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ABSTRACT 

Objective: The aim of this work was to prepare chitosan nanoparticles (CS NPs) using sodium tripolyphosphate (TPP) as crosslinker and to study 

the effect of chitosan polymeric properties and experimental conditions on the properties and stability of NPs.  

Methods: CS NPs were prepared by ionic gelation method, using TPP as a crosslinker. The particle size (PS), polydispersity index (PDI), zeta potential 

(ZP) and the morphologies of the NPs were studied. CS NPs prepared by varying the concentration of TPP, Chitosan molecular weight and its degree of 

deacetylation, the stirring speed, the rate of TPP addition and the freeze-drying method to study the effect of these variables on the NPs. The stability of 

the CS NPs was evaluated by storing aqueous suspensions of NPs and comparing the PS, PDI and ZP at the beginning and the end of the experiment. 

Results: This study shows that the PS, ZP and dispersity of the NPs depend on the chitosan polymeric properties and experimental conditions. The 

NPs sizes range between 145.73 and 724.23 nm. They all carried positive charges ranging between+4.32 and+43.67 mV. Most of the NPs have the 

same sizes after freeze-drying, but showed higher monodispersity and ZP, indicating higher stability. After twenty days of studying the stability, the 

NPs that had low ZP showed a large increment in size in comparison to the highly charged NPs.  

Conclusion: In conclusion, the polymeric properties and formulation variables in the ionic gelation method have a great influence on the CS NPs formed. 
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INTRODUCTION 

Chitosan (CS) is a polysaccharide that is used widely in 

pharmaceutical and biomedical preparations due to its unique 

biological properties. It is a safe, biocompatible, and biodegradable 

polymer. It has been approved by the food and drug administration 

(FDA) for wound dressing [1]. 

Chitosan is a linear copolymer of β(1 → 4) with randomly 

distributed N-acetyl glucosamine and glucosamine units. Chitosan is a 

basic polysaccharide with a pKa around 6.5, therefore, it is only 

dissolved in an acidic condition. Such acidic conditions may affect the 

chitosan toxicity on cells, especially if it is going to be applied for long 

times [2, 3]. 

The amine groups in the chitosan structure get charged in acidic media 

making the polymer a positively charged polyelectrolyte. The positive 

charges carried by chitosan interact strongly with many minerals and 

cells in the body that carry negative charges such as cholesterol, fats, 

proteins, mucin and tumor cells. Furthermore, chitosan can makes 

electrostatic complexes that are used for drugs encapsulation [4, 5]. 

Chitosan has been used to prepare nanoparticles (NPs) by itself or to 

enhance other polymeric NPs properties. CS NPs loaded with different 

drugs were prepared and they proved to enhance the absorption of 

these agents from different routes such as nasal, gastrointestinal and 

transdermal routes [6–8]. Furthermore, chitosan was used to coat NPs 

prepared from other polymers to enhance the properties of these NPs. 

Chitosan is reported to enhance the permeability of other polymeric 

NPs, decrease phagocytosis in blood, increase NPs residence time in 

the site of application, harmonize their release kinetics or charge, and 

enhance their mucoadhesive properties [9–13]. 

Chitosan nanoparticles (CS NPs) have been prepared by different 

methods such as emulsion cross linking, spray drying, reverse 

micellar method, template polymerization, polyelectrolyte 

complex, precipitation and ionotropic gelation methods [1, 4]. 

Ionic gelation technique is basically based on the ionic interaction 
between the positively charged amino groups of chitosan and the 
negatively charged groups of a polyanion. This polyanion is usually 
called a crosslinker. Different crosslinkers have been used, among 
which is sodium tripolyphosphate (TPP) [14–16]. TPP is the most 
extensively used crosslinker in preparing CS NPs because of its 
safety and multivalent properties. Polyphosphates including TPP are 
hydrolyzed into simpler phosphates, which are considered as 
nutritious. Because of that, the toxicity of polyphosphates is very 
low, and they are considered safe. In addition, TPP have been 
reported to be neither mutagenic nor carcinogenic [17, 18]. 

