanism of addition-elimination that under 

equal conditions will depend on the reactivity of the-OH groups of 

the starch, leading to the reaction not being homogeneous and at 

high concentrations of AA some glucose units will be inaccessible to 

react and the-OH groups will remain unacylated, obtaining values of 

DS far from 3.0 [20]. 

IR showed starch acetylation in reference to native starch (see 

supplementary material, fig, S1). When comparing the analysis of IR 

for the starches that were subjected to the reaction can be observed 

a decrease (shortening) of vibrations related to stretching or tension 

(between 3700-2800 cm-1). This is due to the introduction of acetyl 

groups to the structure of the starch that provides a certain 

spherical effect to the flexural vibrations indicating changes in the 

sample analyzed [9]. 

Likewise, the appearance of a band between 1720-1760 cm-1 was 

observed in the modified starches, this is assigned to the vibration of 

the C = O bond (carbonyl group), which is clear evidence of the 

modification [22]. Finally, with acetylation, a decrease was observed 

in the signals corresponding to the vibrations of stretching (3000-

3900 cm-1) and vibrations of flexion of the O-H groups due to the 

introduction of the acetyl C-O groups to the starch, corroborating 

that the acetylation reaction was performed on the samples 

analyzed [23].  

Morphology, size and particle size distribution 

SEM (fig. 2) showed irregular A. xanthorrhiza native starch granules 

(fig. 2a), with fluted, polyhedral, globular surface, which is in 

accordance to postulations by Moraes et al. [24]. For acetylation 

level I (fig. 2b), granules show no change on their surfaces, 

maintaining globular, polyhedral shapes. Level II granules (fig. 2c) 

show no surface changes, though some loose globular shape and 

evidence their fusion. Acetylation level III granules (fig. 2d) show 

light damage on their surfaces and increased irregularity; although 

they are not high due to the low DS, this could be generated by the 

fusion of the granules and the formation of hydrogen bonds, being 

evident also, by other authors, in modifications on starches such as 

butyrylation and carboxymethylation [25].  

 

 

Fig. 2: Microphotographs of A. xanthorrhiza starch (5000x): a) 
Native, b) Acetylation level I, c) acetylation level II, d) 

acetylation level III 

 

90% of native A. xanthorrhiza starch particles had a size smaller 

than 29.01 µm, with particle size distributions ranging between 2.10 

and 35.0 µm. Acetylated particles show an apparent size increase, as 

readings showed 90% of particles for acetylation levels I, II and III 
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stood below 100.95, 97.97 and 93.51 µm, respectively (see 

supplementary material, fig. S2-S5). Contact of acetylated material 

with water during the obtaining process tends to form a hydrophilic, 

adherent gel that could promote particle coalescence [26]. This 

coalescence is explained by the intergranular aggregation, which can 

be caused by interaction between functional groups due to an 

increase in the hydrogen bonds and therefore intergranular 

agglomeration [27]. 

X-ray powder diffraction  

XRPD measurement verified if acetylation altered the starch’s 

degree of crystallinity [10]. Fig. 3. shows signs at 14.9 °, 17.1 °,18.4, 

21.7 °, 23.3 °, which coincides with that reported by other authors 

[27], where the signal at 17 ° and the double peak at 22 ° and 24 ° 

are characteristics of the starch of A. Xanthorrizha. The crystalline 

pattern was not affected by acetylation in the working conditions 

(low DS), which agrees with some authors [28].  

However, some modifications made to starches for other authors, 
such as esterification with chloroacetic acid results in a change in 
the crystalline pattern, enough to destroy the crystallinity of the 
starch, changing it to an amorphous state [29]. For modifications by 
acetylation at high levels a decrease in crystallinity may occur due to 
substitutions of-OH groups by bulky acetyl groups in the starch 
chain, that reduce the formation of junction zones between starch 
molecules due to steric hinderances and results in the limited 
destruction of the ordered crystalline structure [30]. 

 

 

Fig. 3: X ray powder diffraction study of native A. xanthorrhiza starch and A. xanthorrhiza starch with three levels of acetylation (Levels I, 
II and III) 

 

Swelling power 

Fig. 4 shows that SP increases as the temperature rises which 

matches postulations of Li and Yeh [31], as it comes closer to gel 

formation. At this point, native starch can retain 16.20±0.22 times its 

own weight in water, while starches modified on levels I, II and III, 

present values of 22.93±2.48, 26.77±0.15 and 24.98±2.67, 

respectively at 65 °C (These values correspond to mean=3±SD). This 

increase occurs at the low level of acetylation, because inclusion of 

acetyl groups in the polymer chains that confirm the starch, causes 

an intragranular disruption that enables permeation of water to the 

amorphous region, which is eased by the greater energy supplied. 