In nanomedicine, the particle properties such as the size and the 
charge play an important role in determining its biological behavior. 
These properties affect the cellular uptake, protein adsorption, and 
accumulation of the NPs and their distribution throughout the body. 
Unfortunately, chitosan/TPP nanoparticles are usually polydispersed 
and suffer from poor stability, which limit their use. The particle size 
distribution depends on several factors such as the chitosan/TPP 
mixing, chitosan concentration, degree of deacetylation and molecular 
weight, the ionic strength and the media pH [19, 20]. These problems 
must be overcome before CS NPs can move to the clinical trials level 
and then become commercially available.  

In this study, the effect of some factors on the size, polydispersity 
and charge of CS NPs in the presence of TPP as the crosslinkers were 
studied. The effect of the concentration of TPP, Chitosan molecular 
weight and its degree of deacetylation, the stirring (speed and 
method), the rate of TPP addition and the freeze-drying method on 
NPs were investigated. Finally, the prepared CS NPs were 
evaluated in vitro to determine their stability.  

MATERIALS AND METHODS 

Materials 

Chitosan (250 kDa and 93.0% DDA) was purchased from 

ShanghiHanshare Industry (Shanghai, China). Low molecular weight 

chitosan (50–190 kDa, 75% DDA) was purchased from 
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Sigma-Aldrich (St. Louis, MO). Sodium tripolyphosphate (TPP) was 

purchased from AZchm (china). All other chemicals and reagents 

used were of analytical grade. 

Methods 

Preparation of different molecular weights of chitosan 

Two molecular weights of chitosan were used in this work, the first 

one was purchased from sigma and has a molecular weight of 50 

kDa. The other one was prepared in our laboratory by acid 

depolymerization and has a molecular weight of 15 kDa [21]. This 

polymer was a result of cleaving high molecular weight chitosan of 

250 kDa. Hight molecular chitosan was dissolved in 2 M HCl to make 

1% solution. Then the solution was refluxed for two hours. After 

that, the solution was added to ethanol in a ratio of 1:2 v/v and 

cooled down. Finally, the precipitate was filtered and washed 

several times with ethanol and centrifuged at 4000 rpm for 5 min 

(Thermo scientific, Germany). The obtained chitosan was freeze 

dried for 24 h (Telstar, Spain) and the powder was kept in an 

amber-airtight glass bottle and stored at room temperature. 

Preparation of different DDA of chitosan 

Three different degrees of deacetylation (DDA) were used to prepare 

CS NPs in order to study the effect of chitosan DDA on the 

physicochemical properties of the NPs. All three patches have the 

same molecular weight, which is 15 kDa. The first one resulted from 

the previous step and has a DDA ~92%. This polymer was further 

used to prepare the other two DDAs by acetylation reaction. First, 1% 

CS (15 kDa) was dissolved in water at pH of 6.5. Then the solution was 

divided into two parts to which acetic anhydride was added to make 

1:0.15 and 1:0.6 molar ratios to prepare the 55% and 75% DDA, 

respectively. The mixtures were stirred at 500 rpm at room 

temperature and the pH of the solutions was maintained at 6.25. After 

10 min, the chitosan solution was dialyzed against 4 L of distilled 

water with gentle stirring at room temperature for 24 h using dialysis 

tubes (12,000–14,000 Da molecular weight cut-off). Finally, the 

dialyzed chitosan solution was poured in Petri dishes and dried 

overnight in an oven at 40 °C and the powder was transferred to an 

amber-airtight glass bottle and stored at room temperature [21]. 

Characterization of chitosan molecular weight 

The average molecular weight of chitosan was calculated by 

applying the Mark–Houwink’s equation [22]. Briefly, chitosan was 

dissolved in water and the viscosity was measured using a 

viscometer (Vibro viscometer, Japan). Then, the viscosity average 

molecular weight was calculated.  