Accordingly, more water is absorbed which translates into greater 

swelling [20, 32]. 
  

 

Fig. 4: Swelling power of A. xanthorrhiza native starch and A. xanthorrhiza acetylated starch with three levels of acetylation (Levels I, II 
and III). All the values were calculated as mean±standard deviation (n=3) 
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Fig. 5: Thermograms of native A. xanthorrhiza starch and A. xanthorrhiza starch with three levels of acetylation (Levels I, II and III) 

 

Gelatinization temperature 

Thermograms obtained through DSC, with Tg of native and modified 

starches are presented on fig. 5. 

Tg for A. xanthorrhiza native starch was 59.5 °C, consistent with 

values found on literature [33, 34]. This value is lower than those of 

corn and potato starches, for which gelatinization temperatures are 

76.27 °C and 73.66 °C respectively [35, 36]. This behavior is related 

to a shoulder on the amylopectin branched-chain length of A. 
xanthorrizha starch, which is known as a crystalline structural defect 

and contributes to the starch’s low gelatinization temperatures [37]. 

Tg diminishes progressively as the modification increases, reaching 

51.33 °C, 50.02 °C and 49.51 °C for acetylation levels I, II and III, 

respectively. These results could be associated with loss of 

molecular order in the granule [12]. Introduction of acetyl 

groups causes a disruption in the internal granule structure by 

disconnecting hydrogen bonds, both intra-and intermolecular. 

That way, less energy would be necessary for breaching chains 

and allowing water absorption, thus causing gelatinization [32, 

38]. 

Sorption isotherms 

Fig. 6 shows water-sorption profiles in terms of time and table 2, 

sorption velocity constants associated to each stage of the process. 

  

 

Fig. 6: Sorption isotherms of native A. xanthorrhiza starch and A. xanthorrhiza starch with three levels of acetylation (Levels I, II and III) 
(25 °C). All the values were calculated as mean±standard deviation (n=2) 

 

Table 2: Water uptake behavior of modified A. xanthorrhiza starch matrices 

Starch type Stage 1 
K(mL/mg. min) (R2) 

Stage 2  
K(mL/mg. min) (R2) 

Stage 3 
K(mL/mg. min) (R2) 

A. xanthorrhiza native 0.107 (0.8866) 0.0005 (0.7500) 0.0003 (1.0000) 

A. xanthorrhiza level I 0.1157 (0.9864) 0.0090 (0.9067) 0.0007 (0.9308) 

A. xanthorrhiza level II 0.0399 (0.8779) 0.0065 (0.9826) 0.0037 (0.9356) 

A. xanthorrhiza level III 0.0357 (0.8732) 0.0054 (0.9900) 0.0020 (0.9643) 

K= velocity constants (mL/mg. min); R2 = Coefficient of correlation of each state 

 

The sorption graphs show that A. xanthorrhiza native and 

acetylation level I starches both present a two-phase behavior 

characterized by high-speed on the first stage that decreases over 

time. For level I starch, sorption velocity constants are greater than 

those of native starch, which means a more hydrophilic material, 

albeit with less capacity to increase its surroundings viscosity. 

Acetylation levels II and III starches presented higher water 

sorption, albeit slower than native and level I starches. It could be 

because, at neutral or high pH values, the ionization of carboxyl 

groups and the consequent repulsion between chains with network 

dilation, which favors the entry of water [39]. This outcome is 

attributed to material’s observed tendency of forming a superficial 
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hydrophilic gel on the first stages of the process, which hinders 

water entry. This is associated to greater water sorption capacity as 

the acetylation degree increases when substitution degree is low 

[20]. Different behavior occurs at high levels of acetylation, as it has 

been reported by other authors [20]. 

Evaluation of A. xanthorrhiza starches functionality as diluents 
in tablets 

Tablets were produced to test the functionality of A. xanthorrhiza 

starch as a hydrophilic matrix, using sodium diclofenac as a model 

drug. A. xanthorrhiza acetylated starches presented good 

compression capacity, without evidence of lamination or adhesion to 

punches during production. These characteristics would show that it 

could be used as a diluent for direct compression [40].  

Fig. 7 presents release profiles for evaluated formulations, using 

native and acetylated starch as diluents. With native starch, 89% of 

sodium diclofenac is released on the first hour, while this same value 

is achieved near the 14th hour with modified starches.  