Characterization of chitosan DDA 

The DDA of the chitosan patches was determined using proton 
nuclear magnetic resonance (1H-NMR) (Bruker Avance Ultra Shield 
300 MHz, USA). Chitosan samples (30 mg/ml in D2O) were scanned 
25 times. The DDA was calculated using the integrals of the H1 
proton peak of the deacetylated monomer (H1-D) at 5.2 ppm and the 
peak of the three protons of the acetyl group (H-Ac) at 2.8 ppm [23]. 

Preparation of CS NPs 

The NPs were prepared using a modified ionic gelation method 
previously described in the literature with some modifications. 
Chitosan was dissolved in an aqueous solution of acetic acid (0.2 
mg/ml) to form 0.5 mg/ml of chitosan solution. The chitosan 
solution was stirred overnight at room temperature using a 
magnetic stirrer at a pH of 3.6. After that, the chitosan solution 
passed through a syringe filter (0.45 µm), and was then preheated in 
a water bath at 60 ℃ for 10 min. In another beaker, TPP was 
dissolved in HPLC water in different concentrations and then passed 
through a syringe filter (0.45 µm) and cooled to 2-4 ℃. Finally, 5 ml 
of TPP solution was added to 10 ml of chitosan solution and stirred 
for 10 min. The formed suspension was centrifuged (Thermo 
scientific, Germany) for 30 min at 10000 rpm. The nanoparticles 
were repeatedly washed with deionized water and freeze-dried for 
48h at −80 °C to obtain the powdered nanoparticles [24, 25].  

This procedure was repeatedly used to prepare CS nanoparticles, 

and in each time, one of the preparation factors was changed in 

order to investigate its effect on the physicochemical properties of 

the NPs. TPP concentration, stirring speed, molecular weight of CS, 

CS degree of deacetylation and rate of adding TPP were investigated.  

Characterization of CS NPs  

The mean particle size (PS), polydispersity index (PDI) and zeta 

potential (ZP) of the nanoparticles were measured using a 

Zetasizernano ZS90 instrument (Malvern, UK). The particle sizes and 

PDI were determined at 25℃C using dynamic light scattering (DLS). 

The zeta potential was calculated from the electrophoretic mobility 

of the NPs in aqueous solution using the Helmholtz–Smoluchowski 

equation under an electrical field of 40 V/cm. All measurements 

were carried out in triplicate (n = 3). 

The morphologies of all CS nanoparticles were investigated using 

SEM (Thermo scientific, Germany). The samples were coated with 

carbon film prior to analysis, and then, studied under a microscope. 

The stability of the CS nanoparticles was evaluated by storing 

aqueous suspensions of different formulas at room temperature 

(~25 °C). Few milligrams of each NP formulation were dispersed in 

deionized water in a transparent glass bottle and observed for 

twenty days. The particle size, PDI, and the zeta potential were 

measured at the beginning and the end of the experiment. 

RESULTS AND DISCUSSION 

Preparation of different DDA and molecular weights of chitosan 

The molecular weight and DDA of the chitosan purchased from 

sigma were determined and found to be 51.7±3.20 kDa and 

75.01±1.34 %, respectively. This polymer molecular weight will be 

referred to as 50 kDa and it’s DDA as 75% for simplicity. The 

chitosan that was prepared using high molecular weight chitosan 

had a molecular weight of 15.32±0.24 kDa and a DDA of 91.9±0.22 

%. Further, the other two patches prepared using low molecular 

weight chitosan had DDA values of 75.09±1.37 % and 54.34±2.16 %. 

The molecular weight of these polymers will be referred to as 15 

kDa and their DDAs as 90%, 75% and 50% for simplicity. 

Preparation of CS NPs 

Different patches of CS NPs were prepared by changing a single 

factor at each time. The effect of TPP concentration, stirring speed, 

the molecular weight of CS, CS DDA and rate of TPP addition were 

investigated and the mean particle size, PDI and zeta potential of the 

different formulations were measured (table 1). All NPs prepared in 

this work showed spherical morphology confirmed by scanning 

electron microscope (SEM) (fig. 1). Following is the effect of each 

factor on nanoparticles physicochemical properties. 

 

 

Fig. 1: SEM image of CS NPs with a scale bar of 2 µm 

 

Effect of TPP Concentration on CS NPs  

Different concentrations of TPP were used and their effects on the 

size, PDI and charge of the nanoparticles were investigated. As the 
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amount of TPP used in the formulation increases, the size of the NPs 

decreases to a minimum and then starts to increase again (fig. 2-A). 

In this study the amount of the TPP was increased while the amount 

of chitosan and the volumes of the liquids were constant. In 

general, crosslinking agents are used in CS NPs formulation to 

reduce the mobility of chitosan and enhance its physicochemical 

properties such as stability. TPP is a polyanion that interacts with 

the amino groups in chitosan to form a gel through inter-and 

intra-molecular cross-linkages during the ionic gelation procedure 

[16].

  

Table 1: CS NPs, prepared under different conditions, mean particles size (nm), PDI and ZP (mV) before and after freeze-drying (n=3) 

 Before freeze drying After freeze drying 

Formula TPP (mg) CS MWT* CS DDA TPP addition# Stirring+ PS (nm) PDI  ZP (mV) PS (nm) PDI  ZP (mV) 

F1 7.5 50 90 0.25 700 208.50 0.08 17.37 169.00 0.20 20.33 

F2 7.5 50 90 0.50 700 277.20 0.10 15.67 186.90 0.22 8.04 

F3 7.5 50 90 1.00 700 247.13 0.15 18.13 229.80 0.27 6.06 

F4 7.5 50 90 1.50 700 257.93 0.22 6.53 254.63 0.24 12.80 

F5 7.5 15 90 2.50 700 388.07 0.41 8.14 346.13 0.50 13.73 

F7 7.5 15 80 2.50 700 555.10 0.35 7.00 446.13 0.41 10.63 

F6 7.5 15 55 2.50 700 663.07 0.51 4.78 582.07 0.52 4.32 

F8 7.5 50 90 2.50 500 383.97 0.47 27.13 350.47 0.48 30.31 

F9 7.5 50 90 2.50 1000 287.40 0.22 5.69 262.23 0.25 10.90 

F10 7.5 50 90 2.50 1500 145.73 0.28 8.74 243.37 0.22 12.23 

F11 1.5 50 90 2.50 700 610.00 0.54 40.00 576.13 0.54 43.67 

F12 2.0 50 90 2.50 700 400.00 0.55 39.00 444.60 0.55 43.53 

F13 3.0 50 90 2.50 700 356.70 0.28 30.50 295.87 0.12 35.30 

F14 7.5 50 90 2.50 700 296.83 0.30 24.83 358.50 0.22 33.00 

F15 15.0 50 90 2.50 700 508.43 0.28 5.38 540.80 0.21 8.16 

F16 30.0 50 90 2.50 700 329.60 0.25 35.90 724.23 0.37 37.00 

* CS molecular weight in kDa. #TPP addition rate in ml/min.+Stirring the rate in rpm. n=3 and data are given in mean±SD. 

 

 

Fig. 2: The effect of different variables on CS NPs size (nm) before and after freeze-drying:(A) Effect of TPP amount (mg), (B) Effect of 

speed of mixing (rpm), (C) Effect of chitosan DDA and (D) Effect of TPP addition rate(ml/min). n=3 and data are given in mean ± SD. 

 

As the amount of TPP increases, the nanoparticle suspension 

became progressively more turbid due to the formation of chitosan 

nanoparticles. When TPP amount was very low, the reaction 

solution was clear and viscous like pure chitosan solution, which 

indicated that the TPP amount was not enough to form a 

cross-linked structure of chitosan. As TPP amount increased to more 

than 1.5 mg, the NPs started to be formed, and as the amount of TPP 

increased, the particle sizes decreased.  