As tablets came in touch with dissolution medium at 37 °C, a 
gelatinous coat was formed around them. This coat’s thickness was 

greater as the starch’s DS increased. Tablets made of native starch 
disintegrated after about an hour, which didn’t happen on tablets 

made of modified starches. 
 

 

Fig. 7: In vitro release profiles of diclofenac from matrices of native A. xanthorrhiza starch and A. xanthorrhiza starch with three levels of 
acetylation (Levels I, II and III). All the values were calculated as mean±standard deviation (n=3) 

 

As previously shown, acetylation of A. xanthorrhiza starch significantly 

improves water sorption and retention capacities and drops its 

gelatinization point. This behaviour has been observed on other starch 

sources, although not in the same magnitudes [9].  

This behaviour suggests that, upon contact with dissolution medium, it 

acts as a plasticizer, thereby improving the mobility of polymer chains, 

capturing water and swelling, which in turn contributes to drug 

delivery control, depending on its modification level. This behavior is 

similar to cellulose polymers like hydroxypropyl methylcellulose 

(HPMC) [41].  

Table 3 shows results for kinetic behavior determination of sodium 

diclofenac release from matrices made of A. xanthorrhiza starch. 

  

Table 3: Release kinetics of diclofenac from A. xanthorrhiza starch matrices with different degrees of acetylation 

Starch type Release kinetic 
Korsmeyer–peppas n (R2) First order K(h-1) (R2) Zero-order K(% released/h) (R2) 

A. xanthorrhiza level I 0.5676 (0.9990) 0.2031 (0.9419) 5.9187 (0.9500) 

A. xanthorrhiza level II 0.6388 (0.9987) 0.1663 (0.8772) 5.4421 (0.9714) 

A. xanthorrhiza level III 0.6797 (0.9924) 0.1465 (0.9063) 5.8158 (0.9792) 

Release exponent = n, velocity constants = K, correlation coefficient = R2 

 

Korsmeyer-Peppas is the model that most closely aligns to results 
obtained when using modified A. xanthorrhiza starch (correlation 
coefficient approaching 1), with R2 between 0.9990-0,9924 and 
values for n between 0.5676-0.6797. This n value, associated to the 
release mechanism, suggests an anomalous, non-Fickian transport 
behavior, related to a mechanism governed by swelling and diffusion 
[42]. Swelling would be related to capacity of modified starch to 
improve the mobility of the polymer chains due to decrease in Tg in 
presence of water and increase of medium temperature, similar to 

explained for some authors for materials like HPMC [41]. Diffusion 
presented in delivery process would be associated to physico-
chemical properties of sodium diclofenac as its solubility and 
facilitated for the fluid ingress into the matrix [43]. Native starch 
matrices present a behavior similar to an immediate-release system, 
characterized by disintegration and active dissolution stages. 

Release profiles for varied formulations were compared by 

similarity factor (f2), with results being shown on table 4. 

  

Table 4: Dissolution profiles comparison of diclofenac from A. Xanthorrhiza starch matrices 

Dissolution profiles comparison Similarity factor f2 
Native vs Level I 30 

Native vs Level II 17 

Native vs Level III 17 

Level I vs Level II 46 

Level I vs Level III 47 

Level II vs Level III 57 
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Given that profiles are deemed similar when f2 ranges between 50 

and 100 [44], profiles for acetylation levels II and III are found inside 

the range, and their comparison with other levels shows no 

similarity between them. These results clearly evidence that 

acetylation of A. xanthorrhiza starch alters the physicochemical 

behaviour of native starch, generating a new material capable of 

controlling drug release, as shown in drug-release profiles with 

statistically-significative differences in comparison to native starch. 

Similarity shown for levels II and III implies that a low level of 

acetylation be enough for controlling drug release. 

Results suggest acetylated starch, on different levels, is able to 

module drug delivery, in contrast to what happens with native 

starch. 

CONCLUSION 

A. xanthorrhiza starch proved having great potential for the 

production of solid oral modified-release pharmaceutical forms. A. 
xanthorrhiza native starch modified by acetylation showed as DS 

increased, augmented swelling capacity, associated to a drop in 

gelatinization temperatures. This drop, in turn, promotes the 

formation of a hydrogel, a gelatinous coat around the tablets when 

put in contact with dissolution medium at 37 °C. This gelatinous coat 

prevents water from pouring-in into the tablet and interfering with 

drug release; hence being kept longer in the matrix and delivered 

according to the kinetic model of Korsmeyer-Peppas. In general, the 

favorable pharmacotechnical behaviour of modified A. xanthorrhiza 

starches enables their application as excipients in designing 

controlled-release solid pharmaceutical forms.  
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