This may be due to increased inter and intra cross-linking between 

chitosan and TPP. On the other hand, as the amount of TPP continued 

to increase to more than 3 mg, CS NPs size started to increase. This 

may be due to the fact that after chitosan molecules were fully 

crosslinked, the excess TPP would lead to more chitosan molecules 

being involved in the formation of a single nanoparticle [4, 26]. In 

addition, as TPP concentration increases the samples become more 

monodispersed, and this is indicated by PDI values (fig. 3-A).
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Fig. 3: The effect of different variables on CS NPs PDI before and after freeze-drying:(A) Effect of TPP amount (mg), (B) Effect of speed of 

mixing (rpm), (C) Effect of chitosan DDA and (D) Effect of TPP addition rate(ml/min). n=3 and data are given in mean ± SD. 

 

In general, nanosuspensions having high positive charges above+10 

or below-10 are expected to have good stability while suspensions 

with charges between-10 and+10 are expected to have a higher 

possibility of aggregation and less stability. All nanoparticles 

prepared in this work carried positive charges.  

The charges of the nanoparticles decrease as the TPP concentration 

increases, which can be related to the neutralization of the 

protonated amino groups on chitosan by TPP anions (fig. 4-A). All 

formulas prepared with different TPP amounts, except F15, had 

surface charges above+10, which indicates the high stability [27].

 

 

Fig. 4: The effect of different variables on CS NPs zeta potential (mV) beforeand after freeze-drying:(A) Effect of TPP amount (mg), (B) 

Effect of speed of mixing (rpm), (C) Effect of chitosan DDA and (D) Effect of TPP addition rate(ml/min). n=3 and data are given in mean ± 

SD.
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Effect of the speed of stirring on CS NPs  

The speed of stirring effect on particle size was also investigated and 

the results showed that the particle size decreased as the speed 

increased from 500 rpm to 1500 rpm (fig. 2-B). This trend is 

probably due to the increase of the shear force that accelerates the 

dispersion of TPP in chitosan solution. The monodispersity of the 

nanoparticles was improved as the stirring speed increased, which 

is expected, as a consequence of the better dispersion of TPP in 

chitosan solution (fig. 3-B). The surface charge of the nanoparticles 

was also affected by the stirring speed, where the higher the speed 

was, the lower was the charge (fig. 4-B). This observation may be 

related to the better dispersion of TPP in chitosan solution that led 

to more inter and intra cross-linkages in chitosan at higher speeds.  

Effect of CS molecular weight on CS NPs 

Two different chitosan molecular weights (15 and 50 kDa) were tested 

to investigate the effect of the molecular weight of chitosan on CS NPs 

properties. Under the same conditions, the nanoparticles sizes 

increased as the molecular weight of chitosan decreases. This effect of 

chitosan’s molecular weight may be related to the viscosity of the 

external phase. As the chitosan molecular weight increases, the 

viscosity of the solution increases, which leads to smaller NPs. On the 

other hand, both the PDI and zeta potential decreased as the molecular 

weight increased. This can be explained by referring to the length of 

the strand and its relation to the positive charge density. As the length 

of the strand decreases, the number of amine groups per strand also 

decreases. Since the amine groups are responsible for the positive 

charge, a sharp decrease of the zeta potential is expected as the 

molecular weight decreases. In general, the PDI in all NPs prepared 

using the low molecular weight chitosan was higher than those 

prepared with high molecular weight chitosan. 

Effect of CS DDA on CS NPs  

Three degrees of deacetylation of chitosan (55, 80, 90%) were 

investigated and the effect of DDA on PS, PDI and ZP was 

investigated (fig. 2-C, fig. 3-Cand fig.4-C). The results showed that as 

the DDA increased the particle size decreased. The DDA value is 

related to the percentage of the deacetylated amine groups along the 

molecular chain, and it is increased as the percentage of amine 

groups to acetylated groups increased. Therefore, the DDA value of 

chitosan determines the density of the positive charge that is 

expressed as the zeta potential [3]. The large positive charge density 

increases the potential of the chitosan molecules to cross-link with 

TPP. This eventually led to smaller NPs, as we mentioned previously. 

The PDI did not show a clear relation to chitosan DDA, but in general 

the samples prepared were less monodispersed, which may be 

related to the CS molecular weight since all NPs prepared using CS 

15 kDa have higher PDIs in comparison to NPs prepared using CS 50 

kDa. Increasing the DDA value of chitosan results in a higher density 

of the positive charge, which is expected to increase the zeta 

potential. Our results showed such behavior. 

Effect of TPP addition rate on CS NPs 

Moreover, the effect of TPP addition rate on nanoparticles properties 
was investigated. The flow rate of the TPP solution was between 0.25 
and 2.5 ml/min. As the TPP solution flow rate increases, the particle size 
increases, as well as the PDI (fig.2-D and fig.3-D). This could be explained 
by the higher concentration of TPP at the interface between the two 
solutions at higher rates of addition. Consequently, this led to higher 
inter and intra cross-linkages that consequently produced larger 
particles. The zeta potential results showed a decrease at the beginning; 
then it started to increase (fig. 4-D). 

Effect of freeze-drying on CS NPs 

It is well known that upon liquid removal from nanoparticles, they 
would agglomerate and grow up so that the huge specific surface energy 
is overcome. Freeze-drying is a process that is widely used for drying 
NPs to improve their stability. It is considered as a relatively slow and 
expensive method. In freeze-drying, the materials are freezed and then 
the surrounding pressure is reduced to allow the frozen liquids in the 
material to sublime directly from the solid phase to the gas phase[28,29]. 
This process is typically used to preserve delicate materials such as 
NPs. The effect of freeze-drying on the CS NPs size, PDI and ZP were 
studied and the results are summarized in table 1 and in fig. 2,3 and 4. 
Freeze-drying is expected to decrease the NPs size because it prevents 
the nanoparticles from agglomeration. Some of the NPs prepared in this 
work showed such behavior but the majority of the NPs have the same 
sizes before and after freeze-drying. The short time difference between 
measuring the NPs size before and after freezing may be the reason 
behind this observation. In general, the PDIs were lower after 
freeze-drying and the surface charges were higher. This may indicate 
that freeze-drying enhanced the NPs stability.  

Stability study 

The freeze-dried NPs were dispersed in deionized water and 
observed over twenty days in order to evaluate their stability. In 
general, all NPs suspensions did not change in appearance or get 
turbid. On the other hand, in certain cases, there were differences in 
the NPs sizes at the beginning of the study and after the twenty days 
elapsed. There is a clear relation between the surface charge and the 
particles size increment percentage (fig. 5). The particles size 
increment percentage was calculated as follows:  

Size	increment 

�
Size	at	the	begining	of	the	study� size	after	20	days

Size	at	the	begining	of	the	study
X100% 

When the NPs carry high positive charges, the suspensions are more 

stable, and the NPs sizes remain almost the same. On the contrast, 

the lower the surface charges are, the lower is the stability that is 

indicated by the size growth.
  

 

Fig. 5: The relationship between particles ZP (mV) and the particles size increment percentage. n=3 and data are given in mean±SD 
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CONCLUSION 

CS NPs properties such as size, polydispersity and charge affect their 

biological properties and stability. The NPs size decreases then 

increases as the amount of TPP increases but it decreases as both 

the stirring rate or chitosan molecular weight increases. Also, NPs 

size increases as TPP flow rate decreases. The NPs are more 

monodispersed at higher TPP concentrations, stirring rates, chitosan 

molecular weights or TPP flow rates, but they show no relation to 

chitosan DDA. All NPs have positive charges that decrease at higher 

TPP concentrations, stirring rates or chitosan molecular weights or 

lower chitosan DDA. ZP decreased, then increased as TPP flow rate 

increased. Most of the NPs have the same sizes but have a higher 

monodispersity and ZP after freeze-drying. The NPs stability shows 

a clear relation to the NPs surface charge and it increases as the 

charge becomes more positive. In conclusion, the polymeric 

properties and formulation variables in ionic gelation method has a 

great influence on the CS NPs formed. 
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